ANNO ACCADEMICO 2002/2003

CORSO DI LAUREA IN FISICA

GEOMETRIA II

SECONDO COMPITINO 29/5/2003

Esercizio 1

Considerare, al variare di $\lambda \in \mathbb{R}$, la conica C_{λ} di equazione

$$(\lambda + 1)x^{2} + (\lambda + 1)y^{2} + (4\lambda - 2)xy - (10\lambda + 4)x - (10\lambda + 4)y + 17\lambda + 11 = 0$$

- 1) Per quali $\lambda \in \mathbb{R}$, C_{λ} è una parabola o una coppia di rette parallele?
- 2) Mostrare che i punti comuni a tutte le coniche C_{λ} sono i vertici di un trapezio isoscele.

(Hint: considerare le coniche degeneri)

3) Esiste una retta che sia asse di simmetria per tutte le coniche C_{λ} ?

Esercizio 2

Data $A \in GL(n, \mathbb{R})$, e $b \in \mathbb{R}^n$, sia $F : \mathbb{R}^n \to \mathbb{R}^n$ definita da F(x) = Ax + b.

Dimostrare che $F^k = id$ se e solo se $A^k = I$ e F ha un punto fisso.

(Hint: fissato $x \in \mathbb{R}^n$ considerare i punti $x, F(x), F^2(x), \dots, F^{k-1}(x)$)

Esercizio 3

Trovare tutte le possibili forme canoniche di Jordan per una applicazione lineare $f: \mathbb{C}^4 \to \mathbb{C}^4$ che abbia esattamente 2 autovalori ed esistano esattamente 2 sottospazi di \mathbb{C}^4 f-invarianti di dimensione 2.