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Abstract

Several algorithms for the busy period distribution of the canonical Markovian
fluid flow model are derived. One of them is similar to the Latouche-
Ramaswami algorithm for Quasi Birth Death models and is shown to be
quadratically convergent. These algorithms add significant efficiency to the
matrix-geometric procedures developed earlier by the authors for the transient
and steady state analysis of fluid low models.
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1. Introduction

The subject of this paper is the construction of efficient algorithms for the transient
(time-dependent) analysis of the canonical Markov modulated fluid low (MMFF)
model. That model is obtained by assuming as given an irreducible, continuous time
Markov chain (CTMC) J(t) of “phases” with a finite state space S = S; US2 U S3 and
infinitesimal generator (), such that: while the phase i € Sy, the fluid level increases
at rate ¢; > 0; while 7 € Sy, the fluid level decreases at rate ¢; > 0; and while ¢ € S3,
the fluid level remains constant.

In [2], we derived the joint distribution of (F'(t),J(t)), where F(t) and J(t) are
respectively the fluid level and phase at time ¢+, given that F(0) = 0 and J(0) =
i, © € S1; see Section 7 in [2] . The matrix of Laplace-Stieltjes transforms (LSTs) with
elements

Eo.nle FOx(J(t)=4)], i€ Siandj€S,

where &, ;) denotes conditional expectation given the initial state (z,i) and x is an
indicator function, was characterized in terms of three LST matrices K (s), ¥(s) and
O(s). It was shown that these matrices are readily obtained from the LST matrix ¥(s)
of the busy period 7 =inf{t >0 : F(t) = 0} of the fluid flow model and defined by
the elements

[¥()l = Eple™ X(T(r) = )], i€ Siandj€Ss. 1)
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In the literature on stochastic fluid flow models, much attention is focused on the
steady state distribution; see [3], [4], [7], [16]. As for time dependent distributions, past
approaches have been based on Wiener-Hopf factorizations or on partial differential
equations. Noteworthy are the work of Sericola [17] based on an ad-hoc series expansion
and that of [9] based on spectral methods. Ramaswami [15] is the first systematic use
of matrix-analytic methods in the context of fluid flow models and provided a highly
efficient algorithm for computing the stationary distribution; Ahn and Ramaswami [1]
demonstrated that approach to be based on stochastic coupling to a matrix-geometric
queue. A continuation of that work in [2] characterized the time dependent distribu-
tions exactly in terms of the busy period transform of the fluid model and provided an
accurate algorithm to evaluate them. The methods of [2] require repeated evaluations
of the busy period transform, and therefore the quadratically convergent algorithm
of this paper improves the efficiency of those methods very significantly. Note that a
characterization of the busy period distribution has been obtained earlier by Asmussen
[5] who also noted its importance as a fundamental quantity and provided a linearly
convergent iterative scheme for its computation; being quadratically convergent, the
new algorithm developed here is much faster.

The discrete state space analogue of the stochastic fluid flow is the quasi-birth-and-
death (QBD) process for which matrix-geometric methods apply; see [12], [13]. The
analogue of the transform ¥(s) in the QBD model is the matrix G of the latter for which
an efficient quadratically convergent algorithm has been obtained by Latouche and
Ramaswami [11] using probabilistic arguments. The work here provides an algorithm
for the fluid model that is similar in spirit to the Latouche-Ramaswami algorithm for
QBDs and has quadratic convergence.

The construction of the algorithms in this paper and the determination of their
properties are achieved through the consideration of a closely related queue with
interarrival dependent service times (see Section 5) and a probabilistic analysis of that
queue. That coupled queue is quite different from those in [1] and [2] which involved
service times independently distributed of interarrival times. Thus, this work may also
be interpreted as an extension of the algorithms in [11] to queues with interarrival
dependent service times.

Throughout this paper, I will denote an identity matrix and 1 a column vector of
1’s both of whose dimensions will be determined by the context in which they appear.
Where it is necessary to indicate the dimension explicitly, we will write I,, to denote
the n x n identity matrix. For later use, we define the diagonal matrices

C; = diag{c;, i€ S;}, j=1,2,3, (2)

where we set ¢; = 1 for all i € S3, and let C' = diag(Cy,C2,C3). We partition the
states of the Markov chain in conformity with the three sets S; identified above and
denote its infinitesimal generator in partitioned form as

Quu Q12 Q3
Q=1 Qa Q2 @23 |. (3)
Q31 Q32 Q33

Finally, to avoid confusion between submatrices in a partitioned structure and elements
of a matrix, the (7,7)-th element of a matrix A will always be denoted by [A]; ;, [A]i;
or as A(i, j) instead of as A;; as is often customary.
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2. Spatial Uniformization

A key step in the analysis of [2] is a procedure called spatial uniformization which
we recall below.

A spatial uniformization (for the fluid flow) is effected by modeling the Markov pro-
cess of phases as a Markov renewal process (MRP) with exponential sojourn times such
that potential changes to the fluid level between epochs of that MRP are identically
distributed. To that end, we let {(Jp,t,) : » > 0} be such an MRP, with successive
states J, € S, transition epochs 0 =ty < t; < t3 < ---, and with semi-Markov kernel
H(-) defined such that H(i,j;t), the (i,j)th element of H (%), is given by

H(i, j;t) = P{Ins1 = Jtnp1 — ta Sty = i} = (1 - e7) [Pa]y, (4)

where
Po=X'C'Q+1I, and X > max {-1C7'Qlii} - (5)
1€

The associated semi-Markov process (SMP) J = {J(t) : t > 0} is specified such
that it takes the value .J,, in the interval ¢, < t < t,41. The following result shows
that J is indeed a realization of the phase process; for a proof, we refer to [2].

Theorem 1. The process J = {J(t),t > 0} is a CTMC with infinitesimal generator
Q.

A sojourn interval of the SMP in ¢ € S; being distributed as exzp(Ac¢;) with fluid
accumulation at rate ¢; per unit time, the additional fluid accumulation in that interval
is distributed as exp(\). Similarly, for a state in Sa, given adequate fluid exists at the
start of the interval, the potential decrease to the fluid level that could be effected is
distributed as exp(\). This underlies our reason for using the nomenclature “spatial
uniformization.” Throughout the rest of the paper, we shall view the phase process,
the CTMC J(-), as being specified by the above construction.

3. Busy Period
For z > 0,14,j € S, and Re(s) > 0 let [G(s,z)];; denote the LST

[G(5,2))i,j = Eaiy [e7 X (T (1) = )] - (6)

We assume that the matrix G(s,z) of elements [G(s, x)];; is also partitioned according
to the sets S;, ¢ = 1,2,3. Thus, for instance, the submatrix Glg(s,x) is the matrix of
elements [G(s,x)];; as ¢ varies over Sy and j varies over Ss.

In our model, fluid gets depleted only in Ss. Thus, all busy periods must end in a
state of Sa. From this, the following result is trivial.

Theorem 2. The matrices G(s, ) have the structure

R 0 élz(s,x) 0
G(s,z)=1 0 Gaa(s,z) 0 . (7)
0 G32(S,$) 0

We now proceed to determine the submatrices in the second column of the partitioned
structure above.
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Theorem 3. For z >0,

(a) Gi2(s,z) = ¥(s)Gaa(s,2). X

(b) Gsa(s,x) = (sI — Q33) 'Q31G12(s, %) + (sI — Q33) ' Q32Ga2(s, @) .
(c) With

H(s) = C3 ' [Q22 — 8T+ Qa3(sI — Q33) ' Q32+ {Qa1 + Q23(sI — Q33) ' Q31 }T(s)], (8)
we have
Gaa(s,z) = HG)7, (9)

Proof. Part (a) follows easily by conditioning on the first return to level z in the
set Sy. Part (b) is proved similarly by conditioning on the first epoch when the phase
process escapes from S3. To prove (c), consider the first epoch of spatial uniformization
and note that, with d;; denoting the Kronecker delta, we can write

[Goa(s,2)i; = Oije e °=

z/c; N
+ / )\cie—)\ate—st Z[P]i,k[G(sv T — Cit)]k,j dt
0 kes

5ijef(x+§>z+A/ e T NP G (s, 2l e
0 kes

(2

Multiplying with e )? and differentiating with respect to x, we obtain

O+ D Goalo, )i + [ Goals, 2 = A Y PlaslGs, 2k
E kes

which, after writing in matrix form, yields due to (a) and (b) the differential equation
2 Gy(s,z) = H(s)Gaa(s,z), with the initial condition G2a(s,0) = I. Therefore,

H(s)z

Ga(s,z)=e , and the proof is complete.

4. Random Initial Fluid

We wish to appeal to matrix-geometric results which are essentially developed for
queues. So, a tool we shall employ is to view the fluid model as derived from the work
process of a suitably defined queue. To relate quantities of interest to the busy period
of such a queue, it helps to consider a busy period started with an amount of fluid X
that is exponentially distributed with mean A~!; in the context of the queue, X will
be the amount of work brought in by the customer starting a busy period of the queue.

We thus consider the transform matrix G(s, A) defined by the elements

[G(s,M]i; =€ [Ex,iy [e7x(I() =5)]] (10)

where the outer expectation is with respect to X. Then we can easily obtain from
Theorem 3 that

Glaa(3, ) = / e M gy = NAT — H(s)} 7, (11)
0
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Gra(s,\) = T(5)Gaa(s, N), (12)
and
Gisa(s, ) = (8T — Qs3) ™ Qa1 Gua(s, \) + (8T — Qa3) ™ Qa3Gias (s, \). (13)
The following result expresses ¥(s) in terms of the sub-matrices of é(s, A).
Theorem 4.
U(s) = (P = 5C)G1a(s,3) + PiaGion(s, X) + ProGian(s, N). (14)

Proof. If we consider the first epoch of spatial uniformization of the underlying
Markov process, then for i € S1,j € Sa,

[T(s)]i; = Aw )\Cie_)‘cite_St Z[P]i’k [é(s, Cit)]k,; dt

keS

)\/0 e Oty Z[P]i,k [G(5,9)]k,; dy,

keS

and we can rewrite this in matrix form as

T(s) = A /000 e_()‘I"'SCl_l)y[Pnéu(s, y) + P1oGas(s,y) + PisGaa(s,y)] dy.
Using the equation (13) and Theorem 3, we can rewrite ¥(s) as

T(s) = )\/Oo e_scl_lyL(s)e_(M_H(s))y dy,
0

where

L(s) = P11 ¥(s) + Pia + Pis(sI — Q33) " Q31%(s) + Pi3(sI — Qs3) ' Qs2.
Using integration by parts, we get

U(s) = L(s)AA\I — H(s))™* — ;C{lllf(s))\()\I — H(s))™"

Substituting for L(s) and using equations (11), (12) and (13) immediately yields
equation (14).

_ The following is a key theorem for developing an algorithm for computing ¥(s) via
G(s, ).

Theorem 5. The matrices élz(S,A), ém(s,)\), égz(S,A) satisfy the following equa-
tions.
Gia(5,3) = [Pit — S071Gs(s, NGia(5,3) + PiaCray(5,3) + PraCian(s, \)Coaa (s, V),
Gaa(s, ) = ACa(sI + 20Cs) ™" [I + Py Gra(s, ) + PanGlas(s,\) + PosGaa(s, )\)] ,
P32622(8, A) + P33é32(5; A).

Gsa(s,\) = P31G1a(s, ) +

s+ A s+ A s+ A
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Proof. The first equation is clear from equations (12) and (14). The third equation
can be obtained easily by conditioning on the first epoch of spatial uniformization.
Thus, we need to prove only the second equation.

By considering the first epoch of spatial uniformization, we can write

A “Aci Z s afei et ,—st A
[Gaa(s,2)]s,; = e "Fieie = —|—/ Acie Cite™* Z[P]i,k (G (s, — cit)]k,; dt.
0 kes
Multiplying this by Ae~** and integrating over z, it is easy now to get the formula
x s\ 7! s\ X
Ganlo Ve =A (204 2) 42 (204 2) FlPlaa 606, Ve
t t keS

This written in matrix form yields the required formula for Ga2(s, A).

Now, if we define the matrices

0 0 0
AQ(S, )\) = 0 ACQ(SI -+ 2/\02)_1 0 , (15)
0 0 0
0 0 0
Ai(s,\) =AC(SI+AC)™ | L1Py 1Py 1Py |, (16)

Py Py Pag

P - %Cfl Py, Pi3
Ap(s,\) = 0 0 0 , (17)
0 0 0

where A = diag(A\I,2XI,\I), then the set of equations given by Theorem 5 can be
written simply as

G(s,)) = Aa(s, 1) + A1(s, )G(5, A) + Ao(s, V) [G(s, V)], (18)
reminiscent of the equation for the G-matrix of a QBD; see [12], [13]. That then also
yields the following corollary.

Corollary 1. If we define

X

U(S:)‘) = Al(sa)‘) +A0(85)‘)é(8a)‘)5 (19)
then for Re(s) > 0, we have

Gls,0) = (I=U(s,)) ™" Aa(s,A). (20)

Proof. We note first of all that the blocks C:?,-j (s, A) of the matrix é(s, A) are zero
except for j = 2; this is so because fluid gets depleted only when the phase is in Sy
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FIGURE 1: Illustration

and therefore the busy period must also end in Sy. If we now let ga(s, A) = 2ACa2(sI +
2XC3) 71 and g3(s,\) = A(s + A) 7!, then it follows from evaluating the right side of
(19) in partitioned form using Theorem 5 and (14)-(17) that

- 0 T(s)
U(s,A) = | 9205, M)5P1 g2(5,M)5P2 ga(s,N)5Pas | (21)
93(8;\) P31 g3(s,A\) P52 g3(s,A) P33

This shows that the matrix U(s, A) is a matrix of LSTs which is strictly substochastic
for all s > 0 and has all eigenvalues less than 1 in absolute value. For s complex with
Re(s) > 0, the matrix of absolute values of this transform matrix is bounded above by
a strictly substochastic matrix, and therefore all its eigenvalues are also less than 1 in
absolute value; see [14], Paragraph 2.4.9. Thus, the inverse in (20) exists, and we can
get that equation from (18) using (19).

Note that equations (19), (20) are similar to those obtained by Latouche [10] (see
also [12], Chapter 8.1, 8.2) for the G-matrix of the QBD and suggest an iterative
procedure. Later in the paper, we shall consider such an iterative scheme (Algorithm
2) and demonstrate that it converges to the required matrices.

5. An algorithm for é’(s, A) through a queue

5.1. Notations and definitions

We assume in what follows that the MMFF process (F,J) = {(F(t), J(t)),t > 0}
operates under a LIFO scheme; that is, the most recently arrived fluid is purged first.
This does not affect the distribution of the busy period, the quantity of interest to us.
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Our approach rests on constructing a closely related queue whose work process yields
the fluid flow.

To facilitate the discussion, we introduce some notations and definitions below. It is
helpful to consider the underlying ideas with the illustration shown in Figure 1 which
depicts a path of the MMFF process; for simplicity, we have in that illustration (alone)
assumed that Ss is empty. Note that if we replace each of the upward linear segments
of the path of the MMFF during the sojourn in an exponentially distributed interval
resulting in the spatial uniformization by a jump that occurs at the termination of that
segment, we could interpret the resulting path as that of the work in a LIFO queue.
In that queue, at the end of each sojourn of the phase process in states of Si, a new
customer with an exponentially distributed amount of work with mean A~! joins the
queue, and work gets depleted only while the phase process is in Sy and at rate c; per
unit time when in state j € S3. The queue is quite complex in that the amount of
work brought by a customer is directly proportional to the interval of sojourn in S
whose end marks the arrival epoch of that customer. What is, however, noteworthy is
that with this correspondence between the MMFF and the queue, the busy period of
the MMFF process is identical to the corresponding busy period of the queue. When
such a busy period of the MMFF starts with an exponentially distributed amount of
fluid, the distribution of the busy period of the MMFF becomes identical to the busy
period of the queue initiated by an arrival to an empty system. Many of the terms we
introduce will be interpreted in terms of that queue also, and this is what would allow
us to draw freely from the matrix-geometric literature.

Here are some of the notations to be used by us.

(1) Let {0 = 19 < 71 < ---} denote the set of successive spatial uniformization
epochs of 7.

(2) Let Y7 denote the initial amount of fluid at time 0, which we assume to be
exponentially distributed with mean 1/X. Let Y41, n > 1 denote the amount
of fluid incoming during the n-th sojourn in S; of the (spatially uniformized)
phase process. Note that, by the spatial uniformization, Y,,,n > 2 are all also
exponentially distributed with mean 1/A.

(3) Let n > 1 and assume 7,y is the epoch of the n-th visit to S;. (If J(0) € Si,
then we treat 0 as the epoch of the first visit to Si.) Now, for t > 7,(,)41, define
Y,11(t) to be the remaining amount of fluid out of Y,,;; which remains in the
system at time ¢. Note that Y41 (7r(n)41) = Ynq1. Similarly, let us denote by
Y1 (t) the remaining amount of fluid out of Y3 which is not depleted by time ¢ > 0.
The epoch when a Y,,(t) attains the value 0, is clearly a departure epoch for the
LIFO queue; in the illustration in Figure 1, such epochs correspond to the right
side terminal points where the lines drawn parallel to the ¢-axis meet the path of
the MMFF.

(4) Now, consider the spatial uniformization epochs {7} along with the departure
epochs identified above, and denote the resulting set of ordered epochs by «,,; we
have,

O=kKo <KL <Ky<:-, a.S.

(5) Let Z(t) denote the set of indices n’s such that Y, (¢) > 0,n =1,2,---. We define
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|Z](t) as the total number of elements in Z(t), and we represent the set Z(t) as

E(t) ={na(t), - ;nzie) (8}

where n;(t) denotes the j-th largest index among the indices in the set Z(¢).
Defined thus, the set Z(t) gives the identities of the customers still present in
the queue and |Z|(t) the total number of customers present at time ¢. In the
illustration of Figure 1, we have shown the epochs k, in a busy period along
with the corresponding sets = and their cardinalities at those epochs. Note that
a.s., |E|(¢t) =0iff F(t) =0.

Armed with these notations, we are now ready to state the following important
result which is a direct consequence of the memoryless property of the exponential
distribution and can be established by mathematical induction; we omit the proof.

Theorem 6. Given |Z|(k,) = m, the fluid level F(k,) (or equivalently, the total
amount of work in the queue at k,) is distributed as the sum of m independent,
identically distributed (iid) random variables with common distribution exp(A). Fur-
thermore, the residual amounts of work for the m customers in the queue at k,, are iid
with distribution exp()).

Remark 1. The above result shows that if the fluid level (work in the sytem) at g is
distributed as exp()\), then knowing the number of customers present at ., determines
the law of the MMFF process in the interval [k, 00). In fact, if N,, denotes the level
at kn+, then (kn, Np,), n > 0 form a semi-regenerative sequence ([6], Chapter 10.6)
for the MMFF process as well as for the work in the queue.

For the queue, we now introduce a set of random variables similar to those introduced
by Latouche [10] in the computation of G in a QBD. Given |E|(kp) = n > 1, let ky
denote the first epoch in {k; : j > m+ 1} for which |Z|(k;) = n. Also, let kg denote
the first epoch in {k; : j > m + 1} for which |Z|(x;) = n — 1. Thus, if by “level” n,
we denote the set of states with queue length n, then Ky — K, is a return time to level
n avoiding lower levels, and kg — Ky, is the first passage time to the immediately lower
level n — 1 given that one starts in level n. Finally, we denote the amount of remaining
work of the customer in service at &, by X,,.
Now, let U(k, s, z) denote the transform matrix such that

[U(k,s,2)]i; = (22)
(e kv =) {J(ky) = j, n < [E|(t) <n+ kY t € [fm,K0)}
| |E|(ij) =n, J(K:m) = 7:, Xm = IL')

Also, let

A~

[G(kvsax)]iJ = (23)
E(e e rm)y{J(kG) = j, n < [EI(t) <n+k VY t € [fm, ka)}
| |E|(’im) =n, J(’im) = 7:7 Xm = -'E)
From the structure of the process under consideration, it is clear that the above

transform matrices do not depend on n. Note that these matrices, of course, depend on
the uniformization parameter A, but we have suppressed that fact to simplify notations.
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We also define the matrices [}(k, s,A) and é’(k,s,/\) as

U(k',s,/\)z/ e 22U (k, s, z) dz, and é(k,s,/\)z/ Ae Gk, s, z)dx. (24)
0 0

From the definitions, we can get the following results.

Lemma 1. .
(a) If we let ga(s,\) = 2ACa(sI + 20C2)~! and g3(s,\) = (s + \) 7L, then U(k,s,\)
has the following form.

~ 0 [}12(1&',8,)\) 0
U(k,s,A) = 92(s, /\)%Pn g2(s, /\)%PM 92(s, /\)%P% : (25)
93(5,\) P31 g3(s,A\) P32 g3(s,\)Ps3

(b) For Re(s) > 0, [}12(k,8) converges as k increases, and

lim Uya(k, s,A) = ¥(s). (26)
k— o0

Furthermore, for s > 0, the matrices [712(k, s, A) are (entry-wise) monotonically non-
decreasing. That is,

x

Uk, 5,0) = U(s,7) as k — oo, (27)
and the convergence is monotone for s > 0.

Proof. In Part (a), the submatrices in the second and third rows are obtained by
noting that the first return to a given level avoiding lower levels occurs at the first step
of the spatial uniformization iff the time to that step is less than the amount of time
to serve the customer in service at time 0. The zero elements of the first row follow
from the fact that when a return to a given level occurs from S;, the phase visited
must be in S2. All the other results follow immediately upon noting that the set of
paths that go up to level n + k — 1 in a return to level n avoiding lower levels form a
non-decreasing set converging to the set of all paths returning to level n avoiding lower
levels.

Lemma 2. Let Re(s) > 0,

(0,) Glz(kJSJ)\) = ﬁl?(k7s7A)G22(kasa)‘)' .

(b) G32(k, S,)\) = (SI — Q33)_1Q31G12(k,3,)\) + (SI - Q33)_1Q32G22(k},8,)\).
(¢) If we let

H(k,5) = C5 [Qao—5T+Qa3(sT~Q5) ™ Qaa+{Q21+Qa3(s—Q35) ™" Qa1 } U2k, 5, V)],
then

Gaa(k,s,x) = eflk:9)z, (28)
(d) Cas(k,8,3) = AAT — H(k,s))"".

(e) For Re(s) >0, H(k,s) - H(s) and é(k,s,/\) - é(s,A) as k1 co. Furthermore,
for s >0, G(k,s,\) 1 G(s,\) as k 1 .



Algorithms for Stochastic Fluid Flow Models 11

Proof. Part (a) follows by conditioning on the first epoch of return to level 1 before
the end of the busy period. Part (b) follows by conditioning on the first exit time from
Ss3. Part (c) is proven along the same lines as Theorem 3¢, and (¢) immediately yields
(d). The proof of (e) follows by the simple observation that as k — oo, the set of paths
yielding a first passage from level 1 to level 0 avoiding level n + k form an increasing
set converging to the set of all paths yielding a first passage from level 1 to level 0.

5.2. Relation between [:f and C:;

For the analysis, we introduce the operator [8] vec defined on matrices A = (a;;) of
order m x n by

vec(A) = (a1 -~ Gmi -~ Gip - Gmn)’ (29)
where (-)! denotes the transpose operator. Then, the operator vec can be seen to
satisfy the following lemma.

Lemma 3. Given m x m matriz A, n X n matriz B and m x n matriz Y, then
vec(AY B) = (Bt @ A)vec(Y) (30)
where ® denotes the Kronecker Product of matrices.

Now, we can can get the following result establishing a relationship (} and é
Lemma 4. ~
(a) G(k,5,A) = (I = U(k,s,X)) " Az(s, A). 3
(b) The submatrices Uya(k, s, \) in (25) are such that Ua(1,s,)\) = 0, and for k > 2,

ﬁm(k,&x\) = Pnélg(k —1,s, /\) + Plgém(k — 1,8,/\) (31)
+ P13GA32(k - ].,S,A) - ;C;1012(k787/\)622(k - 1787/\)'

(c)

vec(Ura(k, 5, ) = (I + ;51‘32(19 ~1,50)®C07Y) ' x (32)

’l)eC(Pllélg(k — 1,8,)\) + P12é22(k — ]., S, /\) + Plgégg(k — ]., S, /\))

Proof. Recall the definition of ky and kg in Section 5.1. Given the state J(ky), it
is clear that kg and kg — Ky are independent, and the distribution of kg — ky given
J(ky) = j is identical to the distribution of k¢ given J(0) = j. Therefore,

Gk, 5,0) = As(s,A) + Uk, 5, )G(k, 5,3,

which completes the proof of (a). Part (¢) is a direct consequence of (b) and Lemma
3, and we only need to prove (b). Now, because of Lemma 2(b), we can, without loss
of generality, assume S = S; U Sy for the proof. By its definition, it is trivial that

Ulz(l, s,A) = 0, for, given an initial state in Sy, the level increases in the very first
step of the spatial uniformization. Thus, (b) holds for ¥ = 1. Assume as induction
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hypothesis that it holds for k£ — 1, for some k > 2. Now, consider k, and assume that
1€ S; and j € Sy. Then

sk, s, V)i = / Neieeite=ot S O[PLy [Glus(k — 1,5, cit) db
0 les

/ Ae=MeT =Y S [Py [Glii(k — 1,5,y) dy,
0 les

and it follows from the induction assumption that
x o0 —1 N
Ura(k,8,A) = )\/ e Me N VP Gra(k— 1,5,y) dy
0

o ]
+ /\/ e*’\yefscl_lmeGm(k —1,8,y)dy
0

)\/ efscl_ly[Pn[}lz(k —1,8,)) + ProJe” M A1)y gy
0

Using integration by parts in the expression above and the results in Lemma 2, we can
now get

[}12(]{),8, )\) = Pllélg(k' - 1,3,)\) + P12é22(k - 1,8, )\) - ;C{lﬁlz(k, S, )\)éQQ(k - 1,8,)\),

and the proof is complete by mathematical induction.
From Lemma 4, we can now construct the following iterative scheme.

5.3. Algorithm 1
Let Re(s) > 0.

Fix € > 0. Let £ = 1 and diff = 100.
Determine A > 0 such that A > max;es {—[C™'Q];;}. Initialize as

U(1,s,)) = Ay (s,A) and G(1,5,)) = [I — U(1,s,A)]"" Aa(s, A).

Do while ( diff > € )
k=k+1;
U(k,5,A) = Ai(s, \);
M= (I+2Ghy(k,s,0) ® C7Y) 7Y
N = vec(Pnéu(k, 8, A) + P1oGas(k, 5, A) + PisGaa(k, s, )i
vee((0)12(k, 5,A) = MN
Gk, 5,A) = (I = U (k, 5,)) " Aa (s, \);
diff = max; jes | [G(k, 5, \)]i; — [G(k = 1,5,Nij |;
end

T(s) = ﬁlg(k,s,)\); é(s,/\) ] é(k,s,)\).
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Due to Lemma 4, the iterates in Algorithm 1 are such that the k-th iterates U (k, s, \)

and G(k,s,\) are respectively the quantities in (24) defined using the taboo paths
of the MMFF, and therefore converge as k 1 oo to the required matrices ¥(s) and
G’(s,)\) as shown in Lemmas 1 and 2. We have shown already that for s > 0, the
convergence is (entry-wise) monotonic. Furthermore, the convergence is linear since
each additional iteration obtains paths that go up by one more level during a busy
period; this is similar to the linear algorithm of Latouche [10]. Indeed, by the results
in [12], Chapter 8, the difference between the limit values and the k-th iterates are
asymptotically O([n(s)]¥) as k — oo, where 0 < n(s) < 1 is the minimal solution
in (0,1) of the equation n(s) = sp (Ao(s) + n(s)A1(s) + {n(s)}?A2(s)), where sp(A)
denotes the spectral radius of the matrix A.

Remark 2. Although, in principle, the iterates of Algorithm 1 converge as required,
when implemented on a computer (a finite arithmetic machine), we have found it to
misbehave due to round offs and truncations. A thorough numerical analysis of the
iterative schemes given in this paper has not been made. However, it is easy to show
that if we choose A using a more stringent criterion, viz., that in addition to the
condition A > max;ecg {—[C _1Q]ii} of spatial uniformization, if we also require that

Re(s)
I

C Y,

max [Re(s)C’l] <4 <1, and 0 < max[Py —
€S A ieS

iy

then the iterates remain within a bounded region of the complex plane and behave
well. This becomes obvious from the easily verified fact that under these conditions,
the matrices A;(Re(s),\), ¢ = 0,1,2 are nonnegative and strictly substochastic and

sum to a strictly substochastic matrix. Thus, each of the matrices U(k, Re(s), A) and
G(k, Re(s), ) remains strictly substochastic. We therefore recommend implementing
all the algorithms in this paper using this more stringent scheme so that numerical

stability is maintained in the presence of round offs and truncations.

Henceforth, we will assume that for each s, an appropriate A\(s) meeting the stringent
criteria established above is being used. However, to simplify the notations, we shall
simply write A suppressing the dependence of A on s.

6. Quadratically Convergent Algorithm

An iterative procedure is said to have linear convergence if the error in the k-th
iterate is of order O(n*) as k — oo and to have quadratic convergence if that error is of
the order 0(772'0) for some 0 < n < 1. Having obtained a linear algorithm for ¥(s), we
now examine an algorithm resulting from Corollary 1 and then an accelerated version
thereof. The accelerated version will be shown to have quadratic convergence.

The following is an iterative scheme obtained by bootstrapping in the equations of
Corollary 1.

6.1. Linear Algorithm

Algorithm 2
Fix € > 0 and set diff = 100;
Initialize U*(1,s,\) = A1(s,A),G*(1,5,A) = (I — U*(1,5,A)) 1 4s(s, \);
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Do while ( diff > € )
k=k+1;
U*(k,s,A) = A1(s, ) + Ao(s, \)G*(k — 1,8, \);
G*(k,5,0) = (I — U*(k, 5, X)) " As(s, \);
diff = max; jes | [G*(k,s,)\)]i,j - [G*(k - 1,8,)\)],',]' |;
end

U(s) & Uly(k,5,0); G(s,)\) = G*(k, 5,\).

Comparing the matrices U*(k, s, A) and G*(k, s, A) of Algorithm 2 respectively with
(k, s, ), (k s,A) of Algorithm 1, we can see that (a) U*(1,s,A) = U(1,s,\) and

G*(1,s,\) = G(1,s,)); (b) Us (k,s,A) = Ulm(k,s,/\) for I = 2,3, m = 1,2,3 and
k=1,2,---; (b) Furthermore, for all k =1,2,---,

Qﬂ

G*(kasa)‘) = (I - U*(kasa)‘))_lAQ(S7)‘)a Gx(kasa)‘) = (I - é(kﬂsa)‘))_lA2(87)‘)' (33)

Thus, the difference in the two algorithms arises from the difference in the iterates
Uty(k,s,A) and Ura(k, s, A). As we can see in Lemma 4(b), Ura(k, s, \) satisfies

[}12(]6,8,/\) = Pllélg( —1,s /\) +P12G22( ].,S,/\) +P13é32(k — 1,8,)\)
C Ulz(k} S, )\)Gzz( - 1,8,)\). (34)

but, Ufy(k, s, ) in Algorithm 2 satisfies

Uy (k, 5, \)
= (P —50") Gialk = 1,5,0) + PuaGy(k = 1,5,0) + PiaGia(k — 1,5, )
= PuGiy(k—1,8,)) + PisGia(k — 1,5, \) + PiGia(k — 1,5, )
- §0;1U32(k—1,s,x) s (k—1,s,N). (35)

We draw particular attention to the indices of the U-matrices arising in (34) and (35).
Note that the first one yields a linear equation for the unknown that needs to be solved,
while the second one is a true recursion. A result we will establish soon is that despite
these differences, the iterates in both algorithms converge to the same matrices.

We begin with the following result whose proof by mathematical induction is quite
straightforward and therefore omitted.

Lemma 5.

(a) For s > 0, the matrices U*(k, s, A) and G*(k, s, \) are monotonely non-decreasing
as k increases.

(b) For all k > 1, s > 0, the matrices U*(k,s,\) and G*(k,s,\) are nonnegative and
strictly substochastic.

Let U*(s,A) = limp—00 U* (K, 8,A) and G*(s,A) = limy—,00 G*(k, 5, ), for Re(s) >

0. Our next result shows that for s > 0, U*(s,\) = U(s,\) and G*(s,\) = G(s, A) so
that the iterative schemes in Algorithm 1 and Algorithm 2 both yield the same results
for s > 0.
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Lemma 6. Let s > 0.

(a) For all k > 1, U*(k,s,\)

(b)
(c)

UTQ (Sa )‘)

U*(s,\) =

= ¥(s).

U(s, A), and G*(s,\)

> Uk, 5,\) and G*(k,5,\) > G(k, 5, \).

= é(s,)\)

Proof. (a) We will prove this part by induction. Note that U*(1,s8,\) = (}(1,3,)\)

and G*(1,s,A)

and

= G(1,5,\). From the equations (34) and (35), we can see that

ﬁlz(k,s, )\) = P11é12(k — 1,8,)\) =+ Plzézz(k —1,s, )\) =+ P13é32(k — 1,8,)\)
- ;C;1012(k - 1585A)é22(k - 1585)‘)

- ECvlil[i}m(kasa/\) - [}12(k - 1737’\)]G:22(k - 1757)‘)'

A

U*(2,5,\) — U(2,5,)\)
[Al( ) + AO(S ’\)G*(lasa/\)] - [Al(sa/\) + A()(S,/\)G(].,S,)\)
j U(1,5 N]G(L,5,\)]

[U(2,s,A) —

>4IC'D

—[U

~~

It then follows that
G*(2,5,\) — G(2,5,\)
= [I-U*2,8A)] "As(s, ) — [I = U(2,5,A)] 1 42(s,\)

Z[U*(z,s,,\)" -

because U*(2,s,A) > [}(2 s,A). For k > 2, if we assume U*(k,s,\) — [}(k,s,/\) >0

and G*(k,5,\) — G(k, s,

and

2,5,A) — U(L, 5, N)]G(1,57) > 0.

(2,5 )] 4s(5,\) > 0,

A) >0, then

U*(k+1,8,X) = U(k+1,s,\)

G*(k+1,5,\)

D)
Ao(s)[G™ (K, 8,A) —

§[z§(k+1 s,

G
A) =

[41 (5, A) + Ao (s, NG* (k, 5, \)] — [A1 (5, A) + Ao(s, NG (k, 5, ))
[O(k+1,s,)\) — Uk, s, )]G(k, 5, )]

(k, 5, V)]
Uk, s, )]Gk, 5,A) > 0

—G(k+1,5)\)

(1= Uk + 1,5, \)] ™ Aa(5, ) — [ = O(k + 1,5, 1)~ Aa(s, )

o0

S Utk +1,5,)) -

i=1

Uk + 1,5\ As(s,\) > 0.
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This completes the induction proof of Part (a). Note that (c¢) is a direct consequence
of (b) and Corollary 1; so we need to prove only (b). From Part (a) of this lemma and
(b) of Lemma 1, it is enough to show that

Ui(s,X) < U(s) = Una(s, N) (36)
and we will prove this by induction. First, we can easily see from Corollary 1 that
U*(1,8,A) = A < U(s,\)

and this implies that

x

G*(1,8,A) = (I =U*(1,5,A)) 14y < é(s,)\) =(I-U(s,A\) ' 4,.
Now, assume that it holds for k£ > 1 that
U*(k,5,)) < U(s,\) and G*(k, 5, \) < G(s, \).
Then, from the Algorithm 2,

U*(k + 1383)‘) = Al + AOG*(kasa)‘) S Al + AOé(sa)‘) = [}(Sa)‘)

and this implies

~

(5,A)) 7" Ay = G(s, A).

x

G*(k + 1757/\) = (I - U*(k + IJSJA))_1A2 < (I -
Therefore,

lim U*(k,s,\) <U(s,\) and lim G*(k,s, ) < G(s, \).
k—o0 k—o00

Having established the above lemma, it is now a trivial matter to see that for all
Re(s) > 0, the two iterative schemes converge and yield the same transforms. One
may prove this by appealing to an analytic continuation argument or directly using
the Dominated Convergence Theorem by comparing the matrices of absolute of values
of the iterates. We omit the details but in light of its importance, we state the result
as a theorem.

Theorem 7. Let Re(s) > 0. Then the iterative schemes in Ajgorithm 1 and Algorithm
2 yield in the limit as k — oo, the required matrices U and G.

6.2. A Quadratically Convergent Algorithm

We now present the following algorithmic scheme which is an accelerated version of
Algorithm 2.
Algorithm 3
Fix € > 0 and set diff = 100;
H**(]-a S, )‘) = (I - Al(sa )‘))_IAO(Sa )‘)7
L**(17 S, ’\) = (I - A1(37 ’\))_1A2(57 A)7
G**(17 87 A) = L**(17 37 A);
T(1)=H"(1,s,A);
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Do while ( diff > € )
k=k+1;
U**(k,s,\) = H*(k — 1,8, \)L**(k — 1,8, \)
+ L*(k — 1,8, \)H**(k — 1,5,));

= (H*(k—1,5,))%
H**(k, A) = (I U**(k s,A)7t
= (L**(k —1,s,)))%
L**(k; s,A) = (I U**(k757/\))_
G**(k,5,\) = G*(k —1,8,\) + T(k — 1)L**(k, s, \);
T(k)=T(k—1)H"*(k,s,));

k
diff = max;,jes | [G**(kasa/\)]i,j - [G**(k - 1787)‘)]i,j |;
end

U(s) = Gi3(k, 5, N)[G53 (K, 5, )] G(s,)) & G (.5, \).

Theorem 8.

lim G**(k,s,A) = G*(s,A) = G(5,\), (37)

k—o0

and the convergence is quadratic.

Proof. As before, it suffices to prove the result for s > 0. In that case, the iterative
scheme of Algorithm 2 is precisely the linear iteration scheme of Latouche ([12], p.170)
and Algorithm 3 is the L-R algorithm (see [12], p.193) for the QBD defined by the
nonnegative matrices A;(s,A), ¢ = 0,1,2. Thus, the results follow from [11]; see also
Chapter 8 of [12] since the k-th iterate of Algorithm 3 is indeed the 2*-th iterate of
Algorithm 2. A direct proof can be given in terms of taboo paths that go up by at
most 2% levels and identifying the k-th iteration here as resulting from restrictions
to such paths, but given those details in the cited references, we omit them here.
Incidentally, the results in [12], Chapter 8 also show that the error in the k-th iterate

is asymptotically O([n(s)]?").

Remark 3. (a) Note that a comparison of Algorithm 2 with the linear scheme of
Latouche at best only shows that it converges. The fact that it converges to ¥(s) has
been established by us by comparing its iterates to those of Algorithm 1. Unfortunately,
we have not been able to develop an argument leading to Algorithm 3 directly. (b)
With s = 0, Algorithm 3 provides a powerful means to compute ¥(0) using which it is
easy [1] to compute the steady state distribution of the fluid flow, when it exists.

7. Numerical Results

We have shown that all the iterative schemes developed by us converge to the
quantities of interest. To facilitate their implementation, we have devised procedures
that yield numerically stable schemes that do not appear to suffer from round off and
truncation errors. While a careful error analysis of the algorithms has not been possible
yet, our experimentation thus far has confirmed that the procedures developed by us
are sound and work well. In this section, we report on a model class studied earlier by
Sericola [17] and also used by us in [2], Section 8 for comparison.
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FIGURE 2: s =2, p=0.9.

The model class comprises of a fluid flow model wherein each of a set of m on-off
sources provides fluid input at rate 1 while it is on, and the combined fluid is drained at
a constant rate 0.8 per unit time. The means of the on and off periods are respectively
1 and 1/7, and the traffic intensity of the model is given by p = (m~)/[0.8(1 +~)]. For
a large number of cases, we used our algorithms to compute the transient distribution
of the fluid flow and compared the results with those of Sericola [17], where the latter
is available, obtaining extremely favorable comparisons for our methods.

For numerical experimentation with the algorithms, here is the procedure we adopted.
For each problem, we considered several values of s, both real and complex. For each
fixed s value, Algorithm 3 was used to compute ¥(s) with e = 1075, The resulting
value of ¥(s) was used as the target value, and other algorithms were then used and
iterative processes continued until iterates differed from ¥(s) by at most 10710 in
absolute value. Given below in the figures are the results obtained by us, and our
emphasis here is only on providing a glimpse of the relative speeds of the various
algorithms in computing the key transform ¥(s). A detailed complexity analysis has
not been performed on them. For brevity, we have shown only two cases: s = 2
and s = 2+ 3i. Reported for them are the number of iterations and CPU times (in
seconds) taken by each of the algorithms to reach the same level of accuracy for ¥. All
computations reported here were performed using MATLAB. Each example was run
20 times, and what is reported is the average CPU utilization per run.
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FIGURE 3: s =2+ 3¢, p =0.9.

Based on these examples and the many others we have worked out, we can assert
that we have an excellent algorithm for computing the transient results for stochastic

fluid flow models.
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