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Abstract. We show existence of homothetically shrinking solutions of the fractional mean
curvature flow, whose boundary consists in a prescribed numbers of concentric spheres. We
prove that all these solutions, except from the ball, are dynamically unstable.

1. Introduction

Let us introduce the geometric evolution which we consider in this paper. Given an initial
set E ⊂ Rn, we define its evolution Et according to fractional mean curvature flow as follows: the
velocity at a point x ∈ ∂Et is given by

(1.1) ∂tx · ν = −Hs(x,Et) := − lim
ε→0

∫
Rn\Bε(x)

(
χRn\Et(y)− χEt(y)

) 1

|x− y|n+s
dy,

where s ∈ (0, 1) is a fixed parameter and ν is the outer normal at ∂Et in x. The fractional mean
curvature of a set has been introduced in [5] as the first variation of the fractional perimeter
functional, and it has been proved in [1] that for sufficiently smooth sets E the rescaled fractional
mean curvature (1−s)Hs(x,E) converges as s→ 1 to the classical mean curvature of E at x. The
evolution law (1.1) can be interpreted as the L2-gradient flow of the fractional perimeter.

Existence and uniqueness of viscosity solutions to a level set formulation of (1.1) has been
provided in [14], and qualitative properties of smooth solutions have been studied in [18]. However,
we point out that the short-time existence of smooth solutions has not yet been proved. We point
out that the In [6] the convergence to the fractional mean curvature flow of a threshold dynamics
scheme is proved; this result was adapted to the anisotropic case, even in presence of a driving force
in [8], where it is also shown that the flow preserves convexity. It has also been observed that the
geometric law (1.1) presents some different behavior with respect to the classical mean curvature
flow: we refer for instance to the paper [9] about the formation of neck-pinch singularities, and to
the paper [7] about fattening and non-fattening phenomena.

In this paper we are interested in the homothetically shrinking solutions for the flow (1.1). A
homothetic solution to (1.1) is a self-similar solution to (1.1): substituting Et = λ(t)E in (1.1),
it is easy to see, using scale invariance of the fractional mean curvature, that this is equivalent
to λ′(t)x · ν = − 1

λ(t)sHs(x,E) for all x ∈ ∂E. So homothetically shrinking solutions to (1.1) are
given by the solutions to (1.1) with initial datum every set E ⊆ Rn of class C1,1 which satisfies

(1.2) x · ν = cHs(x,E) for some constant c > 0.

Homothetically shrinking solutions are particularly relevant in the analysis of the classical
mean curvature flow, as they are canonical examples of singularities, in the sense that any solution
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converges to a self-shrinker, if properly rescaled around a singular point. This result follows from
an important monotonicity formula established by G. Huisken in [13] for the mean curvature flow.
The analog of such formula in the fractional setting is still an open problem. We recall moreover
that, at the moment, the existence theorem for local in time regular solutions of (1.1), even if
expected, has not been proved.

It is well-known that the only embedded planar curve which is homothetically shrinking under
curvature flow is the circle [2], whereas in higher dimensions there exist other smooth embedded
surfaces which are self-shrinkers for the mean curvature flow [3,4,15]. However, it is easy to show
that the ball is the only self-shrinker which is also radially symmetric.

In the fractional setting the classification of self-shrinkers is still at a very early stage. As far
as we know, we provide here the first examples of fractional self-shrinkers which are different from
balls and cylinders. More precisely, in Section 2 we show the existence of homothetic solutions to
the flow (1.1) which are radially symmetric, and have a prescribed number of boundary spheres
(see Theorem 2.3). Moreover, in the case of a single annulus, we show uniqueness of the ratio R/r
for which the flow starting from the annulus BR \Br self-similarly shrinks to a point.

A natural question arising about self-similar shrinkers is the issue of their dynamic stability. In
the case of the classical mean curvature flow, the study of the dynamic stability of self-shrinkers
was initiated in [10], and later developed by other authors. From the convergence results in [11,12]
it follows that the balls is dynamically stable under mean curvature flow (see also [16, 17, 19] for
a discussion of the stability of the Wulff-Shape as homothetic solution of the anisotropic and
crystalline curvature flow). Moreover, in [10] it is shown that balls and cylinders are the only
stable self-shrinkers.

In the fractional case none of such results is currently available, in particular it is not known
whether the ball is dynamically stable, and if convex sets shrink to a round point at the singular
time. We discuss in this paper the stability issue for the class of solutions that we construct in
Theorem 2.3. In particular, in Section 3 we show that the radial self-shrinkers different from the
ball are all dynamically unstable (see Theorem 3.1).
Acknowledgements. The authors are members of INDAM-GNAMPA. The second author was
partially supported by the University of Pisa Project PRA 2017 "Problemi di ottimizzazione e di
evoluzione in ambito variazionale".

2. Existence of symmetric self-shrinkers

We start with a technical result which will be useful in the sequel. We denote by Br the ball
of center 0 and radius r > 0, and we let Br(x) = x+Br.

Lemma 2.1. Let x ∈ Rn \ {0} and δ 6= 0. Then, as δ → 0, the following estimate holds:∫
∂B|x|+δ

1

|y − x|n+s
dy =

c

|δ|1+s
+ o

(
1

|δ|1+s

)
,

for a constant c > 0 depending only on n and s.

Proof. By the change of coordinates y′ = (y − x)/δ, we get∫
∂B|x|+δ

1

|y − x|n+s
dy =

1

|δ|1+s

∫
∂B |x|+δ

|δ|
(− xδ )

1

|y′|n+s
dy′

=
1

|δ|1+s

∫
Rn−1

1

(1 + |x′|2)
n+s

2

dx′ + o

(
1

|δ|1+s

)
=

c

|δ|1+s
+ o

(
1

|δ|1+s

)
,

where

c :=

∫
Rn−1

1

(1 + |x′|2)
n+s

2

dx′ = (n− 1)ωn−1

∫ +∞

0

ρn−2

(1 + ρ2)
n+s

2

dρ .

�
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First of all we look to the simplest example of rotationally symmetric set different from a ball.
We show that there exists a unique value of the ratio R

r which depends on the dimension n and
on the fractional power s ∈ (0, 1) such that the annulus BR \Br is a self-shrinker.

Proposition 2.2. Let n > 1. Then, for all R > 0 fixed there exists a unique r = r(n, s) ∈ (0, R)
depending only on R, s ∈ (0, 1) and n, such that the flow (1.1) with initial datum the annulus

A := BR \Br
is a homothetically shrinking solution of the flow.

Proof. Up to rescaling the set we fix R = 1. We observe that A is a solution to (1.2) if and only
if for some c > 0,

1 = cHs(x1, A) for all x1 with |x1| = 1 and r = −cHs(x1, A) for all xr with |xr| = r

and so if and only if

(2.1) Hs(xr, A) = −rHs(x1, A).

By rotational invariance, we get that Hs(xr, A), Hs(x1, A) does not depend on the points xr, x1,
but only on 0 < r < 1. Moreover they are both continuous functions with respect to r, due to the
continuity of the fractional mean curvature with respect to C2-convergence of sets (see [1]). We
consider the following function defined for r ∈ (0, 1)

(2.2) f(r) = Hs(xr, A) + rHs(x1, A).

Note that the function f is continuous on (0, 1). To prove the statement it is sufficient to show
that there exists a unique r = r(n, s) such that f(r(n, s)) = 0.

Let r, r′ such that 0 < r < r′ < 1. By the inclusions A1,r′ := B1 \ Br′ ⊆ A ⊆ B1, we get, by
the monotonicity of the fractional mean curvature (see [1]), that

(2.3) Hs(x1, A1,r′) > Hs(x1, A) > Hs(x1, B1) = k > 0,

where k = k(n, s) is a dimensional constant depending on n and s. This implies that

(2.4) r ∈ (0, 1) 7→ Hs(x1, A) is monotone increasing and positive.

Moreover, again using the definition, we observe that

(2.5) r ∈ (0, 1) 7→ Hs(xr, A) is monotone increasing.

Therefore, we notice that, due to (2.4), (2.5), the function f(r) defined in (2.2) is monotone
increasing. Now we claim that limr→0 f(r) = −∞ and that limr→1 f(r) = +∞. If the claim is
true, then the proof is concluded.

First of all we observe that

Hs(xr, A) =

∫
Rn\B1

1

|xr − y|n+s
dy + lim

ε→0

(∫
Br−ε

1

|xr − y|n+s
dy −

∫
B1\Br+ε

1

|xr − y|n+s
dy

)
.

This implies that limr→0Hs(xr, A) = −∞, and so also limr→0 f(r) = −∞.
Moreover, recalling Lemma 2.1 we get that

Hs(xr, A) = Hs(xr, Br) + lim
ε→0

(
2

∫
Br−ε

1

|xr − y|n+s
dy − 2

∫
B1\Br+ε

1

|xr − y|n+s
dy

)

=
k(n)

rs
+ 2
(
c+ o(1)

)( 1

(1− r)s
− 1

rs

)
.

So, limr→1Hs(xr, A) = +∞, which permits to conclude that limr→1 f(r) = +∞. �

We now look for more general symmetric self-shrinkers, given by the union of a finite number
of annuli.
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Theorem 2.3. For all N > 1 there exists an increasing sequence 0 < r1 < . . . < r2N , depending
only on n, s and N , such that such that the flow (1.1) with initial datum

E :=

N⋃
k=1

(
Br2k \Br2k−1

)
is a homothetically shrinking solution of (1.1).

Similarly, for all N > 1 there exists an increasing sequence 0 < r̃0 < r̃1 < . . . < r̃2N , depending
only on n, s and N , such that such that the flow (1.1) with initial datum

Ẽ := Br̃0 ∪
N⋃
k=1

(
Br̃2k \Br̃2k−1

)
is a homothetically shrinking solution of (1.1).

Proof. The argument is similar to that in the proof of Proposition 2.2. As before, up to rescaling
the sets E, Ẽ, we can assume r2N = 1. Then, we want to find radii ri in such a way that, letting
xri ∈ ∂Bri , there hold

(2.6) fi(r1, . . . , r2N−1) := riHs(xr2N , E) + (−1)i−1Hs(xri , E) = 0 ∀ i ∈ {1, . . . , 2N − 1}

and

(2.7) fi(r1, . . . , r2N−1) := riHs(xr2N , Ẽ) + (−1)i−1Hs(xri , Ẽ) = 0 ∀ i ∈ {0, . . . , 2N − 1}.

Notice that the functions fi are all continuous in their domain of definition.
We divide the proof into 4 steps. In the first step we deal with the case N = 1 , and in step 2, 3

and 4 we consider the case N > 1. For N > 1 we provide the proof just of (2.6) for the existence
of the set E, since the analogous assertion (2.7) for Ẽ follows similarly.

Step 1. The case N = 1 for E has been proved in Propositions 2.2. So, we consider the set Ẽ.
First of all we fix r1 ∈ (0, 1) and we prove that there exists r0 = r0(r1) ∈ (0, r1) such that

f0(r0(r1), r1) = 0 for all r1 ∈ (0, 1). Due to the monotonicity properties of the fractional mean
curvature, fixed r1 ∈ (0, 1) we get

lim
r0→0

Hs(x1, Ẽ) = Hs(x1, A1,r1) > 0 lim
r0→r1

Hs(x1, Ẽ) = Hs(x1, B1) = k(n) > 0.

Moreover, by definition we get that, as r0 → r1,

Hs(xr0 , Ẽ) = −2

∫
B1\Br1

1

|xr0 − y|n+s
dy +Hs(xr0 , Br0) = −2

∫
B1\Br1

1

|xr0 − y|n+s
dy +

k(n)

rs0
,

from which we conclude that

lim
r0→0

Hs(xr0 , Ẽ) = +∞ lim
r0→r1

Hs(xr0 , Ẽ) = −∞.

Therefore, we obtain that

lim
r→0

f0(r, r1) = −∞ lim
r→r1

f0(r, r1) = +∞.

By continuity of the function f0, we deduce that for all r1 ∈ (0, 1) there exists at least one
r = r(r1) ∈ (0, r1) such that

(2.8) f0(r(r1), r1) = 0 .

We choose as r0(r1) to be the smallest among all possible r(r1) ∈ (0, r1) which solve (2.8). Observe
that due to this choice the function r → f1(r0(r), r) is continuous. To conclude it is sufficient to
prove that that there exists r1 ∈ (0, 1) such that f1(r0(r1), r1) = 0. Indeed, this would imply that
(B1 \Br1) ∪Br0(r1) is a solution to (1.2).

Observe that limr→0 r0(r) = 0, and therefore we get

(2.9) lim
r→0

f1(r0(r), r) = −∞.
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We now claim that

(2.10) lim
r→1

f1(r0(r), r) = +∞.

Recalling Lemma 2.1, we observe that as r → 1,

Hs(x1, Ẽ) = 2

∫
Br\Br0(r)

1

|x1 − y|n+s
dy +Hs(x1, B1) = 2

∫ r

r0(r)

∫
∂Bt

1

|x1 − y|n+s
dy dt+ k(n)

= 2
(
c+ o(1)

)( 1

(1− r)s
− 1

(1− r0(r))s

)
+ k(n)(2.11)

where the constant c = c(n, s) > 0 is given by Lemma 2.1. Similarly, we have that

Hs(xr, Ẽ) = lim
ε→0

(
2

∫
Br−ε\Br0(r)

1

|xr − y|n+s
dy − 2

∫
B1\Br+ε

1

|xr − y|n+s
dy

)
+Hs(xr, Br)

= lim
ε→0

(
2

∫ r−ε

r0(r)

∫
∂Bt

1

|xr − y|n+s
dy − 2

∫ 1

r+ε

∫
∂Bt

1

|xr − y|n+s
dy

)
+
k(n)

rs

= 2
(
c+ o(1)

)(
− 1

(r − r0(r))s
+

1

(1− r)s

)
+
k(n)

rs
(2.12)

and

Hs(xr0(r), Ẽ) = −2

∫ 1

rn

∫
∂Bt

1

|xr0(r) − y|n+s
dy +

k(n)

(r0(r))s

= −2
(
c+ o(1)

)( 1

(r − r0(r))s
− 1

(1− r0(r))s

)
+

k(n)

(r0(r))s
.(2.13)

Therefore as r → 1 by (2.11) and (2.12)

(2.14) f1(r0(r), r) = 2
(
c+ o(1)

)( 1 + r

(1− r)s
− 1

(r − r0(r))s
− r

(1− r0(r))s

)
+O(1).

We claim that

(2.15) lim
r→1

r − r0(r)

1− r0(r)
= 1.

Note that the claim is equivalent to

lim
r→1

1− r
1− r0(r)

= 0 = lim
r→1

1− r
r − r0(r)

and this implies immediately, recalling (2.14), that limr→1 f1(r0(r), r) = +∞.
To prove (2.15) we recall that f0(r0(r), r) = 0 and using (2.11) and (2.13) we get

2
(
c+ o(1)

)( r0(r)

(1− r)s
− r0(r) + 1

(1− r0(r))s
+

1

(r − r0(r))s

)
+ r0(r)k(n) +

k(n)

(r0(r))s
= 0

from which we deduce that

(2.16)
r0(r)

(1− r)s
+

1

(r − r0(r))s
=

1 + r0(r)

(1− r0(r))s
+O(1).

Recalling that
1

(1− r)s
>

1

(1− r0(r))s
and

1

(r − r0(r))s
>

1

(1− r0(r))s

from (2.16) we get that
1

(1− r0(r))s
6

1

(r − r0(r))s
6

1

(1− r0(r))s
+O(1) ,

which gives the claim (2.15).
By continuity of f1, from (2.9) and (2.10) it follows that there exists r1 ∈ (0, 1) such that

f1(r0(r1), r1) = 0, which gives the thesis.
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Step 2. We pass now to consider the case N > 1. We provide a proof of the existence of a sequence
of radii ri which solves (2.6). We shall determine ri by induction on i.

For i = 1 we observe that, given a choice of 0 < r2 < . . . < r2N−1 < 1, we have

lim
r1→0

Hs(xr1 , E) = −∞ and lim
r1→r2

Hs(xr1 , E) = +∞.

By continuity of the function f1 it follows that there exists r̄1 = r̄1(r2, . . . r2N−1) ∈ (0, r2) such
that f1(r̄1, . . . , r2N−1) = 0. As before, in case of multiple solutions we choose the smallest one.
Notice that r̄1 is continuous as a function of r2, . . . , r2N−1. Notice also that, if we fix r3, . . . , r2N−1

and let r2 → r3, letting F := Br̄1 ∪Ar3,r2 and proceeding as in Step 1, we get

Hs(xr̄1 , E) = −Hs(xr̄1 , F ) +O(1) = 2
(
c+ o(1)

)( 1

|r2 − r̄1|n+s
− 1

|r3 − r̄1|n+s

)
+O(1)

Since f1(r̄1, . . . , r2N−1) = 0, we also have Hs(xr̄1 , E) = −r̄1Hs(xr̄1 , E) = O(1), whence

(2.17) lim
r2→r3

|r2 − r̄1|
|r3 − r̄1|

= 1.

Step 3. Let now 2 6 i < 2N − 1. By induction assumption, for all j < i there exist continuous
functions r̄j(ri, . . . , r2N−1)) such that fj(r̄1, . . . , r̄i−1, ri, . . . , r2N ) = 0. In view of (2.17), we shall
also assume that

lim
ri→ri+1

|ri − r̄i−1|
|ri+1 − r̄i−1|

= 1,

which is equivalent to

(2.18) lim
ri→ri+1

|ri+1 − ri|
|ri − r̄i−1|

= 0.

Given a choice of rj for j > i, we want to find r̄i such that

(2.19) fi(r̄1, . . . , r̄i, ri+1, . . . , r2N ) = 0

and

(2.20) lim
ri+1→ri+2

|ri+1 − r̄i|
|ri+2 − r̄i|

= 1.

We first notice that

lim
ri→0

fi(r̄1, . . . , r̄i−1, ri, . . . , r2N−1) = lim
ri→0

(−1)i−1Hs(xi, E) = −∞.

We now consider the limit ri → ri+1. Reasoning as in Step 1, we get

(−1)i−1Hs(xri , E) = 2
(
c+ o(1)

) 1

|ri+1 − ri|s
+

i−1∑
j=k

(−1)i−k

|ri − r̄k|s

+O(1),

and therefore, recalling (2.18),

lim
ri→ri+1

fi(r̄1, . . . , r̄i−1, ri, . . . , r2N−1) = lim
ri→ri+1

(−1)i−1Hs(xri , E) +O(1)

= lim
ri→ri+1

 1

|ri+1 − ri|s
+

i−1∑
j=k

(−1)i−k

|ri − r̄k|s

 = +∞.

By continuity of fi it follows that there exists r̄i such that fi(r̄1, . . . , r̄i, ri+1, . . . , r2N ) = 0. As
before, in case of multiple solutions we choose the smallest one.

We now show (2.20). If we fix ri+2, . . . , r2N−1 and let ri+1 → ri+2, from (2.19) we get
Hs(xr̄i , E) = O(1), which implies

− 1

|ri+2 − r̄i|s
+

1

|ri+1 − r̄i|s
+

i−1∑
j=k

(−1)i−k

|r̄i − r̄k|s
= O(1).
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Multiplying by |ri+1 − r̄i|s and recalling (2.18) we then get

lim
ri+1→ri+2

|ri+1 − r̄i|s

|ri+2 − r̄i|s
−

i−1∑
j=k

(−1)i−k|ri+1 − r̄i|s

|r̄i − r̄k|s
= lim
ri+1→ri+2

|ri+1 − r̄i|s

|ri+2 − r̄i|s
= 1,

which gives (2.20).

Step 4. Finally, for i = 2N − 1 we still have

lim
r2N−1→0

f2N−1(r̄1, . . . , r̄2N−2, r2N−1) = −∞.

We now consider the limit r2N−1 → 1. Recalling (2.20) with i = 2N − 2, as in Step 1 we get

Hs(xr2N−1
, E) = 2

(
c+ o(1)

)( 1

(1− r2N−1)s
− 1

(r2N−1 − r̄2N−2)s

)
+O(1)

Hs(x1, E) = 2
(
c+ o(1)

)( 1

(1− r2N−1)s
− 1

(1− r̄2N−2)s

)
+O(1)

= 2
(
c+ o(1)

) 1

(1− r2N−1)s
+O(1),

= 2
(
c+ o(1)

) 1

(1− r2N−1)s
+O(1).

Therefore, we have

0 = lim
r2N−1→1

f2N−1(r̄1, . . . , r̄2N−2, r2N−1)

= lim
r2N−1→1

(
r2N−1Hs(x1, E) +Hs(xr2N−1

, E)
)

= lim
r2N−1→1

2
(
c+ o(1)

)
,

1 + r2N−1

|1− r2N−1|s
= +∞.

As before, it follows that there exists r̄2N−1 such that f2N−1(r̄1, . . . , r̄2N−1) = 0. �

Remark 2.4. An interesting question which is left open by the previous result is the issue of
uniqueness for self-shrinkers with a prescribed number of boundary spheres. In the simplest case,
that is the annulus, in Proposition 2.2 we prove uniqueness of the ratio R

r for which the annulus
BR \Br is a self-similar shrinker.

From Theorem 2.3 we readily obtain the existence of cylindrical self-shrinkers.

Corollary 2.5. Let k < n. For all N > 1 there exists an increasing sequence 0 < r1 < . . . < r2N ,
depending only on k, s and N , such that such that the flow (1.1) with initial datum

C := Rn−k ×
N⋃
j=1

(
Bkr2j \B

k
r2j−1

)
is a homothetically shrinking solution of (1.1), where Bkr denotes the ball of radius r in Rk.

Similarly, for all N > 1 there exists an increasing sequence 0 < r̃0 < r̃1 < . . . < r̃2N , depending
only on k, s and N , such that such that the flow (1.1) with initial datum

C̃ := Rn−k ×Bkr̃0 ∪
N⋃
j=1

(
Bkr̃2j \B

k
r̃2j−1

)
is a homothetically shrinking solution of (1.1).



8 A. CESARONI, M. NOVAGA

3. Stability

We now discuss the dynamic stability of the symmetric self-shrinkers constructed in the previous
section. By definition self-shrinkers are stationary solutions to the flow

(3.1) ∂tx · ν = −Hs(x,E) + x · ν.
If the initial datum is rotationally symmetric as in Theorem 2.3 then (3.1) becomes a system
of ODE’s in the radii ri, and Theorem 2.3 guarantees the existence of a stationary point for
every number of radii. We are interested in the stability of such critical points, with respect to
perturbations which are orthogonal to the vector (r1, . . . r2N ) (or resp. (r0, . . . r2N )) given by the
radii. Indeed this vector corresponds to a rescaling of the initial datum, and therefore gives a
direction of instability for the system which is not geometrically significant.

In the symmetric situation, we can rewrite (3.1) as the system of ODE’s

(3.2) ṙi = (−1)i−1Hs(xi, E) + ri i 6 2N.

Theorem 3.1. Fix N > 1, and let E (resp. Ẽ) be the symmetric shrinker given by Theorem (2.3),
corresponding to the stationary point (r̄1, . . . r̄2N ) (resp. (r̄0, . . . r̄2N )) for the system (3.2). Then,
the Morse index of such point is at least 2, in particular the corresponding homothetic solution is
dynamically unstable.

Proof. We shall prove the assertion for the shrinker E, since the proof for Ẽ is analogous.
For the reader convenience, we first present in detail the case N = 1, corresponding to an

annulus A = Br̄2 \Br̄1 . The system (3.2) then becomes
(3.3)ṙ1 = Hs(xr1 , A) + r1 = k(n)

rs1
+ 2 limε→0

(∫
Br1−ε

1
|xr1−y|n+s dy −

∫
Br2\Br1+ε

1
|xr1−y|n+s dy

)
+ r1

ṙ2 = −Hs(xr2 , A) + r2 = −k(n)
rs2
− 2

∫
Br1

1
|xr2−y|n+s dy + r2.

We define the function g(r1, r2) = (g1(r1, r2), g2(r1, r2)) as follows:g1(r1, r2) := k(n)
rs1

+ 2 limε→0

(∫
Br1−ε

1
|xr1−y|n+s dy −

∫
Br2\Br1+ε

1
|xr1−y|n+s dy

)
+ r

g2(r1, r2) := −k(n)
rs2
− 2

∫
Br1

1
|xr2−y|n+s dy + r2.

We now compute the Jacobian matrix Dg at the point (r̄1, r̄2) which is a stationary point for
(3.3), that is g(r̄1, r̄2) = 0.

We observe the following fact: for δ 6= 0, ε > 0, R > r > |δ|, there hold∫
Br+δ−ε

1

|xr+δ − y|n+s
dy =

(
r

r + δ

)s ∫
Br−ε r

r+δ

1

|xr − y|n+s
dy

∫
BR\Br+δ+ε

1

|xr+δ − y|n+s
dy =

(
r

r + δ

)s ∫
B Rr
r+δ
\Br+ε r

r+δ

1

|xr − y|n+s
dy.

So, using these equalities we get that the derivative of g1 at (r̄1, r̄2) are given by

∂r1g1(r̄1, r̄2) = −sk(n)

r̄s+1
1

− 2s

r̄1
lim
ε→0

(∫
Br̄1−ε

1

|xr̄1 − y|n+s
dy −

∫
Br̄2\Br̄1+ε

1

|xr̄1 − y|n+s
dy

)

+
2r̄2

r̄1

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy + 1(3.4)

= −s
r
g1(r̄1, r̄2) + s+ 1 +

2r̄2

r̄1

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy

= s+ 1 +
2r̄2

r̄1

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy(3.5)

∂r2g1(r̄1, r̄2) = −2

∫
∂Br̄2

1

|xr̄1 − y|n+s
dy.
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Analogously, we observe that for δ 6= 0, R > r > |δ|, there holds∫
Br

1

|xR+δ − y|n+s
dy =

(
R

R+ δ

)s ∫
B Rr
R+δ

1

|xR − y|n+s
dy.

Using this equality, we compute the derivative of g2 at (r̄1, r̄2):

∂r1g2(r̄1, r̄2) = −2

∫
∂Br̄1

1

|xr̄2 − y|n+s
dy

∂r2g2(r̄1, r̄2) =
sk(n)

r̄s+1
2

+
2s

r̄2

∫
Br̄1

1

|xr̄2 − y|n+s
dy +

2r̄1

r̄2

∫
∂Br̄1

1

|xr̄2 − y|n+s
dy + 1

= − s

r̄2
g2(r̄1, r̄2) + s+ 1 +

2r̄1

r̄2

∫
∂Br̄2

1

|xr̄2 − y|n+s
dy

= s+ 1 +
2r̄1

r̄2

∫
∂Br̄2

1

|xr̄2 − y|n+s
dy.(3.6)

Note that, using (3.5) and (3.6),

Dg(r̄1, r̄2)(r̄1, r̄2)t = (s+ 1)(r̄1, r̄2)t

so that (r̄1, r̄2) is an eigenvector with eigenvalue s + 1 > 0. Moreover, by (3.6), we observe that
∂r2g2(r̄1, r̄2) > s+ 1. This implies that

(3.7) max
v: |v|=1

vDg(r̄1, r2)vt > (0, 1)Dg(r̄1, r̄2)(0, 1)t > s+ 1,

which gives that Dg(r̄1, r2) has a second eigenvalue bigger than s + 1, and then in particular
positive.

We now consider the general case of a self-shrinker

(3.8) E :=

N⋃
k=1

(
Br̄2k \Br̄2k−1

)
.

We also let r̄ = (r̄1, . . . , r̄2N ), g(r̄) = (g1(r̄), . . . , g2N (r̄)) ∈ R2N , where

gi(r̄) := −Hs(xi, E) + r̄i = −k(n)

r̄si
+ r̄i + 2

∑
j<i

(−1)i−j
∫
Br̄j

1

|xr̄i − y|n+s
dy

−2
∑
j>i

(−1)i−j
∫
Rn\Br̄j

1

|xr̄i − y|n+s
dy,

if the index i is even, and

gi(r̄) := Hs(xi, E) + ri = −Hs(xi,Rn \ E) + ri

= −k(n)

r̄si
+ r̄i + 2

∑
j<i

(−1)i−j
∫
Br̄j

1

|xr̄i − y|n+s
dy

−2
∑
j>i

(−1)i−j
∫
Rn\Br̄j

1

|xr̄i − y|n+s
dy,

if i is odd. Notice that, since r̄ is a stationary solutions to (3.2), we have g(r̄) = 0.
We compute, for j 6= i,

∂gi
∂rj

(r̄) = 2(−1)i−j
∫
∂Br̄j

1

|xr̄i − y|n+s
dy,
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and

∂gi
∂ri

(r̄) = −sk(n)

r̄s+1
i

+ 1− 2
s

r̄i

∑
j<i

(−1)i−j
∫
Br̄j

1

|xr̄i − y|n+s
dy

+2
s

r̄i

∑
j>i

(−1)i−j
∫
Rn\Br̄j

1

|xr̄i − y|n+s
dy − 2

r̄i

∑
j 6=i

(−1)i−j r̄j

∫
∂Br̄j

1

|xr̄i − y|n+s
dy

= − 2

r̄i
gi(r̄) + s+ 1− 2

r̄i

∑
j 6=i

(−1)i−j r̄j

∫
∂Br̄j

1

|xr̄i − y|n+s
dy

= s+ 1 + 2
∑
j 6=i

r̄j
r̄i

(−1)i−j+1

∫
∂Br̄j

1

|xr̄i − y|n+s
dy.

Notice that

Dg(r̄)r̄t =
∑
j

∂gi
∂rj

(r̄)rj = (s+ 1)r̄t,

so that r̄ is an eigenvector with eigenvalue s+ 1 > 0.
Now we claim that

(3.9)
∂g2N

∂r2N
(r̄) > s+ 1.

If the claim is true, then reasoning as in (3.7), we conclude that there exists an eigenvalue of Dg(r̄)
which is strictly greater than s+ 1 (and then positive), so that the Morse index of (r̄1, . . . r̄2N ) is
at least 2.

Since

∂g2N

∂r2N
(r̄) = s+ 1 +

2

r̄2N

2N−1∑
j=1

(−1)j−1 r̄2N−j

∫
∂Br̄2N−j

1

|xr̄2N − y|n+s
dy,

to get the claim (3.9) it is sufficient to prove that for all 1 6 i < j < 2N there holds

(3.10) r̄i

∫
∂Br̄i

1

|xr̄2N − y|n+s
dy < r̄j

∫
∂Br̄j

1

|xr̄2N − y|n+s
dy.

We shall prove a slightly stronger statement, namely that

(3.11) r 7→ h(r) :=

∫
∂Br

1

|xr̄2N − y|n+s
dy is strictly increasing on (0, r̄2N ).

Indeed, we compute

h′(r) =

∫
∂Br

∇
(

1

|xr̄2N − y|n+s

)
· ν(y) dy =

∫
Br

∆

(
1

|xr̄2N − x|n+s

)
dx

= (n+ s)(s+ 2)

∫
Br

1

|xr̄2N − x|n+s+2
dx > 0,

which shows (3.11), and so proves (3.10).
�

Remark 3.2. It would be interesting to determine exactly the Morse index of the stationary
points (r̄1, r̄2, . . . , r̄2N ) (resp. (r̄0, r̄1, . . . , r̄2N )) of the flow (3.2). In the simplest case N = 1, we
proved in Theorem 3.1 that the index of (r̄1, r̄2) is equal to 2.

It would also be interesting to understand if the balls is dynamically stable for any perturbation
(not necessarily radial), as it happens for the standard mean curvature flow [10,12].
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