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Abstract. We prove the Area Formula for Lipschitz maps between strati-

�ed nilpotent Lie groups. The main tool is the di�erentiablity of Lipschitz

maps, proved by P. Pansu in Ann. of Math. '89. We extend this result to the

case of measurable domains with non trivial technical modi�cations. A suit-

able notion of jacobian is given for di�erential maps, called G-linear maps,

�nding relations with the classical de�nition of jacobian. Consider two stra-

ti�ed nilpotent Lie groups G, P and a Lipschitz map f : A �! P, where A is a

measurable set of G. The symbolsHQ
d
,HQ� denote theQ-Hausdor� measures

respectively de�ned on the metric spaces (G; d) and (P; �). The jacobian of

a G-linear map L : G �! P is de�ned as JQ(L) = H
Q
� (L(B1))=H

Q
d
(B1),

where B1 is the unit metric ball of G. Thus, the Area formula is stated as

follows Z
A

JQ(dxf) dH
Q
d
(x) =

Z
P

N(f;A; y) dHQ� (y) ;

where N(f;A; y) is the multiplicity function of f , relative to the set A.
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1. Introduction

In the last years a considerable attention has been devoted to Carnot-Carath�eo-

dory spaces, characterized by a geometry quite far from the euclidean one, see [5],

[9], [17], [18], [19], [31], [32], [34], and other authors. Since these spaces are not

locally bi-Lipschitz equivalent to euclidean ones, the development of the classical

tools of Geometric Measure Theory in these spaces (area and co-area formulas,

sets of �nite perimeter, currents) is still a largely open problem, nevertheless some

important recent contributions have been given [1], [6], [8], [13], [14], [15], [16],

[20], [22], [24], [25], [29], [30], [31], [35], but the list could be enlarged.

In this paper we establish the area formula for Lipschitz maps f : A � G �! P,

where G and P are strati�ed groups (with the terminology of [12]) and A is

a measurable subset of G. As in the euclidean case, the proof of this result

strongly depends on the a.e. di�erentiability of f (that makes sense in this setting,

due to the homogeneous structure of the domain and of the target space). In a

fundamental work [28] Pansu proved that the Rademacher theorem still holds,

i.e. any Lipschitz map f : A �! P is a.e. di�erentiable in A, provided that A

is an open subset of G. In this paper we extend the Pansu result to a slightly

more general situation, dropping the assumption that A is open and proving

the di�erentiability property at a.e. density point of A. This generalization

requires some e�ort, since no Lipschitz extension theorem is presently known in

this general setting. Although we follow essentially the Pansu approach, our proof

involves some nontrivial technical adjustments due to the fact that the interior

of A could be empty (see Section 3). In the case when G = P (and the area

formula reduces to the change of variables formula), the same problem has been

considered by Vodop'yanov and Ukhlov in [35], but with a di�erent approach,

involving a di�erent de�nition of jacobian. However, the proof of di�erentiability

is independent of [35], where, in the author's opinion, a technical di�culty in the

extension of Pansu's technique has been overlooked.

The area formula states thatZ
A

JQ(dxf) dH
Q
d (x) =

Z
P

N(f;A; y) dHQ
� :

The function N(f;A; y) is the standard multiplicity function and JQ(dxf) is the

jacobian of dxf , which is de�ned on all G-linear maps and can be computed by

JQ(dxf) =
HQ
� (dxf(B1))

HQ
d (B1)
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(by translation invariance, any bounded open set in place ofB1 can be considered).

A G-linear map L : G �! P is a homogeneous homomorphism with the contact

property of sending horizontal elements of G in horizontal elements of P. Thus,

a more manageable formula for the jacobian of G-linear maps can be obtained,

noticing that L induces, through the exponential map, a linear map ~L between

the corresponding Lie algebras G, P (see Corollary 3.14). Indeed, we prove that

JQ(L) =
HQ
� xP (B

�
1)L

q(B1)

Hq
x ~P (B�

1)H
Q
d (B1)

Ja(~L) ;

where Ja(~L) is the classical algebraic jacobian of ~L, P = L(G) and ~P = lnP (see

Proposition 3.18). The other factor (HQ
� xP (B

�
1)L

q(B1))=(H
q
x ~P (B�

1)H
Q
d (B1))

plays the role of a distortion factor which takes into account the di�erent measures

HQ
d ; H

Q
� . Notice that in the case that P = G this factor is exactly equal to one

(see Remark of subsection 3.2), so our de�nition of jacobian coincides with the

classical one, according to the results of [35].

Our proof of the area formula follows a classical path, but the de�nition of

jacobian allows to avoid the decomposition of the di�erential as a product of a

symmetric linear map and a rotation, following a bit more intrinsic computation.

We get a decomposition of almost all of

A0 = fx 2 A j 9dxf; JQ(dxf) > 0g

in countably many measurable sets Ai on which f is close to a G-linear map

Li. We have adopted a di�erent approach from the classic one in the proof

that HQ (f(A nA0)) = 0: indeed, instead of the usual approximation of f(x) by

f"(x) = (f(x); "x) (see [11]) we follow a purely intrinsic approach adopted, in the

euclidean case, in [2].

2. Notation and definitions

We consider a strati�ed simply connected Lie group G and its Lie algebra G,

which is the direct sum of the spaces Vi, with the generating conditions [Vi; V1] =

Vi+1 and Vi = 0 for i > n, [12]. The least integer n is called the degree of

nilpotency or the step of G. The strati�ed structure of the algebra allows us to

de�ne a one parameter group of dilations �r : G �! G as �r(v) =
Pn

i=1 r
iui,

where v =
Pn

i=1 ui, ui 2 Vi and r is any positive number. So �r��s = �rs holds

for r; s > 0 and �r is a homomorphism of the algebra G. We can also de�ne

dilations for negative factors as follows: �tv = �jtjv
�1 for t < 0. Thanks to the

generating hypothesis we �nd a basis of vectors (vi)i=1;:::;k for the space V1 such
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that the set of all �nite linear combinations of vi and all their commutators [vi; vj ],

[vi; [vj ; vl] ]; : : : ; generate G. An important property of the basis (vi) � G is the

following: there exists a bounded neighbourhood of the unit element E, such that

any z 2 E can be represented as a product with a �xed number of factors of the

form exp(a1vi1) � � � exp(a
vi
 ), ij 2 f1; : : : ; kg with (aj) belonging to a bounded

set of R
 . In all the subsequent we will call a basis (vi) with the above property

a generating basis.

The exponential map exp : G �! G is a di�eomorphism because G is simply

connected, so we denote the inverse map of exp as ln : G �! G. The well known

Baker-Campbell-Hausdor� formula translates the law group of G into the algebra

G, allowing explicit computations, [33]. We can interpret the exponential map

as a unique chart which allows us to think objects of the group as elements of

a vector space with a suitable metric. We de�ne on G a left invariant distance

as follows. The subspace V1 � G can be translated over all �bers of the group,

so we obtain a uniform distribution of subspaces of the tangent bundle, the so

called horizontal bundle. Now consider all curves which are absolutely continuous

with derivative a.e. in the horizontal bundle, the so called horizontal curves.

The generating condition on the group implies that the space is connected by

horizontal curves [7], [17]. We �x a scalar product on G, then a Riemannian

metric is de�ned on all of G such that all translations are isometries of the group

(G is also called sub-Riemannian group). Thus, given any pair of points x; y of G,

we de�ne the in�mum among the lengths of all horizontal curves joining the points

as the Carnot-Carath�eodory distance or sub-Riemannian distance between them,

denoted by d(x; y), [17]. This de�nition �ts into the more general framework

of Carnot-Carath�eodory spaces [23]. The fact that translations are isometries

implies that the distance we have de�ned is left invariant under translations of

the group, that is, d(x; y) = d(zx; zy) for any x; y; z 2 G. We de�ne a distance on

G by making the exponential map exp : G �! G an isomentry, so we essentially

identify G with G throughout the paper and we will not use di�erent symbols to

denote the distance both on G and G. A group of dilations on G is de�ned as

exp ��r� ln : G �! G, for any r > 0 and still denoted with tha same symbol. The

analogous group properties of dilations in G hold. The self-similarities �r have

the important compatibility property with the metric d(�rx; �ry) = r d(x; y),

whenever x; y 2 G; r > 0. If e is the unit element of G, we will write d(x) =

d(x; e).

The topological dimension of G will be denoted by q, throughout the paper. It

turns out that the Lie algebra G is a vector space of dimension q and a Lebesgue
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measure Lq on G is de�ned in the �xed scalar product. In view of the Baker-

Campbell-Hausdor� formula, the jacobian of any translation is an upper trian-

gular matrix, with 1's along the diagonal, this implies the left invariance of Lq

under translations of G. The metric balls of G have Lebesgue measure which

scales with a power Q =
Pn

1 i dimVi of the radius. This comes from algebraic

de�nition of dilations, because rQ is just the jacobian of �r : G �! G. So, G as

a metric space has �nite Q-Hausdor� measure HQ
d , which is left invariant. Thus,

the Lebesgue measure Lq and HQ
d are Haar measure on the group, so Lq is a

constant multiple of HQ
d . A more general result about the Hausdor� dimension

holds in Carnot-Carath�eodory spaces [23]. To simplify notation we will denote

by HQ
d as the Q-Hausdor� measure both on G and G, being the exponential map

an isometry.

In this paper we consider maps between two not necessarily equal Carnot

groups, so we have to de�ne another strati�ed simply connected Carnot group P

with an algebra P. The algebra P is the direct sum of subspacesWj , withWj = 0

for j > m. We have dilations �r both on P and P, there is a distance � and all

of their properties are stated analogously as for G.

De�nition 1 (Lipschitz functions). Let (X; d), (Y; �) be two metric spaces and

f : X �! Y . If there exists a constant L � 0 such that

�(f(u); f(v)) � Ld(u; v) for any u; v 2 X

we say that f is L-Lipschitz and L is a Lipschitz constant of f . We denote with

Lp(f) as the in�mum among all Lipschitz constants of f .

De�nition 2 (Doubling spaces). Consider a Borel measure � on a metric space

X. The couple (X;�) is called a Doubling space if there is a constant C such that

for any ball B � X it follows

�(2B) � C �(B) ;

where 2B denotes the ball with the same center and double radius.

De�nition 3 (Density points). Given a metric measure space (X; d; �) and a

measurable set A � X, we de�ne I(A) as the set of points x 2 A such that

�(A \Bx;r)

�(Bx;r)
�! 1 as r �! 0 ;

where Bx;r denotes the open ball in X with center x and radius r.
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We will call density points, the elements of I(A). If (X; d; �) is a doubling

space it can be proved that A n I(A) has �-measure zero, see for example [11];

moreover I(A) is bi-Lipschitz invariant. The next lemma states an elementary

and well known property of density points in doubling spaces.

Lemma 2.1. Let (X; d; �) be a doubling space. Then for any measurable set A

and x 2 I(A) we have d(y;A) = o (d(y; x)) as y ! x.

De�nition 4. We de�ne Bx;r = fy 2 G j d(y; x) < rg and Br = Be;r, where e

is the unit element of G. We distinguish balls of P adding the symbol � as B�
x;r.

We will use the same symbol to denote balls respectively of G and P. In fact, the

Lie groups G, P are considered isometric to their Lie algebras G and P.

The Carnot-Carath�eodory distance and the Euclidean distance in a strati�ed

Lie group G are related by the following estimate

(1) jx� yj � d(x; y) � C jx� yj1=n for any x; y 2 K � G ;

where n is the degree of nilpotency of G, K is a compact subset and C is a

dimensional constant depending on K. This estimate is true in more general

Carnot-Caratheodory spaces, see paragraph 0.5 of [17] and [26].

De�nition 5. A map L : G �! P is called homogeneous if �r(Lx) = L(�rx) for

any r > 0. A map ~L : G �! P is homogeneous if the map exp �~L� ln : G �! P is.

De�nition 6 (G-linear maps). We say that a map L : G �! P is G-linear if it is

a homogeneous Lie group homomorphism. A map ~L : G �! P is called G-linear

if exp �L� ln : G �! P is G-linear.

Remark. Notice that our de�nition of homomorphism between the Lie algebras G,

P here is not the conventional one. In fact, in the Lie group theory Lie homomor-

phism of Lie algebras are assumed to be linear with respect to the linear structure

of the algebra and homomorphism with respect to the Lie product [�; �], [36]. In

our setting the exponential map is a di�eomorphism, so we have an associative

operation on G which cames from that of G, then there is a natural structure of

Lie group on the Lie algebra. Thus, our de�nition of G-linear map on Lie algebras

is referred to the Lie group structure of the algebra. In the Subsection 3.1 the

conventional properties assumed for Lie algebra homomorphisms will be proved

starting from De�nition 6.
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De�nition 7. Given a measurable set A � G, x 2 I(A) and a map f : A �! P,

we say that f is di�erentiable at x if there exists a G-linear map L : G �! P such

that

(2) lim
y2A; y!x

�
�
f(x)�1f(y); L(x�1y)

�
d(x; y)

= 0:

A map f : A � G �! P is di�erentiable at x 2 I(A) if exp �f� ln : exp(A) �! P

is di�erentiable at lnx, (which is a density point, in view of Remark 2.1).

Notice that De�nition 7 becomes the Pansu de�nition of di�erentiability [28]

when A is an open set. The following proposition shows that the di�erential is

unique and essentially independent of the domain A; the proof is a straightforward

consequence of Lemma 2.1, so we omit it.

Proposition 2.2. Let f : A � G �! P, g : B � G �! P be Lipschitz maps, with

x 2 I(A \B), f = g on A \B and f satis�es (2). Then we have

(1) the map g is di�erentiable at x and

lim
y2B; y!x

�
�
g(x)�1g(y); L(x�1y)

�
d(x; y)

= 0:

(2) If g is di�erentiable at x with di�erential T , then T = L.

In particular, the di�erential is unique.

Motivated by Proposition 2.2 we denote by dxf the di�erential of f at x,

wherever it exists.

3. Differentiability on measurable sets

In this section we prove the a.e. di�erentiability of a Lipschitz map f : A �! P,

where A � G is a measurable set and G, P are strati�ed groups. Since the target

metric space G is complete and f is a Lipschitz function, if it is not otherwise

stated, we will assume in this section that A is a closed subset of G. In view of

Proposition 2.2 we note that this assumption does not modify the di�erential map.

We have already seen that the notion of di�erential is well posed at density points.

But the question of di�erentiability is also related to the shape of the domain

around the point where we consider the di�erential approximation. Moreover,

we will see that the de�nition of di�erential (G-linear map) requires some further

properties of the domain around the point. This issue is explained in the following

proposition.
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Proposition 3.1. Consider a summable function g : G �! R and z 2 G. ThenZ
G

jg(y�tz)� g(y)j dHQ
d (y) �! 0 as t! 0 :

Proof. By an isometric change of variable, the map g can be read on G where it

is Lq-measurable. Then we can use the standard density arguments to achieve the

theorem. The density argument works because the Lebesgue measure is preserved

under translations of the group. The isometric change of variable does not change

the value of the integral. �

Corollary 3.2. Let A � G be a compact set and let (�j) be an in�nitesimal

sequence. Then there exists a subsequence (tl) such that, limtl!0 1A(y�tlz) = 1,

for HQ
d -a.e. y 2 A.

Proof. It is enough to apply Proposition 3.1 to g = 1A. �

The following Lemma is a particular case of Theorem 2.10.1 in [33].

Lemma 3.3. Let Z1, Z2 be two subspaces whose direct sum gives G and Z1 with

dimension 1. Then there are open neighbourhoods of the origin 
1 � Z1, 
2 � Z2
and an open U 2 G, U 3 e, such that the map � : 
2 � 
1 �! U , de�ned as

�(!; z) = exp! exp z, is a di�eomorphism.

Proposition 3.4 (Linear density). Let v 2 G and Tx;v = fs 2 R j x exp(sv)2Ag,

then 0 2 I(Tx;v) for H
Q
d -a.e. x 2 A.

Proof. Consider the map � : 
2�
1 �! U of Lemma 3.3, where Z1 is the space

spanned by v and Z2 is the complement factor. Covering A with a countable

family of translated neighbourhoods fyi Ug it is not restrictive to assume that

A � U . Thus, identifying 
2 � 
1 with Rq, by 3.1.3(5) of [11] applied to the

measurable set ��1(A) � 
2�
1 we obtain that for Lq-a.e. (!; z) 2 
2�
1 the

set f� j (!; �v) =2 ��1(A)g has density zero at t. Then the set

T�(!;tv);v = fs j �(!; tv) exp(sv) =2Ag

= fs j � (!; (t+ s)v) =2 Ag = f� j �(!; �v) =2 Ag � t

has density zero at s = 0. �

Remark. It is important to observe that only when v 2 V1 (v is a horizontal

vector) we have Tx;v = fs 2 R j x exp(sv) 2 Ag = fs 2 R j x �s(exp v) 2 Ag.

This fact will be useful in the proof of Theorem 3.9, for the construction of the

approximating path (see discussion before the Theorem).
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Lemma 3.5 (Horizontal extension). Consider v 2 V1 and a Lipschitz function

f : A � U �! P, with U as in the Lemma 3.3. Then there exists a function

fv : U �! P extending f , which is Lp(f)-Lipschitz on any segment fy exp(tv) j

tv 2 
1g � U for any y 2 exp(
2) � U .

Proof. Let � : 
2 � 
1 �! U be as in the Lemma 3.3. For any ! 2 
2 we will

extend the map �(!; �) to all of 
1. The set Z! = ftv 2 
1 j �(!; tv) 2 Ag is

closed in 
1, so Z
c
! \
1 is a countable disjoint union of open intervals. Thus, we

can de�ne fv(!; �) on any bounded interval of Zc
! \
1 joining with a geodesic the

values of f(!; �) on the boundary of the interval (Carnot groups are geodesically

complete metric spaces, [17] ) and putting constant values on the unbounded

intervals, if they exist. This extension of fv(!; �) is Lp(f)-Lipschitz on the segment

�(!;
1), because we are using the Carnot-Carath�eodory metric (length metric)

and �(!; tv) = exp! exp(tv) is a radial geodesic in (G; d), being v 2 V1. �

Remark. Under the hypotheses of Lemma 3.5 we make the following two obser-

vations: the extension fv is not necessarily continuous on U and if u = �av, for

some a 2 R, we have fu = fv. The map ln �� : 
2 � 
1 �! G, being di�eren-

tiable, is locally Lipschitz with respect to the Euclidean metric on 
2 � 
1 and

the scalar product on G. This implies a Lusin property for the map exp ��, that

is, Lq-negligible sets of 
2 � 
1 are mapped into Lq-negligible sets of G. But Lq

is proportional to HQ
d on G, so the Lusin property holds for �.

Using the extension lemma and the di�erentiability of recti�able curves proved

in [28] we get the existence of partial derivatives along horizontal directions.

Proposition 3.6 (Horizontal derivatives). Under the hypotheses of Lemma 3.5,

for HQ
d -a.e. x 2 U there exists

lim
t!0

�1=t

�
fv(x)�1fv(x exp(tv))

�
= @xf

v (exp(v)) 2 exp(W1):

In particular f has partial derivative along v for HQ
d -a.e. x 2 A.

Proof. Consider fv : U �! P and de�ne the Lipschitz curve

J!(t) = fv (�(!; tv)) for any tv 2 
1 :

The Proposition 4.2 of [28] gives the di�erentiability of J! for L1-a.e. t 2 R (in

the sense of de�nition 7) and moreover the derivative is in W1. So the derivative

is an horizontal direction of P. Now by a Fubini argument we get the partial

di�erentiability of f for Lq-a.e. (!; t) 2 
2 � 
1 and by Remark 3 the HQ
d -a.e.

partial di�erentiability follows. �
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Proposition 3.7. De�ne Tx;v = ft 2 R j x exp(tv) 2 Ag, with v 2 G. Then for

any � 2 R the map � : G �! R [ f+1g de�ned as �(x) = infs2Tx;v js � � j is

lower semicontinuous (where is assumed inf ; = +1).

Proof. Choose � > 0 and x 2 A such that �(x) > �. Fix �1 such that �(x) >

�1 > �, so x exp(tv) =2 A for any t 2 [� ��1; � +�1]. By the closure of A together

with the continuity of the map x exp(tv) with respect to the variables (x; t), there

exists " > 0 such that y exp(tv) =2 A for any y 2 Bx;" and any t 2 [� � �1; � + �1].

Then for any y 2 Bx;" it follows �(y) � �1 > �. �

Corollary 3.8. The map � is �nite for HQ
d -a.e. y 2 A and y exp (�(y)v) 2 A.

Proof. This is a straightforward consequence of Proposition 3.4. �

The following theorem is one of the two main results of this paper. As explained

in the introduction, we have not in general a Lipschitz extension of the map

f : A �! P, so when we �x a point x 2 A and a direction w 2 G it might

happen that x exp(tw) =2 A for many t > 0 and so we are not able to consider

the di�erence quotient of f in that direction. Thus, we start to �x the attention

on the generating basis of horizontal directions (vi), selecting all density points

x whose curves Ji(t) = x exp(tvi) intersect A in one dimensional sets which have

density 1 at 0, getting a set of full measure on A. At these points we are able

to approximate any curve c(t) = exp(�tz), z 2 G, with a path which is basically

a projection of the line on the set A with controlled distance with respect to the

horizontal directions of the generating basis. Then the function f is de�ned along

this path and it is possible to evaluate the di�erence quotient of f .

Theorem 3.9 (Di�erentiability). Let f : A �! P be a Lipschitz map, where A

is a measurable subset of G. Then f is di�erentiable HQ
d -a.e.

Proof. Step 1, (Existence and uniform convergence of partial derivatives)

Consider a bounded neighbourhood E � G containing fy 2 G j d(y) � 1g. Fix

a generating basis fvi j i = 1; : : : kg � G, so there exist an integer 
 and a bounded

neighbourhoodM of the origin of R
 such that E = f
Q


s=1 exp(asvis) j (as) �Mg,

where the products of the elements are understood in ordered sense. By the �-

compactness of G, HQ
d being a Radon measure on G, we can assume that A is

compact. Thus, considering U as in Lemma 3.3 we cover A with a �nite open

covering fyiUg and translating f on (yiU) \A, the invariance of di�erentiability

under translations allows to assume A � U . Applying Proposition 3.6 we have

the partial derivatives @yf
vi(exp(vi)) 2 exp(W1) of the extension fvi for HQ

d -a.e.
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y 2 A � U , for i = 1; : : : ; k. Thus, for any " > 0, Egorov theorem and the partial

di�erentiability of f give a closed subset A1" � A such that HQ
d (A n A1") � "=3

and the limits

lim
t!0

�1=t

�
f(y)�1fvis (y exp(tvis))

�
= @yf

vis (exp(vis)) ;

with s 2 f1; : : : ; 
g; y 2 A1", are uniform. De�ning uis = exp(asvis) and s =

1; : : : ; 
, we observe that the existence of @yf
vis (uis) is equivalent to that of

@yf
vis (exp(vis)) and

lim
t!0

�1=t(f(y)
�1fvis (y�tuis)) = @yf

vis (uis) = �as@yf
vis (exp(vis)) ;

for any s 2 f1; : : : ; 
g; y 2 A1". The uniformity of the limit holds even when

a 2M . In fact, the following equality holds

�
�
�1=t

�
f(y)�1f(y�tuis)

�
; @yf

vis (uis)
�

= as�
�
�1=(ast)

�
f(y)�1f(y�astvis)

�
; @yf

vis (exp(vis))
�
:

For any � 6= 0 and any s = 1; : : : ; 
 we de�ne the map

�(y; �; vis) = inf
t2Ty;vis

jt� �j ;

by Proposition 3.7 this map is a measurable function. Proposition 3.4 and

Lemma 2.1 imply that the quotient j� � �(y; �; vis)j=� tends to zero as � ! 0

for HQ
d -a.e. y 2 A. Then, by Egorov theorem we get a uniform convergence, for

s = 1; : : : ; 
, in another closed subset A2" � A such that HQ
d (A n A2") � "=3.

De�ne the measurable map

�t(y) = sup
u2By;tnfyg

(d(u;A)=d(u; y))

for t > 0 and use again Lemma 2.1 to obtain that �t(y)! 0 as t! 0+ for HQ
d -a.e.

y 2 A. Using Egorov theorem we are able to �nd a closed set A3" � A such that

HQ
d (A n A3") � "=3 and �t(y) goes to zero uniformly on A3" as t ! 0. Now

consider A" = A1" \ A2" \ A3" and x 2 I(A"). Notice that A" does not depend

on the vector a = (as) 2 M , moreover HQ
d (A n A") � ". We want to prove the

convergence of the following limit

(3)

lim
x�tz2A; t!0

�1=t(f(x)
�1f(x�tz)) =


Y
s=1

@xf
vis (uis) =


Y
s=1

�ais

�
@xf

vis

�
exp(vis)

��
;
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uniformly with respect to a 2 M and z =
Q


s=1 exp(asvis) =
Q


s=1 uis . By

Lemma 2.1 with A = A" and y = x�tui1 , we can choose ut 2 A" such that

(4) d(x�tui1 ; u
t) � d(x�tui1 ; x) �ct(x) ;

where c = supa2M; l=1;:::;
 d (exp(a1vi1) � � � exp(alvil)). Representing u
t = x�tu

t
i1
,

the left invariance and the homogeneity of the distance give

d
�
ui1 ; u

t
i1

�
=

d
�
x�tui1 ; x�tu

t
i1

�
t

� c �ct(x)! 0 as t! 0

Then the convergence of uti1 to ui1 is uniform with respect to a 2 M . Now

by induction suppose that vectors (wt
ij
) are de�ned for any j � s < 
 such

that x�tu
t
i1
� � �utij 2 A" and d(utij ; uij ) ! 0, uniformly with respect to a 2 M

(for simplicity of notation we have omitted the parenthesis after the symbol of

dilation �t, being understood that all subsequent terms are considered dilated).

Again from Lemma 2.1 with A = A" and y = x�tu
t
i1
� � �utisuis+1 , we �nd another

family of points in A", which can be represented as x�tu
t
i1
� � �utisu

t
is+1

for a suitable

utis+1 and with the property

(5) d(x�tu
t
i1 � � �u

t
isuis+1 ; x�tu

t
i1 � � �u

t
isu

t
is+1) � 3c t �3ct(x) ;

for t small enough, depending on s. The estimate (5) is independent of a 2 M .

From inequality (5), by the left invariance and the homogeneity of the distance,

we deduce

d(uis+1 ; u
t
is+1) =

d(x�tu
t
i1
� � �utisuis+1 ; x�tu

t
i1
� � �utisu

t
is+1

)

t
� 3c �3ct(x) �! 0

as t! 0+ and uniformly on a 2M . Finally we consider

�1=t

�
f(x)�1f(x�tui1 � � �ui
 )

�
=
� 
Y
s=1

Dt
sB

t
s

�
Gt

where z = ui1 � � �ui
 =
Q
1

s=1 exp(asvis) and we have de�ned :

Dt
s = �1=t

�
f(x�tu

t
i1 � � �u

t
is�1)

�1fvis (x�tu
t
i1 � � �u

t
is�1uis)

�
;

Bt
s = �1=t

�
fvis (x�tu

t
i1 � � �u

t
is�1uis)

�1f(x�tu
t
i1 � � �u

t
is)
�
;

Gt = �1=t

�
f(x�tu

t
i1 � � �u

t
i
 )

�1f(x�tui1 � � �ui
 )
�
:

We observe that x�tu
t
i1
� � �utis�1 2 A" for s = 1; : : : ; 
, so Dt

s ! @fvi(uis) as t! 0

and uniformly when a 2M . It remains to be seen that Bt
s, s = 1; : : : ; 
 , and Gt go

to the unit element as t! 0, uniformly as a 2 U . Denote yts = x�tu
t
i1
� � �utis�1 2
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A" and !is = lg uis ; in view of Corollary 3.8 we see that yts exp(�(y
t
s; t; wis)wis) 2

A, then we can further decompose Bt
s = F t

s N
t
s , where

F t
s = �1=t

�
fvis (x�tu

t
i1 � � �u

t
is�1uis)

�1f
�
x(�tu

t
i1 � � �u

t
is�1) exp(�(y

t
s; t; wis)wis)

��
;

N t
s = �1=t

�
f
�
x(�tu

t
i1 � � �u

t
is�1) exp(�(y

t
s; t; wis)wis)

��1
f(x�tu

t
i1 � � �u

t
is)

�
:

We have seen that �(y; �; vis)=� ! 1 as � ! 0, uniformly in y 2 A", then

�(yts; ast; vis)=ast! 1 when a varies in M . Moreover

as �(y; t; wis) = �(y; ast; vis) ; s 2 f1; : : : ; 
g

so the following estimates hold

�(F t
s) � Lp(f)

d (�tuis ; exp(�(y
t
s; t; wis)wis))

t

= Lp(f) d
�
exp(wis); exp

�
(�(yts; t; wis)=t)wis

��
= Lp(f) as d

�
exp(vis); exp ((�(ysl; astl; vis)=(astl))vis)

�

(6) � Lp(f)

�
sup
a2U

jaj

�
d
�
exp(vis); exp ((�(ysl; astl; vis)=(astl))vis)

�
;

�(N t
s) � Lp(f)

d
�
�tu

t
is
; exp(�(yts; t; wis)wis)

�
t

= Lp(f) d
�
utis ; exp

�
(�(yts; t; wis)=t)wis

��
(7) = Lp(f) d

�
utis ; exp

�
(�(yts; ast; vis)=(ast))wis

��
:

The �rst of these two estimates follows by Lemma 3.5, whereas the second is due

to the fact that the points x(�tu
t
i1
� � �utis�1) exp(�(y

t
s; t; wis)wis) and x�tu

t
i1
� � �utis

are in A, where f is Lipschitz. Both last right terms of equations (6), (7) go to

zero uniformly as a 2M . The same reasoning yields

(8) �(Gt) � Lp(f) d(uti1 � � �u
t
i
 ; ui1 � � �ui
 ) �! 0 ;

where we have used the uniform convergence of any utis for s = 1; : : : ; 
. Now we

remember that x 2 I(A") and " is arbitrary, so there exists a null set N � A such

that for any x 2 A nN the equation (3) holds uniformly with respect to a 2 U .

Step 2, (G-linearity and construction of di�erential)

One �nds easily that partial derivatives are 1-homogeneous under dilations. We

want to prove the homomorphism property of partial derivatives, that is @yf(u!) =

@yf(u)@yf(!). To get this equality we use step 1, but we need at least of an in�ni-

tesimal sequence (tl) � Rnf0g, which connects the three directions in the following
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sense : for HQ
d -a.e. y 2 A we have y�tl(u!); y�tlu; y�tl! 2 A. In fact, equation

(3) is not trivial when we have directions z 2 E such that x�tjz 2 A and tj ! 0.

To obtain the sequence (tl) it is enough to consider the three arbitrary directions

u!; u; ! 2 G and iterate Corollary 3.2 for any direction, extracting further sub-

sequnces. In this situation, with u =
Q
1

s=1 exp(bsvis) and ! =
Q
2

s=1 exp(csvis),

applying twice step 1 it follows

lim
x�tz2A; t!0

�1=t

�
f(x)�1f(x�t(u!))

�

=


1Y
s=1

�bs

�
@xf (exp(vis))

� 
2Y
s=1

�cs

�
@xf (exp(vis))

�
;

(9) @xf(u!) = lim
x�tz2A; t!0

�1=t

�
f(x)�1f(x�t(u!))

�
= @xf(u)@xf(!)

and directly from equation (3) we infer

(10) lim
x�tz2A; t!0

�1=t

�
f(x)�1f(x�t(u

�1))
�
= (@xf(u))

�1
:

Now we want to de�ne the di�erential map dyf globally on G for HQ
d -a.e. y 2 A.

Consider the countable dense subset D0 = f
Q


s=1 exp(bsvis) j (bs) 2 Q

g � G.

De�ne the countable set given by D = f!1 � � �!j j j 2 N; !i 2 D0; i = 1; : : : ; jg.

For any ! 2 D, in view of Corollaty 3.2 we get a sequence (depending on !) which

allows to apply step 1, de�ning the partial derivative of f on direction ! for any

y 2 A nN!, where H
Q
d (N!) = 0. It follows that equation (3) is not trivial for all

! 2 W and for all y 2 A n
S
!2DN!. Thus, for H

Q
d -a.e. y 2 A and ! 2 D, it is

well de�ned the partial derivative

Ly(!) = lim
t!0; A3x�t!

�1=t

�
f(y)�1f(y�t!)

�
:

By density we extend Ly to all of G, setting Ly(z) = liml!1 Ly(!l) whenever

(!l) � W and !l ! z. In view of equations (9) and (10) the sequence Ly(!l)

is convergent and the extension is well de�ned, so choosing another sequence

(zl) �W which converges to z we obtain

�
�
Ly(!l)

�1Ly(zl)
�
= �

�
Ly(!

�1
l )Ly(zl)

�
= �

�
Ly(!

�1
l zl)

�
� Lp(f)d(!�1l zl)! 0

as l ! 1, because !lzl 2 W . The latter inequality also proves that Ly(!l) is a

Cauchy sequence whenever (!l) is convergent. We have de�ned Ly : G �! P for

HQ
d -a.e. y 2 A. By de�nition of Ly and equations (9), (10) the G-linearity of Ly

follows.
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Step 3, (Di�erentiability)

In step 1 we have proved that for HQ
d -a.e. y 2 A it follows

(11)

�
�
�1=t

�
f(y)�1f(y�tz)

�
;


Y
s=1

�as@yf
vis (exp(vis))

�
�! 0 as t! 0 ;

uniformly when z =
Q
1

s=1 �asvis , a 2M , and y�tz 2 A.

We want to prove that the uniform limit (11) implies the di�erentiability.

Assume by contradiction the existence of � > 0 and (zl) � G such that zl ! 0

and

�
�
f(y)�1f(yzl); Ly(zl)

�
� �d(zl) ;

de�ne zl = �tlwl, with tl = d(zl), obtaining

(12) �
�
�1=tl

�
f(y)�1f(y�tlwl)

�
; Ly(wl)

�
� � :

Represent wl =
Q


s=1 exp(b
l
svis), (d(wl) = 1), and consider rational vectors (bljs ) 2

Q
 \M such that !lj =
Q


s=1 exp(b
lj
s vis) 2 D0 and !lj ! !l as j ! 1. The

explicit de�nition of Ly implies Ly(!lj) =
Q


s=1�bljs
(@xf

vis (exp(vis))). As we

will see in Subsection 3.1, anyG-linear map is continuous in the topologies induced

by the metrics, so that

Ly(!l) = lim
j!1

Ly(!lj) = lim
j!1


Y
s=1

�bljs

�
@xf

vis

�
exp(vis)

��
=


Y
s=1

�bls

�
@xf

vis (vis)
�
:

Replacing Ly(!l) in equation (12) we have

�

 
�1=tl

�
f(y)�1f(y�tlwl)

�
;


Y
s=1

�bls

�
@xf

vis

�
exp(vis)

��!
� � ;

so from uniform convergence of equation (11) it follows

�

 
�1=tl

�
f(y)�1f(y�tlwl)

�
;


Y
s=1

�bls

�
@xf

vis

�
exp(vis)

��!
�! 0 ;

which is a contradiction. This concludes the proof of di�erentiability. �

Remark. It should be noted that the di�erential does not depend on the explicit

construction we have done in Theorem 3.9, where were involved the generating

basis (vi) and the extensions fvi . This fact follows from the uniqueness (Proposi-

tion 2.2). The choice of the generating basis can be interpreted as a �xed sistem

of coordinates to represent the di�erential.
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In the following example we consider the Heisenberg group H3, linearly isomorphic

to R3, with horizontal vector �elds X = @x �
y
2@z, Y = @y +

x
2@z of R3, see for

instance [17]. Note that the power 3 indicates the topological dimension of the

Heisemberg group, this notation is not frequent in the literature.

Example. An application of the di�erentiability theorem is given in [3], where it

is used to prove that the Heisenberg group (H3; d) is purely Hk
d-unrecti�able for

k = 2; 3; 4, that is any countably Hk
d-recti�able set S � H3 is Hk

d-negligible. In

this case the Lipschitz maps which parametrize the set have domains in arbitrary

subsets of Rk and codomain in H3. This unrecti�ability result is not strange

because the \model space" considered in the de�nition of recti�ability is euclidean,

so it is not bi-Lipschitz equivalent to any strati�ed non abelian group.

Remark. Notice that the di�erentiability theorem can be used to get some classical

properties of suitable de�ned recti�able sets in strati�ed groups. In fact, we can

replace the subsets of an euclidean domain with that of a strati�ed subgroup, in

the classic de�nition of recti�ability. So, in the special case when the subgroup is

indeed a strati�ed group, the di�erentiability theorem gives us tangent spacesHQ
d -

a.e. on the recti�able set (ifQ is the Hausdor� dimension of the subgroup) and one

could go on as in [3], [20]. Moreover the Area formula gives a way to compute the

intrinsic measure of recti�able sets (see Example 4). This approach is followed in

[29]. But actually, all of the above considerations are not possible for any strati�ed

group. It is enough to consider the Heisenberg group H3 (which is the smallest

non abelian strati�ed group), whose subgroups of topological dimension 2 are not

strati�ed. The problem of di�erentiability of Lipschitz maps with domain in one

of these proper subgroups is actually open. However this is not the unique way to

de�ne recti�able sets on non abelian strati�ed groups, indeed in the theory of sets

of �nite perimeter in the Heisenberg group of [15] a di�erent de�nition is used.

3.1. G-linear maps. This subsection of the work essentially makes it more self

contained. We will show some elementary properties of G-linear maps which will

be useful in the next subsection and in the proof of the Area formula. In fact, a

G-linear map L : G �! P is linear when it is read between the corresponding Lie

algebras through the exponential map. This fact follows from well known results

on homomorphism of Lie groups, if one has in principle only the continuity of

the map (see [36]). Moreover, a G-linear map has the contact property of sending

horizontal vectors of the domain in horizontal vectors of the codomain. Other

properties concern standard norm estimates of composition and product of G-

linear maps.



DIFFERENTIABILITY AND AREA FORMULA ON STRATIFIED LIE GROUPS 17

Proposition 3.10. Any continuous homomorphism L : G �! P read between

the Lie algebras ln �L� exp : G �! P is linear.

Proof. The map ' = exp �L� ln is clearly continuous. Theorem 3.39 of [36]

implies that ' is C1 and applying Theorem 3.32 of [36] we �nd that d' = L :

G �! P, so the proof is complete. �

De�nition 8. We de�ne HG(G;P) as the set of all G-linear maps between G

and P. Moreover given T; L 2 HG(G;P) and t 2 R we de�ne the new functions

�tT; T �L; �T : G �! P as �tT (u) = �t(T (u)); T �L(u) = T (u)L(u); �T (u) =

(T (u))�1 for any u 2 G. We de�ne HG(G;P) as the set of all maps L : G �! P

such that exp �L� ln 2 HG(G;P).

Remark. It turns out any map of HG(G;P) induces uniquely a map of HG(G;P)

and viceversa. We will prove that any map T 2 HG(G;P) is linear, preserves

the bracket operation and L(V1) � W1. Moreover there is a natural group of

dilations, T �! ��T , � > 0, both on HG(G;P) and HG(G;P).

De�nition 9. Given T; L 2 HG(G;P) we de�ne �(T; L) = supd(u)�1 � (T (u); L(u))

as the distance between T and L. If L(u) is the unit element of P for any u 2 G

(the null map), we denote with �(T ) the distance between T and L. An analogous

de�nition holds for maps of HG(G;P).

Proposition 3.11. Any function T 2 HG(G;P) is continuous and the distance

of De�nition 9 is a �nite number, making HG(G;P) a complete metric space.

Moreover, for any u 2 G we have the estimate �(T (u)) � �(T ) d(u).

Proof. Fix a generating basis fvi j i = 1; : : : ; kg such that

E =

(

Y

s=1

exp(asvis) j (as) � U

)
� fu 2 G j d(u) � 1g ;

where U � R
 . By triangle inequality of the distance in P we get the estimate

�(T ) � (sup
a2U

jaj)


X
i=1

� (T (vis)) <1 :

The homogeneity of � implies the inequality � (T (u)) � �(T ) d(u) for every u 2 G.

Considering the map T�1�L 2 HG(G;P) we have proved that the distance between

T and L is �nite. Of course �(T ) = 0 implies that T is the null map, the triangle

inequality and symmetry property of the distance follow directly from that of the

metric � in P. The homogenteity of � on G gives the homogeneity of the distance
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in HG(G;P). Even the continuity is straightforward from the same inequality.

The completeness of HG(G;P) easily follows by the completeness of P. �

Corollary 3.12. Let L : G �! P be an injective G-linear map and L(G) = S.

Then S is a strati�ed subgroup and L�1 : S �! G is G-linear with

(13) d
�
L�1(y)

�
� d(L�1) �(y); d(L�1) <1 :

Proof. Clearly S is a subgroup of P and the contact property of L implies the

strati�cation. In fact,

[L(Vi); L(V1)] = L([Vi; V1]) = L(Vi+1) ;

so S is a strati�ed subgroup and L�1 : S �! G is G-linear. Proposition 3.11

leads us to the conclusion. �

Corollary 3.13. Consider L; T 2 HG(G;P) and S 2 HG(P;T), where (G; d),

(P; �), (T; �), are strati�ed Lie algebras. Then S�L 2 HG(G;T), L �T 2 HG(G;P)

and

(14) �(S�L) � �(S) �(L) �(L � T ) � �(L) + �(T )

Proof. It is an easy computation, using Proposition 3.11 and the triangle in-

equality. �

Corollary 3.14. Any map L 2 HG(G;P) is linear.

Proof. Proposition 3.11 implies the continuity and Proposition 3.10 gives the

linearity. �

Corollary 3.15. Any map L 2 HG(G;P) has the contact property L(V1) �W1.

Proof. This property follows straightforward from Theorem 3.9 and Proposi-

tion 3.6, because Proposition 3.11 implies the Lipschitz property for L. But one

could also observe that, given v 2 V1, the curve �t(Lv) = L(�tv) is Lipschitz in

the variable t if and only if Lv 2W1. �

Collecting all we have seen we get the following characterization.

Proposition 3.16. Any homomorphism L : G �! P is Lipschitz if and only it

is G-linear.

Proof. Proposition 3.11 implies the Lipschitz property of L if it is G-linear.

Viceversa, consider a Lipschitz homomorphism L : G �! P. From the dif-

ferentiability Theorem 3.9 one gets the a.e. di�erentiability. Then, passing to



DIFFERENTIABILITY AND AREA FORMULA ON STRATIFIED LIE GROUPS 19

the corresponding Lie algebras, taking a di�erentiability point x with di�erential

' 2 HG(G;P) and writing the De�nition 7 for y = x�tz it follows

(15) lim
t!0

� (L(�tz); '(�tz))

t
= lim

t!0
�
�
�1=t(L(�tz)); '(z)

�
= 0 :

For the horizontal direction z = v 2 V1 we have �tv = tv, the continuity of L and

Proposition 3.10 imply the linearity, so if Lv =
P

i=1 wi, with wi 2Wi, the limit

(15) gives

�1=tL(tv) = �1=t (tL(v)) =

mX
i=1

t1�iwi �! '(v) as t! 0 :

The latter limit forces wi = 0 for any i > 1, then L(v) = '(v) 2 W1. The

homomorphism property gives L(Vi) � Wi, so if z =
Pm

i=1 zi, with zi 2 Vi, we

have

L(�tz) =

mX
i=1

tiL(zi) = �t (L(z)) ;

because L(zi) 2Wi. This proves the homogeneity of L, so L 2 HG(G;P). �

3.2. Jacobians. In this subsection we give the de�nition of jacobian and we

study its properties. In particular we emphasize its relation with G-linear maps.

In fact, we get an explicit factorization formula for the jacobian, which involves

the geometry of the G-linear map we consider. Precisely in the factorization there

appears the algebraic jacobian of the map, where by algebraic jacobian we mean

the classical jacobian for linear maps between Hilbert spaces of �nite dimension.

As explained in Section 2, we have a left invariant Riemannian metric on G and

any tangent space is endowed with a scalar product. Thus, given a q dimensional

subspace ~P of G, we will denote with Hq
x ~P the q-Hausdor� measure on the

subspace ~P with the metric induced by the scalar product.

Inspired by the work [3], we �rst de�ne the jacobian of a G-linear map in a

tautological way. In other words, our de�nition of jacobian trivially satis�es the

Area formula in principle for any G-linear map.

De�nition 10 (Jacobian). Let L : G �! P be a G-linear map. The jacobian

JQ(L) of L is de�ned by

JQ(L) =
HQ
�

�
L(B1)

�
HQ
d (B1)

:
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A covering argument together with the homogeneity and the homomorphism

property of L shows that the above de�nition is independent of the set we consider,

that is we can replace the set B1 with any measurable set with �nite and positive

measure.

The next proposition shows that the jacobian is zero for singular G-linear maps,

and provides a formula for the Hausdor� dimension of their image.

Proposition 3.17. Let L : G �! P be a G-linear map, let P = L(G) and let

q0 be the topological dimension of P . Then, the Hausdor� dimension of P in the

metric � is Q0 =
Pn

j=1 j dim
�
~L(Vj)

�
and

(16) HQ0

� xP = �P H
q0
x ~P

where �P = HQ0
� xP (B�

1)=H
q0x ~P (B�

1) and
~P = lnP , (ln = exp�1).

Proof. We de�ne ~L = ln �L� exp, observing that ~P = ~L(G). The contact prop-

erty ~L(V1) � W1 implies that ~L(Vi) � Wi for any i � n (Wi = 0 for i > m).

So the set ~P = ~L(G) is a subspace, a graded subalgebra and a subgroup of

P. We denote with q0 the dimension of ~P as a vector space. Consider the re-

striction of the dilation �r on ~P , ~�r : ~P �! ~P , and �x an orthonormal basis

(zi) � ~P . Then de�ne the isometry � : Rq0 �! ~P , �(x) =
Pk

i=1 xizi, observ-

ing that Dr = ��1� ~�r��(x) =
Pk

i=1 r
dixi, where di is the degree of zi 2 Wdi

(uniquely de�ned). It follows that the jacobian of Dr is r
Q0 , being Q0 =

Pq0
i=1 di.

The homogeneity of dilations gives B�
r \ ~P = ~�r(B

�
1 \

~P ) and by the invariance

of Hausdor� measure under isometries we have

Hq0(B�
r \ ~P ) = Hq0

�
��1� ~�r(B

�
1 \

~P )
�
= Lq0

�
��1� ~�r(B

�
1 \

~P )
�
:

Thus, by the Euclidean change of variable formula it follows

Hq0(B�
r \ ~P ) = Lq0

�
Dr

�
��1(B�

1 \
~P )
��

= rQ0 Lq0
�
��1(B�

1 \
~P )
�
= rQ0Hq0(B�

1 \
~P ) :

From the latter inequality we deduce that HQ0
� x ~P is a locally �nite measure

on ~P . Making the same reasoning we �nd that HQ0
� x ~P is left invariant under

translations. In fact, �xed � 2 ~P and denoting with T� : ~P �! ~P the left

translation of the group T�(�) = ��, the map ��1�T��� has jacobian one and it

is an isometry. So, both measures HQ0
� x ~P and Hq0x ~P are locally �nite and left

invariant, hence they are proportional. Moreover, taking into account that the

exponential map is an isometry, we have HQ0
� x ~P (B�

1) = HQ0
� xP (B

�
1). To get a
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non-ambiguous equality we have overlined the ball contained in G (despite the

convention made in De�nition 4). �

Proposition 3.18. Let L : G �! P be an injective G-linear map, with P = L(G).

Then the jacobian of the map is given by the formula

(17) JQ(L) = �P �Q Ja(~L) ;

where �P = HQ
� xP (B

�
1)=H

q
x ~P (B�

1), �Q = Lq(B1)=H
Q
d (B1),

~L = ln �L� exp :

G �! P and Ja(L) denotes the algebraic jacobian of the linear map ~L.

Proof. From Proposition 3.17 and the injectivity of ~L the space ~P = ~L(G) has

topological dimension q and Hausdor� dimension Q, moreover we have

HQ
� (L(B1)) = HQ

� (
~L(B1)) = �P H

q(~L(B1)) :

The euclidean Area formula gives

Hq(~L(B1)) = Ja(~L)Lq(B1) ;

so the proof is complete. �

Remark. The coe�cient

�P �Q =
HQ
� xP (B

�
1)L

q(B1)

Hq
x ~P (B�

1)H
Q
d (B1)

represents a sort of distortion factor, which depends on both the measures HQ
d ,

HQ
� and on the subspace P we consider. Notice that when G = P, so d = � and

~P = G, we get HQ
� xP (B

�
1) = HQ

d (B1), H
q
x ~P (B�

1) = Lq(B1) and the distortion

factor reduces to 1.
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4. The Area formula

In this section we prove the Area formula in the geometry of strati�ed groups.

Proposition 4.1 (Linearization). Let f : A � G �! P be a measurable function,

� > 1, and

E = fx 2 I(A) j there exists dxf : G �! P and is injectiveg :

Then E has a measurable countable partition F , such that for any T 2 F there

is an injective G-linear map ' : G �! P with the properties

(18) ��1�('(z)) � �(dxf(z)) � � �('(z)) for any z 2 G and any x 2 T

(19) Lp
�
fjT � ('jT )

�1
�
� � and Lp

�
'jT � (fjT )

�1)
�
� �:

Proof. By linearity of G-linear maps when represented between Lie algebras

(see Corollary 3.14) we get a countable dense subset ~M of all G-linear maps from

G to P. The set ~M has the isometric correspondent M = f' j ' = exp � ~' � ln :

G �! P; ~' 2 ~Mg. Choose " > 0 such that ��1 + " < 1 < � � " and de�ne the

measurable set S('; k) =
�
y 2 E j (?) holds

	
with ' 2M and k 2 N, where

(?)

�
(��1+ ") � ('(z)) � � (dyf(z)) � (�� ") � ('(z)) 8z 2 G

�
�
f(z); f(y) dyf(y

�1z)
�
� " �('(y�1z)) 8z 2 By;1=k:

Now we prove that any y 2 E is contained in some S('; k). De�ne ~L =

ln � dyf� exp and choose a positive "1 < minjwj=1 j~Lj, where j � j is the norm

of the �xed scalar product on the Lie algebras. By the density we �nd ~' 2 ~M

such that k~L� ~'k � "1 as linear maps, so ~' has to be injective on G. The maps

~' : G �! P and ~L : G �! P are injective, so by Corollary 3.12 the maps ~'�1

and ~L�1 are G-linear, besides inequality (13) will be used in the subsequent esti-

mates. We will make our calculations for ~' because there is a correspondence of

' = exp � ~' � ln 2 M with �( ~'(ln z)) = �('(z)), for any z 2 G. By inequality (1)

we get

�(~L; ~') � C k~L� ~'k1=m � C "
1=m
1 ;

where m is the degree of nilpotency of P. The estimates (14) imply

�(~L� ~'�1) = �
�
( ~' � (� ~') � ~L)� ~'�1)

�
� 1 + �( ~'; ~L) d( ~'�1) ;

d( ~'�1) = �(~L�1� ~L � ~'�1) � d(~L�1)�(~L� ~'�1) ;

hence, choosing "1 small enough, depending on ~L;C; " and �, we have

�(~L� ~'�1) �
1

1� �( ~'; ~L)d(~L�1)
�

1

1� C"
1=m
1 d(~L�1)

< �� " ;
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�( ~'�~L�1) = �
�
(~L � (�~L) � ~')�~L�1)

�
� 1 + �(~L; ~') d(~L�1)

� 1 + C"
1=m
1 d(~L�1) < (��1 + ")�1 :

The last two equations prove the �rst equation of (?), taking into account the

equality �(~L(ln z)) = �(dyf(z)), for any z 2 G. The de�nition of di�erentiability

and the Lipschitz property of '�1 leads to the second equation of (?) for k large

depending on ' and ". From the �-compactness of G the set S('; k) has a

countable partition of measurable sets T � S('; k) with diam(T ) � 1=k, so if we

prove properties (18) and (19) for any T , we have �nished the proof. Consider

two points u; y 2 T � S('; k), by the de�nition of S('; k), the �rst equation of

(?) leads to (18). The second equation of (?) relative to y gives

(20) �(f(u); f(y)) � �(dyf(y
�1u)) + " �('(y�1u)) ;

(21) �(f(u); f(y)) � �(dyf(y
�1u))� " �('(y�1u)) ;

adding the �rst one of (?), with z = y�1u, to both equations (20) and (21) we

get (19). �

An important tool for Proposition 4.3 is the following, see for instance [9].

Lemma 4.2. Let (X; d; �) be an Ahlfors regular space of dimension Q. Then,

any ball B of radius R can be covered by at most C (R=r)Q balls of radius r, with

C depending only on the regularity constants for X.

The next proposition is an extension of the Sard Theorem in strati�ed groups

when the dimension of the target is grater than that of the domain.

Proposition 4.3. Let f : A �! P be a Lipschitz map and A � G a measu-

rable set. If the di�erential of f is non-injective at HQ
d -a.e. point of A, then

HQ
� (f(A)) = 0.

Proof. Clearly it is not restrictive to assume that A contains only the points

where f is di�erentiable and the di�erential is singular. So, let consider a point

x 2 A where dxf is not injective and let Px = dxf(G) be the corrisponding

subgroup of P. From Proposition 3.17 it follows in particular that Px is an Ahlfors

regular space of dimension Qx. The singularity of dxf implies Qx � Q�1. Denote

with Cx the constant of Lemma 4.2 applied to X = Px and de�ne the family of

sets

Ej =
�
x 2 A j Cx � j

	
\Bj with j 2 N



24 VALENTINO MAGNANI

Consider x 2 Ej and " > 0; denote with I�r (E) the open set of points with distance

from E less than r in the metric �. By di�erentiablility we obtain

(22) f(Bx;r) � f(x)I�"r
�
dxf(Br)

�
for any r � rx;". Observe that dxf(Br) � B�

cr \ Px, where c = 2Lp(f), then

using Lemma 4.2 we �nd N � Cx"
�Qx balls Bl

" � Px of radius c"r which cover

B�
cr \ Px. De�ning !Q = HQ

� (B
�
1) we see that the inclusion

I�"r(B
�
cr \ Px) �

N[
l=1

I�"r(B
l
")

implies

HQ
�;1 (I�"r(B

�
cr \ Px)) � j"�Qx!Q(c+1)

Q("r)Q � j"!Q(c+1)
QrQ = j"CQH

Q
d (Br)

then for any r � rx;" and x 2 Ej it follows

(23) HQ
�

�
f(Bx;r)

�
� j"CQH

Q
d (Br):

Now we �x j 2 N and consider the covering fBx;r j x 2 Ej and (22) holds for

some r � rx;"=5 � 1g. By a Vitali procedure we can extract a disjoint family of

balls Bxl;rl contained in Id1 (Ej) and such that Ej �
S1
l=1Bxl;5rl (see [9]). The

estimate (23) proves

HQ
�

�
f(Ej)

�
� j"CQH

Q
d

�
Id1 (Ej)

�
The free choice and the independence of " and j lead us to the conclusion. �

De�nition 11. For any function f : A � G �! P and B � A, we de�ne the

multiplicity function relative to B as N(f;B; y) = ](ff�1(y) \Bg) 2 N [ f+1g,

where ] indicates the cardinality of the set.

Remark. It is worth to observe that even in the case when the Hausdor� dimension

of G is less than the Hausdor� dimension of the target P, it can happen that there

does not exist a Lipschitz map f : G �! P with injective di�erential at some

di�erentiability point. In fact, recalling notation of Section 2, G = V1+V2+� � �+Vn
and P =W1 +W2 + � � �+Wm, if dim(Vj0) > dim(Wj0) for some j0 � minfm;ng

and Q =
Pn

i=1 i dim(Vi) �
Pm

j=1 j dim(Wj) the contact property of any G-linear

map L implies L(Vj0) �Wj0 , so L is non-injective. In this case the Area formula

is a straightforward consequence only of Proposition 4.3. This remark points out

the typical rigidity of the strati�ed geometry. In other words the conditions we

have assumed on the strati�cation prevent any Lipschitz embedding of G into P.
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Theorem 4.4 (Area formula). Given a measurable set A � G and a Lipschitz

map f : A �! P, then the following formula holds

(24)

Z
A

JQ(dxf) dH
Q
d (x) =

Z
P

N(f;A; y) dHQ
� (y) :

Proof. We start observing that (24) holds when A is negligible, because Lip-

schitz map have the Lusin property. Thus, in view of Theorem 3.9, we can

exclude from the beginning the null subset of A where the function is not dif-

ferentiable, assuming the di�erentiability at any point of A. We de�ne the set

A0 = fx 2 A j dxf is injective g and Z = A n A0. The set additivity of N(f; �; y)

gives Z
P

N(f;A0; y) dHQ
� (y) +

Z
P

N(f; Z; y) dHQ
� (y) =

Z
P

N(f;A; y) dHQ
� (y) ;

so the proof is achieved if we show the following equalities

(25)

Z
P

N(f;A0; y) dHQ
� (y) =

Z
A

JQ(dxf) dH
Q
d (x) ;

(26)

Z
P

N(f; Z; y) dHQ
� (y) = 0 :

We start from (25), applying Proposition 4.1 we get a measurable countable par-

tition F of A0 where we have an approximation of f controlled by a paramenter

� > 1. Consider an element T 2 F contained in some S('; k); the equation (18)

implies

��QHQ
� ('(T )) � HQ

�

�
(dxf�'

�1
�')(T )

�
� �QHQ

� ('(T )) for anyx 2 T

By de�nition of jacobian, taking the average on T of the above inequality we �nd

��QHQ
� ('(T )) �

Z
T

JQ(dxf) dH
Q
d (x) � �QHQ

� ('(T ))

using (19)

(27) ��2QHQ
� (f(T )) �

Z
T

JQ(dxf)dH
Q
d (x) � �2QHQ

� (f(T )):

The map f is injective on T , so adding (27) on all these sets it follows

��2Q
Z
P

N(f;A0; y)dHQ
� (y) �

Z
A0

JQ(dxf) dH
Q
d (x) � �2Q

Z
P

N(f;A0; y)dHQ
� (y):

Letting �! 1+ we have (25). The equation (26) follows directly from Proposition

4.3. �
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Corollary 4.5. Given a Lipschitz map f : A � G �! P and a summable function

u : A � G �! R we have

Z
A

u(x) JQ(dxf) dH
Q
d (x) =

Z
P

X
x2f�1(y)

u(x) HQ
� (y) :

Proof. We use the standard argument of approximating u with �nite linear

combinations of characteristic functions, see for example [10]. �

Example. We consider the Heisenberg group H5, with horizontal vector �elds

Xi = @xi �
yi

2 @z and Yi = @yi +
xi

2 @z, for i = 1; 2. We have [Xi; Yi] = Z = @z
for i = 1; 2, getting a basis of R5, which can be identi�ed with the Lie algebra of

H5. Thus, an element of H5 can be written as exp
�P2

i=1(x
iXi + yi Yi) + z Z

�
,

where exp : R5 �! H5. Then, we represent an element of H5 as (x; y; z) 2 R5,

with x = (x1; x2) and y = (y1; y2). The Baker-Campbell-Hausdor� formula gives

the explicit group operation (denoted with }) in our coordinates

(x; y; z)} (�; �; �) =

�
x+ �; y + �; z + � +

(x1�1 + x2�2 � y1�1 � y2�2)

2

�
:

The restriction of the operation to the subset G = f(x; y; z) 2 H5 j x2 = 0g gives

(x1; y; z)} (�1; �; �) =

�
x1 + �1; y + �; z + � +

(x1�1 � y1�1)

2

�
;

so G is a subgroup of H5. Moreover G is a strati�ed group. In fact, the hor-

izontal space V1 = span(X1; Y1; @y2) is left invariant under the translations of

the subgroup and [X1; Y1] = Z, so the generating condition is achieved with

V2 = span(Z).

Consider an injective Lipschitz map f : A � G �! H5 and �x S = f(A).

The set S � H5 can be seen as a hypersurface of H5 with Hausdor� dimension

5 (H5 has Hausdor� dimension 6). In view of Remark 3, there exists a tangent

hyperplane to S in H5
d-a.e. y 2 S, Ty(S) = dxf(G), with y = f(x) and the Area

formula gives

H5
d(S) =

Z
A

J5(dxf) dH
5
d(x) :
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