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Motivated by applications to the performance analysis of wireless communication sys-
tems, we develop a constructive procedure to generate random spatial point patterns that
are natural generalizations of the Poisson process. The special case of models that are
multi-dimensional generalizations of the Markovian Arrival Processes (MAP) of Neuts are
discussed in some detail with examples. Like their counterparts on the nonnegative half
line, these spatial MAPs offer the versatility to model a wide variety of spatial dependen-
cies and burstiness characteristics while maintaining computational tractability.
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1. INTRODUCTION

Spatial point patterns - a random set of points in a multi-dimensional space - are of
interest in many application areas ranging from epidemiology and geosciences to newly
emerging ones like the performance analysis of wireless, personal, and mobile communica-
tion systems. The “points” in such a process correspond to the location of certain events
such as the occurrence of an infection or the initiation of a wireless call. The work reported
here does not include a temporal component, and what is modeled may be viewed as a
snapshot of a spatial-temporal process; for example, it could represent the spatial location
of arrivals in an observation interval of time. Some models that incorporate both space
and time variations will be presented by us in other papers, and for them the material
presented here shall form the basic building block.

Although, it is widely recognized [2,3] that spatial dependencies are important to ap-
plications, because of the complexity of general models and the difficulties in specifying
models incorporating specific types of dependencies of interest, the most commonly used
ones still remain to be Poisson, which unfortunately entail the restrictive assumption of
spatial independence in the counts. Our goal here is to develop a class of spatial models
that can incorporate spatial dependencies while maintaining simplicity, tractability, and
modeling versatility.
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For random point patterns on the line, for example the arrival epochs to a queue, the
Markovian Arrival Process (MAP) introduced by Neuts [10] has been found to be a conve-
nient generalization of the Poisson process on the line, as one that can incorporate a wide
variety of qualitative features without losing computational tractability. Such models
are now used extensively in telecommunications performance analysis, particularly in the
high speed ATM context [1,4,11,13] where the process of arrivals of cells is known to be
“bursty” and correlated. In Neuts’ construction, qualitative characteristics like “bursti-
ness” and “rush hours” are modeled through an environment state, called the phase, and
instantaneous “arrival rates” depend on the phase of the system. With Markovian as-
sumptions on the phase process, one enables the modeling of complex dependencies in the
process of counts in a tractable manner.

Although the construction made by us can be applied much more generally, we restrict
ourselves to generalizing the MAPs to patterns in the plane. We note here that a similar
construction, based on renewal processes, is defined and analyzed by V. Isham [5,6]

2. THE POISSON PATTERN IN THE PLANE

The homogeneous Poisson point pattern with rate A on R? is characterized by the
following axioms, where the symbol || A|| is used to denote the Lebesgue measure of a set
A, and N4 denotes the number of point falling in the set A:

a. Given non-overlapping subsets of R?, i.e., given Borel sets A;, 1 <1 < n such that
[|A; N A;|| = ¢ for « # j, the counts Ny,,1 <i < n are independent.

b. The probability that two or more points lie in a set A is o(||A||) as ||A|| — 0.

c. The probability that A contains a point is A||A|| + o(||A||) as [|A]| — 0.
The following theorem is an immediate consequence of the above axioms.

Theorem 2.1 Consider the homogeneous Poisson point pattern of rate A and let N4
denote the number of points falling in the Borel set A. Then, N4 has a Poisson distribution
with parameter M||A||. That is,

PNy = n) = eI Ay /nl, 00,

The intensity of the measure is A at all (z,y) € R?; that is Adz dy is the elementary
probability that a small rectangular neighborhood of (x,y) with sides of lengths dz and dy
contains a point of the pattern. [

Indeed, the spatial independence of the counts over non-overlapping sets (the axiom (b)
above) and the Poisson distribution with parameter A||A|| for the count N4 for all Borel
sets A together characterize the homogeneous Poisson point pattern, and some authors
use these two as the axioms for defining the homogeneous Poisson point pattern [3].

The following elementary property of the homogeneous Poisson point pattern which is
useful for simulating such a process is also indicative of the restrictiveness of the model:
we omit the proof of this well-known result.
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Theorem 2.2 Conditional on A C R?* having n points of a homogeneous Poisson point
pattern, the conditional distribution of those points is the same as that of a random sample
of size n from the uniform distribution on the set A. [

The homogeneous Poisson pattern has many simplifying features and spatial symmetries
that make it almost trivial to analyze. Of those, the independence property characterized
by Axiom (b) is perhaps the most restrictive. Spatial processes seldom exhibit such
independence. Examples of practical situations of interesting correlation structures in
the plane are easy to conceive of. For example, in wireless communications applications,
strong correlations can exist between counts in different regions due to a wide variety of
causes such as demography, customer mobility, radio quality and interference. Naturally,
there is a need to consider a more general framework.

We conclude our brief discussion of the homogeneous Poisson model by presenting the
following result which suggests a construction yielding the types of generalizations we
propose later in this paper.

Theorem 2.3 Consider the random points of the homogeneous Poisson point pattern of
rate A in the plane, and define their polar co-ordinates {(R,,©,)}. The set of points { R, }
on the half line [0,00) (after ordering them in increasing order) form an inhomogeneous
Poisson process with rate 2w Ar at r. Further, the set of points {T,} where T, = TR,
form a homogeneous Poisson process of rate A. Finally, {©,} form a set of iid random
variables uniformly distributed in the interval [0, 27].

Proof It is trivial to prove that the number of points {R,} falling in non-overlapping
intervals (in the R-axis) are independent and that the distribution of the number of points
in any interval (0, r] has the Poisson distribution with parameter 7r?\. Therefore [3], R, is
a Poisson process on the half line [0, co) with rate 27 Ar, and T, is a homogeneous Poisson
process of rate A\. The statement concerning ©,, is a trivial consequence of the property
of isometry (invariance under rotations) of the homogeneous Poisson point pattern. W

The above theorem shows that using the planar Poisson point pattern, we can construct
a homogeneous Poisson process on the half line by sweeping points of the planar process
onto the half line radially along circles centered at the origin and then performing a simple
time change. This motivates the following theorem which is an inverse result of the above
and gives a method of obtaining a homogeneous Poisson planar pattern starting from a
homogeneous Poisson process on the line.

Theorem 2.4 Suppose {T,,} denote the points of a homogeneous Poisson process of rate
A on [0,00) and that {©,} is a sequence of iid random variables on [0,27]. Let R, =
(T,./7)%. Then, the set of points (R,,©,) form a homogencous Poisson paltern of rate
A in the plane.

Proof From the construction and from the decomposition property of the Poisson
distribution, it is easy to see that the number of points falling in non-overlapping subsets
of the plane are independently distributed, and that the number of points falling in any
set A is a Poisson random variable with parameter A||A||. Hence the result. |
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3. THE MARKOVIAN ARRIVAL PROCESS

Turning back to the construction of the Poisson process on the plane embodied in
Theorem 2.4, note that a wide class of generalizations of that process can be obtained
using the degrees of freedom available to us: firstly, instead of a Poisson process, we might
start from any point process on the half line; secondly, we might use a different time scale
change than the specific one used in the construction; finally, the scattering of the points
onto the plane might be made along any other family of curves and using more complex
mechanisms than that implied by the uniform distribution.

The variety of point patterns that can be generated thus is limitless, but the ability to
analyze them will depend on imposing additional structure. With this as the concern, we
concentrate in this paper on planar point patterns generated from a Markovian Arrival
Process (MAP) on the half line and the derivation of some elementary results for such
point patterns. We shall demonstrate in the next section that if we choose the point
process on the line to be a stationary MAP and scatter points uniformly on the circle
centered at the origin on which they reside, then we get a point pattern on the plane,
stationary in the mean. We can view that process as a random walk in the plane driven
by a phase process; the points ordered according to their radial distances from the origin
give the successive points visited. That process will be called a stationary Spatial MAP
(SMAP) on the plane. In the next section, we demonstrate some elementary properties of
that process primarily to illustrate its tractability. In Section 5, several other constructions
are presented, which demonstrate the modeling versatility and tractability of our scheme.
We begin our technical results with a brief review of MAPs on the line.

MAPs on the Line

Our starting point is a construction of M.F. Neuts [10]. To fix ideas, consider the number
of arrivals in the interval [0,¢] for some arrival process. We assume that the counting
process N;,t > 0 together with an auxiliary process J;,t > 0 to be called the “phase
process” yields a two-dimensional Markov process on a set of the form N x N,,, where
N,, = {l,...,m}; the restriction of the phases to a finite number is for computational
ease only. Partitioning the states of the process into subsets ¢(:) = {(i,1),...,(:,m)}
and making a corresponding partitioning into blocks of the infinitesimal generator of the
Markov process, it is easy to see that such a generator has the form

Dy Dy 0 0
0 Dy Dy O
Q - 0 0 DO D1 . . ,

where Dy and D; are m x m matrices such that Dg(z,2) < 0,Dg(i,7) > 0 for ¢ #
J,D1(i,7) > 0 for all 4,7 and (Dg + D1)1 = 0; here, 1 is a column vector of one’s
and 0 is a vector of zeros. The elements of () have the following interpretation: with
probability Dg(i,7)dt,o # j, there occurs in time interval (¢,¢ 4+ dt) a change of phase
from ¢ to 5 without an arrival, given that the phase at time ¢ is i, while with probability
D1 (7, 7)dt there occurs an arrival with or without a change in phase depending on whether
j # 1 or j = 1. Furthermore, given that the phase at time ¢ is ¢, the distribution of the
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time to the next event is exponentially distributed with parameter — Dy(7,7). The Poisson
process corresponds to the very special case m = 1, Dg = —X and D; = .

The joint process (Vy,J;) has been studied in great detail by D.M. Lucantoni [8,9],
M.F. Neuts [10], and Ramaswami [12]. For the purposes here, it is more convenient to
take into account not only the pair (N, J;) but also the number M; of phase changes
without any arrival in the interval [0,¢]. Obviously, {(M;, Ny, J;) : t > 0} is also a time
homogeneous Markov process, and its state space is N x N x N,,. Its possible transitions
are from (m,n,7) to (m + 1,n,7), for 7 # i, at the rate Dy(7,j), and from (m,n,7) to
(m,n+1,j), at the rate Dy(z, ).

Definition 3.1 We call the process (My, Ny, J;) the Markovian Arrival Process (MAP)
generated by the pair (Do, Dy).

Without loss of generality [12], we assume that the Markov process of phases governed
by the infinitesimal generator D = Dg+ D; is irreducible, and for avoiding triviality assume
that Dy # 0. Let & denote the stationary probability vector of D, i.e. dD = 0,01 = 1.
The MAP with the initial phase at the time origin having distribution § is stationary as
seen from the trivial fact that & is also the distribution of the phase at any time point ¢.

It is elementary to show that the matrices P(m,n,t) defined by the elements

Pj(m,n,t)= P[My =m, Ny =n,J; = j|Jo = 1] (1)

have generating function

P*(z0,21,t) = > Y 227 P(m,n,t) = exp[(20Do + z1D1)t] (2)
m=0 n=0

From this it follows that the joint probability generating function of M; and N; for the

stationary MAP is given by

0 P (20, 21,1)1 = d exp[(z0Do + 21 D1)]1; (3)

the premultiplication by 8 takes account of the distribution of the “initial phase” of the
process at 0 and the post-multiplication by 1 reflects the fact that we do not care for
the specific value of the phase at ¢ while computing this marginal probability generating
function.

Note that in the Poisson case, this reduces to the familiar expression exp[—A(1 — z)¢] for
the probability generating function of the Poisson random variable with mean Af. Since
there is only one underlying phase, all quantities reduce to scalars and all points generated
are of one kind only, namely, arrival epochs.

The Markovian structure of the tri-variate process of the counts and the phase shall
enable the computation of many quantities of interest through routine techniques used for
Markov chains. Although our construction and results can be trivially modified to address
the batch case (called BMAP by D.M. Lucantoni [8]) as well as discrete analogues based
on discrete time Markov chains (called DMAP by some authors), to keep the exposition
simple, in this paper we consider only the MAP.

Before we proceed further, let us note a simple but useful fact concerning MAPs in the
following theorem. Its proof is straightforward.
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Let us consider a time homogeneous MAP {(M;, Ny, J;) : t > 0} generated by (Do, D1),
and suppose a time change is effected through the transformation ¢ = wr?. To be specific,
given a realization of event epochs 77 < Ty < --- the associated phases Jy,Js - -+ imme-
diately after each of these epochs, and the indicators of whether an epoch corresponds
to an arrival or not, we create on the transformed time scale, event points at R;,1 > 1,

where R; = /T;/m, set the phase of the system in [R;, Ri+1) to be J;, and finally we also

treat R; as an arrival epoch if T} is. For the transformed process, let (M,, N, J,) denote
respectively the number of phase changes without arrivals in [0, 7], the number of arrivals
in [0,7] and the phase of the system at r, respectively.

Theorem 3.2 The process {(M,, N,,J,) : v > 0} is a time inhomogeneous Markov chain
on N X N X N, with feasible transitions as follows:

e from (m,n,i) to (m+1,n,7), for j #1, at the rate 2wrDy(1,j);
e from (m,n,1) to (m,n+1,7), at the rate 2mrDy (i, 7).
In particular,
P*(z9,21,7) = exp|(z0Do + 21 D1 )7wr?). (4)

where the (1, j)-th entry of the above matriz is given by

Z Z 202 PIM, = m, N, =n,J, = j|Jo = 1].

m—0n=0

4. THE STATIONARY SPATIAL MAP ON THE PLANE

We begin with a construction akin to the one discussed for generating a homogeneous
Poisson pattern on the plane. The steps of our construction are given below.

a) Generate a stationary MAP on t > 0 defined by a pair of matrices Dy and D;.

b) Given {7}, the successive epochs at which events (phase changes and/or arrivals)

occur, make a time change using the transformation 7' = wR? to yield a sequence
of points R, = [T,,/x]"/2,

¢) Now, consider the points (R,,0) and rotate them on the circle centered at the origin
and with radius R, by a random angle ©,, uniformly distributed in (0, 27).

d) With each point (R, 0,) thus obtained attach a “phase” which is the same as the
phase at the point T,,+ for the process in (a), and also mark that point as a point
of arrival in the plane if T}, is a point of arrival for the process in (a).

We shall call the resulting set of points a stationary spatial Markovian arrival process
or stationary SMAP. The nomenclature SMAP is justified by the following result.
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Figure 1. Poisson Process Figure 2. Stationary PH renewal process

Theorem 4.1 Let S be a connected compact set in R?. Let Ms and Ng be the number
of points without and with arriwals falling in the set S. For the planar point pattern
constructed above, the expected values of Ms and Ng are given by

E(Ms) = (6Do1)[|S[],  E(Ns) = (8 D:11)]|5]], (5)

In particular, these mean values depend only on the size of the set S and not on its specific
location in R?; that is, the processes of event counts Ms and Ns are mean stationary.

Proof The proof of the formulae for a set of the form
S={(r,0) :ro <r <r,0, <0 <6}

is obtained by a direct computation. The measures on the Borel sets S of R? defined by
F(Ms) and FE(Ng) being the extensions of these set functions defined over (r, #) intervals,
the result follows from the unique extension theorem for o-finite measures from interval
sets to the set of all Borel sets [14]. |

Theorem 4.2 The bivariate counting process (Mg, Ng) is isotropic; that is, it is invariant
under rotations.

Proof Let S be the set obtained by rotating the set S by an angle §. The result is
immediate by noting that each point (R,,0) is thrown into S\ S, S\ S, SN S or outside
SUS according to a multinomial trial and that the first two sets have the same probability
because the sets are obtained by a simple rotation. [

Although the SMAP we constructed is stationary in the mean and isotropic, unlike the
homogeneous Poisson process, it is not, in general, strictly stationary; the distribution of
the counts over a set S is not determined by the Lebesgue measure of S alone. Also, the
counts over non-overlapping sets are not necessarily independent.

We give in Figures 1 — 3 the sample realizations of three stationary SMAPs, each with
the same intensity of 100 points per unit area. These examples are respectively generated
starting from the stationary versions of:



Figure 3. Stationary interrupted Poisson Figure 4. Triangular distribution for ©
process

1 the homogeneous Poisson process;

2 a PH-renewal process with inter-arrival time distribution that is a mixture of two

exponentials: F'(x) = 0.83(1 — exp(—1500)) 4+ 0.17(1 — exp(—18));

3 an interrupted Poisson process which has rate 750 when it is on, and on and off
times are respectively exponentially distributed with mean 0.0088 and 0.57.

The plots show the area from -1 to 1 in both coordinates; we draw the two axis for easy
visual reference.

At first glance, it might appear that there is no difference between the two processes
of Figures 1 and 2. This is an appearance only since the planar processes have different
distributions for the number of points in any area of the plane.

The process used for Figure 3 is highly bursty, and this gives rise to a pattern such that
the points are concentrated on circular portions of the plane. The differences between
this plot and the first two is remarkable given that they all come from isotropic, mean
stationary processes with the same rate.

5. NON-STATIONARY MAPS — SOME EXAMPLES

In this Section, we provide some examples to illustrate how one may exploit the freedom
available in the construction to model different types of spatial structures. For brevity,
we only describe the structures in terms of the plots given below of their realizations
indicating briefly how they were generated and what they may model.

In Figure 4, we give the plot that we obtain if we take the construction of the homo-
geneous Poisson process on the plane and modify it so that points of the line process are
thrown along concentric circles by a triangular distribution for ©® on (0, 27), instead of
a uniform distribution. Note that there is a heavy concentration of points around the
negative half line < 0, and that the points become less densely packed as we move away
from that half line. This could for example model a scenario where the negative half line
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Figure 5. O restricted to an interval Figure 6. R(T) slowly increasing at 0

represents a road with a large number of office towers and the points corresponds to the
location of vehicles just prior to start of work or immediately after the end of work; in
this case we would expect a much larger intensity of cars near the work locations relative
to areas further away.

The example on Figure 5 differs in two respects from the construction of SMAPs.
Starting from the Poisson process, we set R, = T,, so that the radial distance to the
origin increases at a constant rate. Secondly, the points are rotated in a cone 5 < 0 < 6.
We only show the positive quadrant in this case since the remainder of the plane is empty

of point. The resulting plot has then the following properties: the intensity of the %)oints
decays like 1/\/]% radially as R gets large, and the points lie within the cone of interest.

uch’ a model could be used for a vehicular traffic merge at the origin of some highways
from the North Fast direction ignoring the structures of local tributaries or for the scatter
of particles from a particle gun fired at the origin in the North East direction.

The process in Figure 6 is obtained by starting from the Poisson process with rate one,
and choosing the time transformation R = 27%(27/1% — 1); the angles are uniform on
(0,27). The specific time transformation used here is not important; what matters is
that we use a function which is slowly increasing at first and rapidly increasing away from
0. The result is a heavy concentration of points near the origin and low concentrations
away from it. The resulting point pattern can be used to model burst of calls that occur
right after a ball game of after the arrival of a train at a station.

6. CONCLUDING REMARKS

In this paper, we have specified and illustrated a procedure for constructing spatial
point patterns. In particular, we have provided a generalization to spatial dimension of
Markovian point processes that appears natural and versatile from a modeling perspective.
Because of their close connection to Markovian point processes on the line, these processes
remain tractable, and many interesting quantities can be computed. Our current work
on the topic falls under the following major heads:
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(a) obtaining formulae and algorithms for various descriptors of the spatial point pat-
terns generated by such procedures;

(b) examination of simple wireless communication scenarios to understand the impact
of the spatial components in the problem (location of antennae, demand patterns,
interference, etc.);

(c) simple techniques of “fitting” parameters by extending the methods commonly used
for line processes. These will be discussed elsewhere.
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