ANNO ACCADEMICO 2004/2005 CORSO di LAUREA in FISICA GEOMETRIA I Primo compito 18/01/2005

Esercizio 1

Sia W il sottospazio di \mathbb{R}^4 definito da:

$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + t = 0, \ x + y - z = 0\},\$$

siano inoltre V_1 e V_2 i seguenti sottospazi di \mathbb{R}^3 :

$$V_1 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}, \qquad V_2 = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \right\}.$$

- (1) Costruire un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^4$ tale che:
 - $\operatorname{Im} f = W$;
 - $f|_{V_1}$ e $f|_{V_2}$ sono iniettive.
- (2) Calcolare $f\begin{pmatrix} 3\\2\\0 \end{pmatrix}$.

Esercizio 2

Dato un endomorfismo $f \in \operatorname{End}(\mathbb{R}^n)$, consideriamo il seguente sottospazio W_f di $\operatorname{End}(\mathbb{R}^n)$ dipendente da f:

$$W_f = \{g : \mathbb{R}^n \to \mathbb{R}^n \mid g \circ f = f \circ g\}.$$

- (1) Dimostrare che se f e f' sono due endomorfismi equivalenti allora dim W_f = dim $W_{f'}$.
- (2) Supponiamo che f sia diagonalizzabile. Dimostrare che dim $W_f = n$ se e solo se f ha tutti gli autovalori distinti.

Esercizio 3

Sia ϕ il prodotto scalare su \mathbb{R}^4 definito sulla base canonica dalla matrice:

$$\left(\begin{array}{cccc} 0 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 2 & 2 & 4 & 4 \end{array}\right).$$

- Calcolare la segnatura di ϕ .
- Dimostrare che $\phi|_W$ è degenere su ogni sottospazio W di dimensione 3.
- Dimostrare che se dim W=3 e $\phi|_W\equiv 0$ allora il radicale di ϕ è contenuto in W.
- Dimostrare che esistono esattamente 2 sottospazi W di dimensione 3 per cui $\phi|_W \equiv 0$.

Esercizio 4

Siano $A, B \in S(n)$ due matrici simmetriche $n \times n$.

- Dimostrare che $AB \in S(n)$ se e solo se AB = BA.
- Dimostrare che se AB è simmetrica allora esiste un autovettore comune per A e B.
- Dimostrare che se AB è simmetrica allora esiste una base ortonormale (rispetto al prodotto scalare canonico su \mathbb{R}^3) formata da autovettori comuni per $A \in B$.