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Abstract

We consider the evolution by mean curvature in a highly heterogeneous medium,
modeled by a periodic forcing term, with large L∞-norm but with zero average. We
prove existence of a homogenization limit, when the dimension of the periodicity cell
tends to zero, and show some properties of the effective velocity.

1 Introduction

This paper deals with mean curvature flow in a heterogeneous medium, represented by
a Z

n-periodic function g ∈ Lip(Rn) acting on the flow as an additive forcing term. This
problem has been already considered in the literature, starting from the papers [12, 20].
In particular, in [14, 10] the authors consider the following scaling

V ε(x) = εH(x) + g
(x

ε

)

for x ∈ Γε(t), (1)

where Γε(t) is the evolving hypersurface, V ε(x) is its normal velocity at x ∈ Γε(t), and
H(x) its mean curvature. Under appropriate assumptions on the function g, one can prove
that the evolution law (1) converges, as ε→ 0, to the first-order anisotropic law

V (x) = c(ν(x)) for x ∈ Γ(t),

where Γ(t) denotes the limit of Γε(t), V (x) the limiting normal velocity at x ∈ Γ(t) and c
is a continuous function of the normal vector ν(x) to Γ(t) at x, and can be determined by
solving a suitable cell problem.

Since c = 0 when g has zero average, a natural question is what happens if we
consider a different time-scaling of (1), namely

V ε(x) = H(x) +
1

ε
g
(x

ε

)

for x ∈ Γε(t), (2)

under the additional assumption that g has zero average.
The object of the present paper is the study of the limit of the evolution law (2) as

ε → 0. We assume that the evolving hypersurface Γε(t) is a graph of a function uε(·, t)
with respect to a fixed hyperplane, independent of ε, and that the forcing term g does
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not depend on the variable orthogonal to such hyperplane. In this case, the function uε

satisfies the equation

uε
t(t, x) = tr

[(

I− Duε ⊗Duε

1 + |Duε|2
)

D2uε

]

+
1

ε
g
(x

ε

)

√

1 + |Duε|2 in (0,+∞) × R
n , (3)

where we require that the initial datum u0 : R
n → R is a uniformly continuous function

such that u0(x) − qx is bounded for some q ∈ R
n.

Another motivation for considering (3) comes from the following homogenization
problem:

uε
t = tr

[(

I − Duε ⊗Duε

1 + |Duε|2
)

D2uε

]

+ g
(x

ε

)

√

1 + |Duε|2 in (0,+∞) × R
n. (4)

Since the function g is bounded, one can show that, as ε → 0, uε → u locally uniformly
in R

n × [0,+∞). Moreover, u solves the limit equation

ut = tr

[(

I − Du⊗Du

1 + |Du|2
)

D2u

]

+

(�
[0,1]n

g dx

)

√

1 + |Du|2 in (0,+∞) × R
n. (5)

This result, derived in [11] when n = 1, can be obtained in general dimensions by the
so-called perturbed test function method [15], which is by now a standard tool in viscosity
solutions theory applied to homogenization problems. More precisely, one considers the
formal asymptotic expansion

uε(x, t) = u(x, t) + ε2χ
(x

ε
, x, t

)

(6)

where the corrector χ(ξ, x, t) = ψ(ξ,Du(x, t)) is periodic in ξ and solves, for every fixed
p = Du(x, t), the cell problem

tr

[(

I − p⊗ p

1 + |p|2
)

D2
ξξχ

]

=

(�
[0,1]n

g(x)dx − g(ξ)

)

√

1 + |p|2 in R
n.

Plugging the expansion (6) in (4) and using the comparison principle for viscosity solutions,
one obtains that u solves (5).

In this paper, we apply the same method to Equation (3), and we prove that, under
a suitable assumption on the function g (see Section 2), the limit function u solves the
anisotropic parabolic equation

ut = tr
(

A(Du)D2u
)

in (0,+∞) × R
n,

where A(p) is a smooth function depending on g, with values in the set of positive definite
symmetric matrices. Obviously, when g ≡ 0 we have A(p) = I − p⊗p

1+|p|2 .

When n = 1, thanks to an explicit representation formula for A(p), we can further
show that

0 < A(p) ≤ 1

1 + p2
for all p ∈ R

and that lim|p|→∞A(p)(1 + p2) = 0, when g 6≡ 0. In particular, this implies that the
presence of g has the effect of decreasing the speed of the front in the limit, without
stopping the motion.
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A further consequence of our result is the nonexistence of compact embedded solu-
tions of the prescribed curvature problem

H + g = 0, (7)

for all g such that A(p) 6= 0 for some p ∈ R
n. For similar results in the nonperiodic setting,

we refer to [18] and references therein.
The paper is organized as follows. In Section 2 we describe the standing assumptions

on the forcing term g. Section 3 and 4 are devoted to the analysis of two ergodic problems
in R

n, which permit to define the limit parabolic operator F (p,X) = tr (A(p)X). In
Section 4 we consider the case of planar curves (i.e. n = 1), and obtain a more explicit
description of the function A(p) (see Proposition 4.1). Finally, Section 5 contains the
main homogenization result (see Theorem 5.3) and a discussion of its consequences for the
related prescribed curvature problem (7).

2 Standing assumptions

In this section we state some conditions on the forcing term g, which will hold throughout
the paper. Setting Q := (0, 1)n, our first condition is:

(G1) g : R
n → R is Lipschitz continuous, Z

n-periodic and
�
Q g(y)dy = 0.

The requirement that g has zero average on Q is necessary due to the homogenization
result for Equations (1) and (4) discussed in the Introduction.

We also need a condition ensuring that the oscillation of g on Q is not too large.
Let us first define the space BVper(Q) of functions which have periodic bounded variation
in Q. We refer to [3] for a general introduction to functions of bounded variation and sets
of finite perimeter.

It is a classical result that any u ∈ BV (Q) admits a trace uQ on ∂Q (see e.g. [3,
Thm 3.87]). Let ∂0Q := ∂Q ∩ {y :

∏n
i=1 yi = 0} and let σ : ∂0Q → ∂Q be the function

σ(y) := y+
∑n

i=1 λi(y)ei, where λi(y) = 1 if yi = 0 and λi(y) = 0 otherwise. The periodic
total variation of u ∈ BV (Q) is defined as

|Du|per(Q) := |Du|(Q) +

�
∂0Q

|uQ(y) − uQ(σ(y))| dHn−1(y). (8)

The space BVper(Q) is the space BV (Q) endowed with the norm

‖u‖BVper(Q) := ‖u‖L1(Q) + |Du|per(Q).

For every E ⊆ Q we define the periodic perimeter of E as

Perper(E,Q) := |DχE |per(Q) (9)

where χE is the characteristic function of E. We observe that BVper(Q) coincides with
BV (Tn), where T

n := R
n/Zn is the n-dimensional torus. In particular, the following

Coarea Formula holds [3, Thm 3.40]

|Du|per(Q) =

�
R

Perper({u > t}, Q) dt for all u ∈ BVper(Q). (10)

The second condition we assume on g is:
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(G2) there exists δ < 1 such that for every E ⊆ Q of finite perimeter�
E
g(y) dy ≤ δ Perper(E,Q). (11)

Note that, when n > 1, condition (G2) is satisfied whenever ‖g‖Ln(Q) < C(Q),
where C(Q) is the isoperimetric constant of T

n. Indeed, since g has zero average, possibly
exchanging E with Q \ E in (11) we can assume that |E| ≤ 1/2. By the isoperimetric
inequality on T

n [23], we then obtain�
E
g(y) dy ≤ ‖g‖Ln(Q) |E|n−1

n ≤
‖g‖Ln(Q)

C(Q)
Perper(E,Q) = δ Perper(E,Q)

where δ = ‖g‖Ln(Q)/C(Q) < 1.
When n = 1, condition (G2) is equivalent to

max
y∈[0,1]

� y

0
g(s) ds − min

y∈[0,1]

� y

0
g(s) ds < 2 (12)

which is the same condition assumed in [10].

3 The cell problems and the effective operator

In this section, we consider two ergodic problems in Q, see (13), (15), whose solutions are
useful to define the limit problem as ε→ 0 of the singularly perturbed Equations (3).

Lemma 3.1 Under the standing assumptions, for every p ∈ R
n the equation

−div

(

Dχ+ p
√

1 + (Dχ+ p)2

)

= g(y) in R
n (13)

admits a Z
n-periodic solution χ(y; p) ∈ C2+α(Rn), for all α < 1, which is unique up to an

additive constant. Moreover χ depends smoothly on p.

Proof We observe that (13) is the Euler-Lagrange equation of the functional

Jp(u) :=

�
Q

(

√

1 + (Du+ p)2 − gu
)

dy +

�
∂0Q

|uQ(y) − uQ(σ(y))| dHn−1(y)

which is a convex lower semicontinuous functional on BVper(Q) (see [3]).
We claim that Jp is coercive on the subspace

BV 0
per(Q) :=

{

u ∈ BVper(Q) :

�
Q
u = 0

}

.

Notice that |Du|per(Q) is an equivalent norm on BV 0
per(Q) [3, Thm 3.44]. By condition

(G2) and the Coarea Formula (10), recalling that
�
Q g dy = 0, we have�

Q
gu dy =

�
R

�
{u>t}

g dy dt ≤ δ

�
R

Perper({u > t}, Q) dt = δ|Du|per(Q), (14)
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for all u ∈ BVper(Q). Therefore, we obtain

Jp(u) ≥
�

Q
|Du+ p| −

�
Q
gu dy +

�
∂0Q

|uQ(y) − uQ(σ(y))| dHn−1(y)

≥ −|p| −
�

Q
gu dy + |Du|per(Q)

≥ −|p| + (1 − δ)|Du|per(Q) ,

which proves that Jp is coercive on BV 0
per(Q).

Since Jp is coercive and lower semicontinuous on BV 0
per(Q), it admits a minimizer

χ(·; p). Moreover, by convexity, χ(·; p) is the unique minimizer of Jp on BVper(Q), up to
an additive constant.

Finally, by [16], any solution χ(y; p) of (13) is Lipschitz continuous, and hence of
class C2+α(Rn) by standard elliptic regularity [17]. Also, by differentiation of (13) in the
p-variables, the same regularity holds for any derivative of χ(y; p) with respect to p. 2

Remark Notice that the periodic function ψp(y) = χ(y; p) + p · y solves the prescribed
curvature problem

−div

(

Dψp
√

1 + (Dψp)2

)

= g(y), y ∈ R
n.

In particular, the graph of ψp is a plane-like solution of the geometric equation H = g,
lying at a bounded distance from the hyperplane {(y, p · y) : y ∈ R

n}. We refer to [9] for
a general analysis of such solutions.

Lemma 3.2 For any p ∈ R
n and M ∈ Sn there exists a unique constant F (p,M) such

that there exists a Z
n-periodic solution ψ(y; p,M) ∈ C2+α(Rn), for all α < 1, to the cell

problem

F (p,M) = tr

[(

I − (p+Dyχ) ⊗ (p+Dyχ)

1 + |p+Dyχ|2
)

(

D2ψ +M + 2D2
pyχM

)

]

−2 (p+Dyχ)TD2
yyχ

(

Dψ + (Dpχ)TM

1 + |p+Dyχ|2
− (p+Dyχ) · (Dψ + (Dpχ)TM)

(1 + |p+Dyχ|2)2
(p+Dyχ)

)

+ g(y)
(p +Dyχ) · (Dψ + (Dpχ)TM)

√

1 + |p+Dyχ|2
, (15)

where χ(y; p) is the solution to (13) with χ(0; p) = 0. Moreover ψ(y; p,M) is in C2(Rn)
and is unique up to an additive constant.

Finally, there exists a n×n symmetric matrix A(p), depending smoothly on p, such

that

F (p,M) = tr(A(p)M). (16)

Proof Observe that, using the fact that χ solves (13), Equation (15) can be rewritten
as

tr
(

B(y, p)D2ψ
)

+ b(y, p) ·Dψ = F (p,M) − tr
[

B(y, p)(I + 2D2
pyχ)M

]

− (b(y, p))TMDpχ , (17)
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where B(y, p) := I − (p+Dyχ)⊗(p+Dyχ)
1+|p+Dyχ|2

is a symmetric, positive definite matrix and

b(y, p) := −
2(p+Dyχ)TD2

yyχ

1 + |p+Dyχ|2
+

[

3g(y)
√

1 + |p+Dyχ|2
+

2∆yyχ

1 + |p+Dyχ|2

]

(p+Dyχ).

Moreover, recalling that χ is Z
n-periodic and smooth, we get that (17) is a uniformly

elliptic equation and that both B(y, p) and b(y, p) are Z
n-periodic in y. The existence of

a unique constant F (p,M) such that (17) admits a continuous periodic solution ψ is then
a well-known fact (see [4, Thm II.2], [1, Thm 7.1]). Finally, ψ is unique up to an additive
constant and is of class C2+α with respect to y, for all α < 1, by elliptic regularity [17].

We also have an explicit characterization of F (p,M). Indeed, consider the differen-
tial operator

Lp(φ) := tr
(

B(y, p)D2φ
)

+ b(y, p) ·Dφ
and let L⋆

p be its formal adjoint. Then, the equation L⋆
p(m) = 0 admits a Z

n-periodic
solution m(y; p) > 0, which is unique up to a multiplicative constant (see [7, Thm II.4.2]),
so that we may fix

�
Qm(y; p)dy = 1. Notice that m(y; p), as well as χ(y; p), depends

smoothy on p by elliptic regularity.
In [7, Thm II.6.1] (see also [15, Thm 2.1], [1, Corollary 6.2]) it is proved that

F (p,M) =

�
Q

[

tr
(

B(y, p)(I + 2D2
pyχ(y; p))M

)

+ (b(y, p))TMDpχ(y; p)
]

m(y; p) dy.

This formula implies, in particular, the regularity of F with respect to p, since the functions
b(y, ·) and B(y, ·) are smooth, due to the regularity properties of χ and m.

Finally, the above representation formula for F also implies (16), since F (p, ·) is a
linear function of M for any fixed p, and hence which can be written as tr[A(p)M ] for
some symmetric matrix A(p).

2

Remark Notice that, always by elliptic regularity, from (15) it follows that the map
g 7→ A(p) (when defined) is continuous with respect to the Lipschitz norm of g. In
particular, since A(p) = I− p⊗p

1+|p|2
when g = 0, we get that there exists δ > 0 such that, if

‖g‖Lip < δ, then A(0) 6= 0. Notice that, possibly reducing δ, this condition implies (11).

4 The effective operator in dimension 1

When n = 1, we obtain a much more explicit description of the effective operator F (p,M)
(see Proposition 4.1). This is done by solving explicitly the two cell problems (13) and
(15).

Lemma 4.1 Under the standing assumptions, for every p ∈ R the periodic solution to

(13) such that χ(0; p) = 0 is given by

χ(y; p) = −py +

� y

0

c(p) −G(s)
√

1 − (c(p) −G(s))2
ds, (18)

where G′(y) = g(y),
� 1
0 G(y)dy = 0, and c = f−1 with f(c) =

� 1
0

c−G(y)√
1−(c−G(y))2

dy.
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Proof We denote by m := max[0,1]G and m = min[0,1]G.
Integrating once the equation, easy computations show that every solution to (13) satisfies

1
1+(p+χy)2

= 1− (c−G(y))2 for some constant c. Therefore solving the problem necessarily

requires max[0,1](G − c) < 1 and min[0,1](G − c) > −1. It is possible to find c satisfying
this condition if and only if m−m < 2. This is ensured by (11). In this case it is sufficient

to choose c ∈ (m−1,m+1). For such constants c, we get that χy(y) = −p+ c−G(y)√
1−(c−G(y))2

.

We define the function f : (m− 1,m+ 1) → R by

f(c) :=

� 1

0

c−G(y)
√

1 − (c−G(y))2
dy.

Straightforward computations show that f is strictly increasing and we claim that f(m−
1,m+ 1) = (−∞,+∞). Indeed we remark that, by assumption (G1), G ∈ C1,1(R) and, if
y0 is a maximum point of G, then for y close to y0 we have |G(y) − G(y0)| ≤ k|y − y0|2.
As a consequence, if c = m− 1, in a small neighborhood of y0 we have

1−(m−1−G(y))2 = 1−(G(y0)−1−G(y))2 = 2(G(y)−G(y0))+(G(y)−G(y0))
2 ≤ k̃|y−y0|2 ,

for some constant k̃ > 0. Possibly changing the constant k̃, we then get

c−G(y)
√

1 − (c−G(y))2
≤ − k̃

|y − y0|
.

This inequality shows that the function is not integrable for c = m − 1 and therefore
f(c) → −∞ as c→ m− 1. An analogous argument holds when c = m+ 1.

Since we are looking for periodic solutions to Equation (13), we impose the condition� 1
0 χy(y)dy = 0. This gives f(c) = p, that is, c = f−1.

Notice that the function c is smooth and

c′(p) =
1� 1

0 [1 − (c(p) −G(y))2]−
3
2 dy

.

2

Proposition 4.1 Under the standing assumptions and for n = 1, the function A(p) in

Lemma 3.2 is given by

0 < A(p) =
c′(p)� 1

0

√

1 − (c(p) −G(y))2dy
≤ 1

1 + p2
∀p ∈ R, (19)

where G(y) and c(p) are as in Lemma 4.1. Moreover if g 6≡ 0 there exists a constant Kg

such that

0 < A(p)(1 + p2) ≤ Kg
√

1 + p2
. (20)

In particular A(p)(1 + p2) → 0 as |p| → +∞.

Proof To obtain the characterization of A, we explicitly solve Equation (15). Due to
the homogeneity properties of (15) with respect to M , we immediately get A(p) = F (p, 1).
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We rewrite (15) with M = 1. We consider the coefficient of ψy and obtain, recalling the
characterization (18) of χ,

g(y)(p + χy)
√

1 + (p + χy)2
− 2χyy(p + χy)

(1 + (p+ χy)2)2

=
p+ χy

1 + (p+ χy)2

[

g(y)
√

1 + (p+ χy)2 −
2χyy

1 + (p + χy)2

]

= 3g(y)(c(p) −G(y)).

The last two terms on the right-hand side of (15) coincide with

2χyyχp(p+ χy)

(1 + (p + χy)2)2
− g(y)χp(p+ χy)
√

1 + (p+ χy)2
= −3g(y)(c(p) −G(y))χp.

Then, using the explicit formula for χyp deduced from (18), (15) can be rewritten as

ψyy + χyp +
3g(y)(c(p) −G(y))

1 − (c(p) −G(y))2
(ψy + χp) =

F (p, 1)

1 − (c(p) −G(y))2
− c′(p)

(1 − (c(p) −G(y))2)
3
2

Note that 3g(y)(c(p)−G(y))
1−(c(p)−G(y))2 = [log(1 − (c(p) −G(y))2)

3
2 )]y. Therefore we obtain

[

(

1 − (c(p) −G(y))2
)

3

2 (ψy + χp)
]′

= F (p, 1)
√

1 − (c(p) −G(y))2 − c′(p)

and integrating we get, for some constant d(p),

(

1 − (c(p) −G(y))2
)

3
2 (ψy + χp) = d(p) + F (p, 1)

� y

0

√

1 − (c(p) −G(s))2ds− c′(p)y.

Then

ψy = −χp +
d(p) + F (p, 1)

� y
0

√

1 − (c(p) −G(s))2ds− c′(p)y

(1 − (c(p) −G(y))2)
3

2

.

We look for a periodic solution ψ, then we impose that ψy(0) = ψy(1). Recalling the

formula for c′(p) and χp, we get χp(0) = χp(1) = 0, so ψy(0) = d(p)

(1−(c(p)−G(0))2)
3
2

and

ψy(1) =
d(p) + F (p, 1)

� 1
0

√

1 − (c(p) −G(s))2ds− c′(p)

(1 − (c(p) −G(1))2)
3
2

.

Then, since G is periodic, we obtain the condition F (p, 1)
� 1
0

√

1 − (c(p) −G(y))2dy =
c′(p), which gives the desired characterization (19) of A(p). In particular, recalling the
definition of c′(p) we get that A(p) > 0 for every p.

We prove now that A(p)(1+ p2) ≤ 1. By definition of c(p) and Hölder inequality we
get

|p| ≤
� 1

0

∣

∣

∣

∣

∣

c(p) −G(y)
√

1 − (c(p) −G(y))2

∣

∣

∣

∣

∣

dy ≤
[� 1

0

(c(p) −G)2

1 − (c(p) −G(y))2
dy

]

1
2

.

Therefore

1 + p2 ≤
� 1

0

1

1 − (c(p) −G(y))2
dy. (21)
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By Holder inequality we get� 1

0

1

1 − (c(p) −G(y))2
dy ≤

[� 1

0

1

[1 − (c(p) −G(y))2]
3
2

dy

]
2
3

=

[� 1
0

1

[1−(c(p)−G(y))2 ]
3
2

dy

]− 1
3

c′(p)
. (22)

Again by Jensen and Holder inequalities we obtain

1� 1
0

√

1 − (c(p) −G(y))2dy
≤

� 1

0

1
√

1 − (c(p) −G(y))2
dy

≤
[� 1

0

1

[1 − (c(p) −G(y))2]
3
2

dy

]
1
3

. (23)

Finally, recalling the definition (19) of A(p) (21), (22) and (23) give 1 + p2 ≤ 1
A(p) .

Finally we prove (20). From inequalities (21) and (22), we get

c′(p) ≤
(

1

1 + p2

)
3
2

.

We define the function

h(p) := (

� 1

0

√

1 − (c(p) −G(y))2dy)−1.

Notice that h′(p) = c′(p)ph−2(p) and then h is decreasing in (−∞, 0) and increasing in
(0,+∞). Moreover

lim
p→+∞

h(p) = (

� 1

0

√

1 − (1 +m−G(y))2dy)−1

lim
p→−∞

h(p) = (

� 1

0

√

1 − (1 −m−G(y))2dy)−1.

We define the constant

Kg := max

(

1� 1
0

√

1 − (1 +m−G(y))2dy
,

1� 1
0

√

1 − (−1 +m−G(y))2dy

)

.

Note that Kg > 0 depends only on g and that it explodes as g → 0. So we conclude,
recalling (19). 2

Remark Note that if g ≡ 0, then c(p) = p√
1+p2

and

A(p) =
c′(p)� 1

0

√

1 − p2

1+p2dy
=

√

1 + p2

(1 + p2)
3
2

=
1

1 + p2
.

Moreover, it is clear that the constant Kg in (20) necessarily explodes as g → 0.
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5 The convergence result

In this section we study the asymptotic behaviour as ε → 0 of the solutions uε of the
singularly perturbed equations

uε
t(t, x) = tr

[(

I− Duε ⊗Duε

1 + |Duε|2
)

D2uε

]

+
1

ε
g
(x

ε

)

√

1 + |Duε|2, (24)

for (t, x) ∈ (0,+∞) × R
n, with initial data uε(0, x) = u0(x), where

u0(x) = q · x+ v0(x) with v0 bounded and uniformly continuous. (25)

We show that the functions uε converge locally uniformly to a function u, which is a
continuous viscosity solution to the effective quasilinear parabolic equation

ut(t, x) = tr
[

A(Du(t, x))D2u(t, x)
]

in (0,+∞) × R
n (26)

with initial datum u(0, x) = u0(x), where the differential operator F (p,M) = tr [A(p)M ]
is the one defined in Lemma 3.2. Moreover u is the unique viscosity solution of (26) in
the class

Lq := {u ∈ C([0,+∞), Rn) s.t. u(t, x) − q · x ∈ Cb([0,+∞) × R
n)},

where Cb([0,+∞),Rn) is the space of bounded continuous functions in [0,+∞) × R
n. We

also discuss the geometric counterpart of this result and some consequences for a related
prescribed curvature problem.

We start recalling two comparison principles for solutions of degenerate parabolic
equations, which we will apply to the singularly perturbed and to the effective problem.

Theorem 5.1 Let wε, vε be respectively an upper semicontinuous subsolution and a lower

semicontinuous supersolution to (24) in [0,+∞)×R
n. Assume that there exists a constant

k > 0 such that
wε(t,x)
1+|x|k

, vε(t,x)
1+|x|k

→ 0 as |x| → +∞ uniformly with respect to t ∈ [0,+∞),

and that wε(0, x) ≤ u0(x) ≤ vε(0, x) for every x ∈ R
n, where u0 satisfies (25). Then

wε(t, x) ≤ vε(t, x) for every (t, x) ∈ [0,+∞) × R
n.

Moreover, there exists a unique continuous viscosity solution uε in Lq to (24), with

initial datum u0.

The proof of this comparison principle is given in [5, Theorem 2.1], while the existence of
a unique solution to (24) can be done (with easy modifications) as in [5, Cor 2.1].

Notice that, if the initial datum u0 is of class C2+α(Rn) for some α ∈ (0, 1), then
parabolic regularity theory [21] gives that the solutions uε in Theorem 5.1 are uniformly
of class C1+α/2,2+α([0,+∞) × R

n).

Theorem 5.2 Let w, v be respectively a bounded upper semicontinuous subsolution and a

bounded lower semicontinuous supersolution to ut = tr[Ã(Du)D2u] in [0,+∞)×R
n, where

Ã(p) is a symmetric n × n matrix, which depends smoothly on p and such that Ã(p) ≥ 0
for any p. Assume that w(0, x) ≤ v(0, x) for every x ∈ R

n. Then w(t, x) ≤ v(t, x) for

every (t, x) ∈ [0,+∞) × R
n.
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For the proof we refer to [13].
We will apply this result to the limiting problem (26), letting Ã(p) := A(p+ q) and

changing the solution u(t, x) in ũ(t, x) = u(t, x) − q · x. Since we look for solutions in Lq,
we actually have to deal with bounded solutions ũ.

However, we need to show that the effective differential operator F (p,M) is regular
and degenerate elliptic. Surprisingly the degenerate ellipticity of F is not known a priori,
and we obtain it in a step of the convergence proof. We point out here that the degenerate
ellipticity is expected as a consequence of results of Alvarez, Guichard, Lions and Morel
[2] (see also [8]). Indeed, Equation (24) defines a monotone semi-group (in the sense that
the solution uε depends on u0 or v0 in a monotone way by the comparison principle) and
the limiting semigroup is also expected to be monotone, hence, by the results of [2] or [8],
it is certainly associated to a parabolic equation. We finally remark that we can see this
monotonicity as a geometric “inclusion principle” and use as well the geometric version of
the above results by Souganidis and the first author [6].

We now state our main result.

Theorem 5.3 Let uε be the unique continuous viscosity solution to (24) with polynomial

growth and initial datum u0, which satisfies (25) for some q ∈ R
n. Then uε(t, x) converges

locally uniformly to the unique function u in the class Lq which solves (26) in the viscosity

sense, with initial datum u(0, x) = u0(x).

Proof The argument of the proof is an appropriate adaptation of the perturbed test

function method, introduced by Evans in [15] (see also [12], [10]). As we already pointed
out above, we emphasize the fact that we do not know a priori that the limiting equation
is degenerate parabolic.

The proof is divided into five steps.

Step 1 (Local equiboundedness of uε.) The existence and uniqueness of uε is assured
by Theorem 5.1. Actually, it is possible to show that uε inherits the same growth of the
initial data u0. We consider the solution χ of (13) with p = q and such that χ(0; q) = 0.
Then the function wε(t, x) = εχ

(

x
ε ; q
)

+ q · x+ ‖v0‖∞ + ε‖χ‖∞, where v0 is the function
appearing in (25), is a stationary solution to (24) with wε(0, x) ≥ u0(x), for ε > 0.
Analogously vε(t, x) = εχ

(

x
ε ; q
)

+ q · x− ‖v0‖∞ − ε‖χ‖∞ is a stationary solution to (24)
with vε(0, x) ≤ u0(x), for ε > 0. Then, by the comparison principle (Theorem 5.1) we
obtain that vε(t, x) ≤ uε(t, x) ≤ wε(t, x), which gives in particular that |uε(t, x) − q · x| ≤
‖v0‖∞ + 2ε‖χ‖∞ for any ε > 0 and (t, x) ∈ [0,+∞) × R

n.

Step 2 (Relaxed semilimits of uε.) We define the relaxed semilimits (see [13])

u(t, x) := lim inf
(ε,t′,x′)→(0,t,x)

uε(t′, x′), u(t, x) := lim sup
(ε,t′,x′)→(0,t,x)

uε(t′, x′)

for (t, x) ∈ [0,+∞)×R
n. Observe that u, u, due to the previous step, satisfy |u(t, x)− q ·

x| ≤ ‖v0‖∞, |u(t, x) − q · x| ≤ ‖v0‖∞ for any (t, x) ∈ [0,+∞) × R
n.

We are going to prove that u (resp. u) is a viscosity subsolution (resp. supersolution)
to (26).

We describe the argument just for u, since for u it is completely analogous. We
consider a smooth function φ and we assume that u − φ has a strict maximum at (t, x);
we have to prove that

φt(t, x) ≤ tr[A(Dφ(t, x))D2φ(t, x)]. (27)
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We define the perturbed test function

φε(t, x) := φ(t, x) + εχ
(x

ε
;Dφ(t, x)

)

+ ε2ψ
(x

ε
;Dφ(t, x),D2φ(t, x)

)

, (28)

where χ(y;Dφ(t, x)) is the periodic solution to (13) with p = Dφ(t, x) and χ(0; p) = 0, and
ψ(y;Dφ(t, x),D2φ(t, x)) is the periodic solution to (15) with p = Dφ(t, x), M = D2φ(t, x)
and ψ(0; p,M) = 0. Observe that

lim sup
(ε,t′,x′)→(0,t,x)

(uε(t′, x′) − φε(t′, x′)) = u(t, x) − φ(t, x).

By a standard compactness argument, there exist subsequences εn → 0 and (tn, xn) →
(t, x) such that uεn(tn, xn)−φεn(tn, xn) → u(t, x)−φ(t, x) and (tn, xn) is a strict maximum
of uεn − φεn . Since uεn is a subsolution to (24), at (tn, xn) we have

φεn

t ≤ tr

[(

I − Dφεn ⊗Dφεn

1 + |Dφεn |2
)

D2φεn

]

+
1

εn
g

(

xn

εn

)

√

1 + |Dφεn |2.

Recalling the definition of φε in (28) and using standard asymptotic expansion arguments,
we can rewrite the r.h.s. of the previous inequality as

1

εn

{

tr

[(

I − (Dφ+Dχ)) ⊗ (Dφ+Dχ)

1 + |Dφ+Dχ|2
)

D2χ

]

+ g
(xn

ε

)

√

1 + |Dφ+Dχ)|2
}

+ tr

[(

I − (Dφ+Dχ) ⊗ (Dφ+Dχ)

1 + |Dφ+Dyχ|2
)

(

D2ψ +D2φ+ 2D2
pyχD

φ
)

]

− 2 (Dφ+Dχ)T D2χ

(

Dψ + (Dpχ)TD2φ

1 + |Dφ+Dχ|2
)

+ 2 (Dφ+Dχ)T D2χ(Dφ+Dχ)
(Dφ+Dχ) · (Dψ + (Dpχ)TD2φ)

(1 + |Dφ+Dχ|2)2

+ g
(xn

ε

) (Dφ+Dχ) · (Dψ + (Dpχ)TD2φ)
√

1 + |Dφ+Dχ|2
+R(εn)

where R(εn) → 0 uniformly as εn → 0. Using the characterization of χ and ψ as solutions
of (13) and (15) respectively, and the regularity of φ, χ, ψ,A, we obtain that

φt(tn, xn) ≤ tr
[

(A(Dφ(tn, xn)))D2φ(tn, xn)
]

+R′(εn)

for some R′(εn) → 0 uniformly as εn → 0. Letting n→ +∞, we obtain (27).

Step 3 (Degenerate ellipticity of the limiting operator.) We prove the following

Lemma 5.1 The differential operator F (p,M) = tr [A(p)M ] defined in Lemma 3.2 is

degenerate elliptic.

Proof It is sufficient to show that the matrix A(p) is nonnegative definite for any
p ∈ R

n. We consider the unique solution uε to (24) with polynomial growth and initial
data u0(x) = p · x (see Theorem 5.1) and the solution χ(y; p) of (13) with χ(0; p) = 0.
Then, for all ε > 0, the function wε(t, x) = εχ

(

x
ε ; p
)

+ p · x + ε‖χ‖∞ is a stationary
solution to (24) with wε(0, x) ≥ u0(x). Analogously vε(t, x) = εχ

(

x
ε ; p
)

+ p · x− ε‖χ‖∞ is
a stationary solution to (24) with vε(0, x) ≤ u0(x), for ε > 0. By the comparison principle
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(Theorem 5.1) we then obtain that vε(t, x) ≤ uε(t, x) ≤ wε(t, x), which gives in particular
limε→0 u

ε(t, x) = p · x, locally uniformly.
According to Step 2, if (t, x) is a strict maximum of u(t, x)− φ(t, x) = p · x− φ(t, x)

then (27) holds. For small δ > 0, we choose φ(t, x) := p ·x+(q ·x)2 + δ(|x|2 +(t−1)2) and
observe that (1, 0) is a strict maximum of u(t, x) − φ(t, x) for any δ; moreover (27) reads

−A(p)q · q = −tr[A(p)(q ⊗ q)] ≤ o(δ) ,

where o(δ) → 0 as δ → 0. Since the inequality A(p)q · q ≥ 0 holds for any p and q, the
thesis follows letting δ → 0. 2

Step 4 (u(x,0) = u(x,0) = u0(x).) Let v0 be the function appearing in (25). For every
δ > 0, it is possible to find vδ

+, v
δ
− ∈ C∞(Rn)∩W 2,∞(Rn) such that vδ

− ≤ v0 ≤ vδ
+ and that

‖vδ
+−v0‖∞, ‖vδ

−−v0‖∞ ≤ δ (this can be done by using standard mollification arguments).
For any fixed δ > 0, we consider the functions

wε,δ
± (t, x) := vδ

±(x) + q · x+ εχ±

(x

ε

)

±
(

Cδt+ ε‖χ±‖∞
)

where χ+(x) = χ
(

x; q +Dvδ
+(x)

)

is the solution to (13) with p = q +Dvδ
+(x), χ−(x) =

χ
(

x; q +Dvδ
−(x)

)

is the solution to (13) with p = q +Dvδ
−(x), and χ±(0) = 0. Choosing

Cδ > 0 sufficiently large, it is easy to see that wε,δ
± are respectively a super and a subso-

lution to (24). Moreover wε,δ
− (0, x) ≤ u0(x) ≤ wε,δ

+ (0, x). So, by the comparison principle

(Theorem 5.1), we get that wε,δ
− (t, x) ≤ uε(t, x) ≤ wε,δ

+ (t, x), for every δ > 0.
Passing to the relaxed semilimits, we then obtain

vδ
−(x) + q · x ≤ u(0, x) ≤ u(0, x) ≤ vδ

+(x) + q · x.

Letting δ → 0, this gives u(x, 0) = u(x, 0) = u0(x).

Step 5 (Uniform convergence.) Let us define v(t, x) := u(t, x) − q · x and v(t, x) :=
v(t, x)− q ·x. It is easy to show that v and v are bounded, satisfy v(0, x) = v0(x) = v(0, x)
and are respectively a sub and a supersolution of

vt(t, x) = tr
[

A(q +Dv(t, x))D2v(t, x)
]

in (0,+∞) × R
n. (29)

Then, by the comparison principle (Theorem 5.2), we obtain that v(t, x) ≤ v(t, x) in
(0,+∞)×R

n, and therefore v(t, x) = v(t, x) in (0,+∞)×R
n, since the opposite inequality

holds by definition of the semilimits. In particular, we get that v(t, x) := v(t, x) = v(t, x)
is the unique bounded viscosity solution to (29) with initial data v0.

This implies that u(t, x) = u(t, x) = u(t, x) is the unique continuous viscosity so-
lution to (26) in the class Lq, with initial datum u0. Moreover, using the definition of
relaxed limits, we obtain that uε(t, x) → u(t, x) locally uniformly.

2

We observe that Theorem 5.3 has also a geometric counterpart. Namely, given a
solution uε to (24) we consider its graph Γε(t) := {(x, xn+1) ∈ R

n+1 : xn+1 = uε(x, t)}.
Then, Γε(t) evolves in time accordingly to (2). In the limit ε → 0, we then obtain the
geometric evolution

V = α(ν)H (30)

13



where the function α is defined as

α(ν) :=
A (−νx/νn+1)

ν2
n+1

≥ 0 νn+1 6= 0.

Note that, when n = 1, due to (20), we have 0 < α(ν) ≤ Kg|ν2|, which implies in particular
limν2→0 α(ν) = 0.

As discussed for instance in [22], the asymptotic limit of (2) is strictly related to the
existence of compact embedded solutions to the following prescribed curvature problem:

H + g = 0 . (31)

Indeed, the existence of a compact solution to (31) implies by rescaling the existence of
compact solutions to

H +
1

ε
g
(x

ε

)

= 0,

which can be used as barriers for the evolution (2). It would then follow that the solutions
to (2) converge, as ε→ 0, to a stationary hypersurface, thus implying α ≡ 0 in (30), that
is, A(p) = 0 for all p ∈ R

n.
However, if g has zero average and does not depend on xn+1, from Remark 3 we

know that A(0) > 0 if ‖g‖Lip < δ; moreover we know from (20) that A(p) > 0 for all p, if
n = 1 and g satisfies (12). As a consequence, in such cases we conclude that there are no
compact embedded solutions to (31).

We point out that this result cannot be expected for a generic function g, which is
periodic and of zero average, but which depends also on xn+1. Indeed, in [22] it has been
proved that we can always find a sequence gn → g in L1(Rn), where the functions gn are
all periodic, of zero average, uniformly bounded, and satisfy (11), such that there exist
compact embedded solutions to (31) with g replaced by gn.
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