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Abstract. A general approach to compute the spherical measure of submanifolds
in homogeneous groups is provided. We focus our attention on the homogeneous
tangent space, that is a suitable weighted algebraic expansion of the submanifold.
This space plays a central role for the existence of blow-ups. Main applications
are area-type formulae for new classes of C1 smooth submanifolds and the equality
between spherical measure and Hausdorff measure on all horizontal submanifolds.
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1. Introduction

The notion of surface area is fundamental in several branches of mathematics,
such as geometric analysis, differential geometry and geometric measure theory. Area
formulae for rectifiable sets in Riemannian manifolds and general metric spaces are
well known [32], [2]. When the metric space is not Riemannian, as a noncommutative
homogeneous group (Section 2.1), even smooth sets need not be rectifiable in the
standard metric sense [17]. Such unrectifiability occurs when the Hausdorff dimension
is greater than the topological dimension. In Carnot-Carathéodory spaces all smooth
submanifolds “generically” have this dimensional gap [28, Section 0.6.B], so several
well known tools of geometric measure theory do not apply. The basic question of
computing an area formula for the Hausdorff measure remains a difficult task, even
for smooth submanifolds.

Hausdorff measure plays a fundamental role in geometric measure theory, as it is
well witnessed by the following Federer’s words [18]. “It took five decades, beginning
with Carathéodory’s fundamental paper on measure theory in 1914, to develop the
intuitive conception of anm dimensional surface as a mass distribution into an efficient
instrument of mathematical analysis, capable of significant applications in the calculus
of variations. The first three decades were spent learning basic facts on how subsets of
Rn behave with respect tom dimensional Hausdorff measureHm. During the next two
decades this knowledge was fused with many techniques from analysis, geometry and
algebraic topology, finally to produce new and sometimes surprising but classically
acceptable solutions to old problems.”

Federer’s comments remain extremely appealing when applied to the Hausdorff
measure in nilpotent groups, that have a more complicated geometric structure.
The wider program of studying analysis and geometry in such groups and general
Carnot-Carathéodory spaces already appeared in the seminal works by Hörmander
[29], Folland [19], Stein [53], Gromov [28], Rothschild and Stein [50], Nagel, Stein
and Wainger [48] and many others. An impressive number of papers prove the always
expanding interest on understanding geometric measure theory in such non-Euclidean
frameworks.

Among the many topics that have been studied, we mention projection theorems,
unrectifiability [4], [5], [30], [16], sets of finite h-perimeter, intrinsic regular sets, in-
trinsic differentiability, rectifiability [1], [23] [22], [24], [25], [36], [3], [39], [21], [26],
[41], [14], differentiation of measures and covering theorems, uniform measures, sin-
gular integrals [40], [34], [13], [12], [11] and minimal surfaces [6], [44], [47], [46], [10],
[49], [8], [9], [15], [31], [27], [45], [52]. These works represent only a small part of a
vaster and always growing literature.

Aim of the present work is to establish area formulas for the spherical measure of
new classes of C1 smooth submanifolds. One of the key tools is the intrinsic blow-up,
performed by translations and dilations that are compatible with the metric structure
of the group (Section 2). The blow-up is expected to exist on “metric regular points”.
Precisely, these are those points having maximum pointwise degree (2.10), that is a
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kind of “pointwise Hausdorff dimension”. The pointwise degree was introduced by
Gromov in [28, Section 0.6.B]. It was subsequently rediscovered in [43], through an
algebraic definition that also provides the density of the spherical measure.

However, pointwise degree does not possess enough information to describe the
local behavior of the submanifold. We show how a more precise local geometric
description is available through the homogeneous tangent space, in short h-tangent
space. It is not difficult to find submanifolds of the same topological dimension,
having the same pointwise degree at a fixed point, but whose corresponding h-tangent
spaces are algebraically different (Remark 2.12).

The construction of the h-tangent space is purely algebraic. It arises from a formal
“weighted homogeneous expansion” of the standard tangent space (Definition 2.7).
The h-tangent space appeared in [43] to represent the intrinsic blow-up at points of
maximum degree of a C1,1 smooth submanifold. In the same paper it was proved
that the h-tangent space is a homogeneous subgroup (Definition 2.2). Indeed, the
C1,1 regularity allows to consider a.e. commutators of vector fields tangent to the
submanifold, finally leading to the Lie group structure of the h-tangent space. This
kind of “algebraic regularity” joined with C1,1 smoothness was central to establish
the blow-up.

The present work can be seen as a development of [43] for C1 submanifolds. With
this lower regularity, extracting more information on the structure of the h-tangent
space becomes crucial. We focus our attention on algebraically regular points, i.e. those
points whose h-tangent space is a homogeneous subgroup. Somehow, this algebraic
regularity compensates the lack of C1,1 smoothness.

We may consider those submanifolds that at least at points of maximum degree
have the h-tangent space in a specific family of subgroups. In Section 4 and Section 5
we focus our attention on horizontal submanifolds and transversal submanifolds, that
satisfy this condition. For these submanifolds we can compute their spherical measure.
The same approach also allows us to improve some previous results.

Horizontal submanifolds are defined by having the h-tangent space everywhere iso-
morphic to a horizontal subgroup (Definition 4.1). The crucial relation is the inclusion

(1.1) TpΣ ⊂ HpG,

for the submanifold Σ at every point p, with horizontal fiber HpG defined in (2.4).
This condition is everywhere satisfied by all horizontal submanifolds (Remark 4.5).
To more easily detect and construct horizontal submanifolds, it is important to verify
whether the everywhere validity of (1.1) implies that Σ is a horizontal submanifold.

We notice that when (1.1) is satisfied at a single point p, this does not necessarily
imply that p is horizontal (Example 2.9). If (1.1) holds on an open subset of a C2

submanifold Σ, then the approach of the classical Frobenius theorem implies that Σ
is horizontal (Proposition 4.6). However, for C1 smooth submanifolds the question
becomes more delicate, since commutators of vector fields are not defined. Surpris-
ingly, with C1 regularity the classical proof of Frobenius theorem can be replaced by
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a differentiability result. The horizontality condition (1.1) implies a suitable differen-
tiability of the parametrization of Σ (Theorem 4.7), that is the well known as Pansu
differentiability. As a result, the area formulas (1.7) holds for all C1 smooth hori-
zontal submanifolds satisfing the condition (1.1) at every point. These submanifolds
include for instance horizontal curves and Legendrian submanifolds.

Transversal submanifolds are in some sense at the opposite side of horizontal sub-
manifolds. They can be defined through transversal points, which are those points
whose h-tangent space is a vertical subgroup (Definition 5.1). Due to this transversal-
ity, with arguments similar to those of [37, Section 4], one could see that generically
every smooth submanifold is transversal. All C1 smooth hypersurfaces are special
instances of transversal submanifolds. Every transversal submanifold is characterized
by having maximal Hausdorff dimension among all C1 smooth submanifolds with
the same topological dimension [42]. The same condition characterizes vertical sub-
groups with respect to homogeneous subgroups. Theorem 1.3 also includes the area
formula for these submanifolds (1.7). The first step to obtain these area formulas is
the blow-up of the submanifold, that is the main technical tool of this work.

Theorem 1.1 (Blow-up). Let Σ ⊂ G be a C1 smooth submanifold of topological
dimension n and degree N. Let p ∈ Σ be an algebraically regular point of maximum
degree N and let ApΣ be its homogeneous tangent space. We assume that one of the
following assumptions holds:

(1) p is a horizontal point,
(2) G has step two,
(3) Σ is a one dimensional submanifold,
(4) p is a transversal point.

For the translated submanifold

Σp = p−1Σ,

we introduce the C1 smooth homeomorphism η : Rn → Rn by

(1.2) η(t) =

(
|t1|b1
b1

sgn (t1), . . . ,
|tp|bn
bn

sgn (tn)

)
,

where each bi is defined in (3.6). If ψ denotes the mapping of Theorem 3.1 applied to
the translated submanifold Σp, we define the C1 smooth mapping

(1.3) Γ = ψ ◦ η

and we define the subset of indexes I ⊂ {1, . . . , q} such that

(1.4) A0Σp = span {el : l ∈ I} = span
{
e1, . . . , eα1 , em1+1, . . . , em1+α2 , . . . , emι−1+αι

}
,

then the following local expansion holds

(1.5) Γs(t) =

{
|ts−mds−1+µds−1

|ds

ds
sgn (ts−mds−1+µds−1

) if s ∈ I
o(|t|ds) if s /∈ I

.
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This theorem establishes the existence of the blow-up at an algebraically regular
point of a C1 smooth submanifold, under different conditions. Its proof, besides
including new cases, also simplifies the previous arguments.

The second step to establish the area formula is to turn the blow-up of Σ into
a suitable differentiation of its intrinsic measure µΣ (Definition 7.3). This measure,
first introduced in [43], takes into account the degree N of Σ and the graded structure
of the group. Finding the relationship between µΣ and the spherical measure of Σ
corresponds to establish an area formula, due to the explicit form of µΣ. We use a
suitable differentiation of the intrinsic measure, that works in metric spaces [40]. In
Section 7 we adapt the general differentiation to homogeneous groups. The point is
to find an explicit formula for the Federer density θN(µΣ, ·) that works in any metric
space and it appears in the measure theoretic area formula (7.5). The Federer density
is defined in (7.6). The metric differentiation leads us to an “upper blow-up” of the
intrinsic measure, that is our second result.

Theorem 1.2 (Upper blow-up). Let Σ ⊂ G be a C1 smooth submanifold of topological
dimension n and degree N. Let p ∈ Σ be an algebraically regular point of maximum
degree N and let ApΣ be the n-dimensional homogeneous tangent space. We assume
that one of the following assumptions holds:

(1) p is a horizontal point,
(2) G has step two,
(3) Σ is a one dimensional submanifold,
(4) p is a transversal point.

Then the Federer density satisfies the following formula

(1.6) θN(µΣ, p) = βd
(
ApΣ

)
.

The degree of Σ is the maximum integer N among all pointwise degrees of Σ. The
number βd(ApΣ) is the spherical factor (Definition 7.6) associated to the h-tangent
space ApΣ of Σ at p. Such a number amounts to the maximal area of the intersection
of ApΣ with any metric unit ball whose center moves in the metric unit ball centered
at the origin. We are then arrived at our third result.

Theorem 1.3 (Area formula). Let Σ ⊂ G be a C1 smooth n-dimensional submanifold
of degree N. Suppose that one of the following conditions hold:

(1) Σ is a horizontal submanifold,
(2) G has step 2, every point of maximum degree is algebraically regular and points

of lower degree are SN negligible,
(3) Σ is a transversal submanifold,
(4) Σ is one dimensional.

Then for any Borel set B ⊂ Σ we have

(1.7)

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p) =

∫
B

βd(ApΣ) dSN
0 (p).
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We refer the reader to Section 7 for the definitions of the projected g̃-unit tangent n-
vector τ g̃Σ,N and the “nonrenormalized” spherical measure SN

0 . Notice that this formula
also includes the case of finite dimensional Banach spaces, where G is commutative
and made by only the first layer. Indeed, taking the Euclidean distance in Rn, we get
βdE(ApΣ) ≡ ωn, that is the volume of the unit ball in Rn.

Theorem 1.3 is the union of different results of Section 8.2. Precisely, the implica-
tion from (1) to (1.7) corresponds to Theorem 8.8, where n = N = deg Σ. In particu-
lar, the area formula (1.7) holds for C1 smooth submanifolds everywhere tangent to
the horizontal subbundle, due to Theorem 4.7. In other words, we can compute the
spherical measure of all C1 smooth Legendrian submanifold in any Heisenberg group.

The other implications of Theorem 1.3 all need a negligibility result for the set of
points of lower degree. If Σ has degree N greater than its topological dimension, we
have to prove that the (generalized) characteristic set

(1.8) CΣ = {p ∈ Σ : dΣ(p) < N}

is SN negligible. The implication from assumption (2) to (1.7) follows from Theo-
rem 8.2. Let us point out that by results of [38], when Σ is C1,1 smooth in a two
step group, we have SN(SΣ) = 0 and every point of maximum degree is algebraically
regular [43]. Thus, assumptions (2) are more general than the conditions required
in [38]. The validity of (1.7) from hypothesis (3) is a consequence of Theorem 8.1,
where the HN negligibility of CΣ is a nontrivial fact [42]. The implication from (4) to
(1.7) comes from Theorem 8.3, slightly extending the results of [33].

Let us point out that (1.7) cannot be obtained through C1,1 smooth approxima-
tion of C1 submanifolds, since continuity theorems for the spherical measure require
strong topological constraints. Additional efforts may arise to preserve the degree of
the approximating submanifolds. Furthermore, possible “isolated submanifolds” of
specific degree (2.11) could also appear. Such difficulties justify why working with
C1 submanifolds is important and meets a number of difficulties.

Formula (1.7) provides an explicit relationship between the intrinsic measure and
the spherical measure. The latter is constructed by a homogeneous distance, that
may also arise from a sub-Riemannian metric on a Carnot group. This somehow
justifies the terminology “sub-Riemannian measure” for the intrinsic measure on the
left-hand side of (1.7).

Our last application provides the first explicit formula relating spherical mea-
sure and Hausdorff measure on the class of horizontal submanifolds in homogeneous
groups. Such a result requires some symmetry conditions on the distance.

Theorem 1.4 (Hausdorff and spherical measures). Let d be a multiradial distance
and let Σ ⊂ G be a horizontal submanifold. Then the following equality holds

(1.9) Hn
dxΣ = Sn

dxΣ,

where Sn
d = ω(n, n)Sn

0 , Hn
d = ω(n, n)Hn

0 and ω(n, n) is defined in (8.40).
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Multiradial distances are introduced in Definition 8.5. They include for instance
the Cygan-Korányi distance for groups of Heisenberg type and can be found in any
homogeneous group (Remark 8.6). Clearly formula (1.9) also includes the classical
one in Euclidean spaces, whose proof relies on the classical isodiametric inequality.
In general, the constant ω(n, n) is the area of the metric unit ball intersected with an
n-dimensional space contained in the first layer of G.

The results of this paper provide a strong evidence that a unified approach to the
area formula in homogeneous groups can be achieved. However, several questions are
still to be understood. Whether or not an “algebraic classification” of submanifolds is
required certainly represents a first question, which may have an independent interest.
Other issues may arise from the study of general negligibility results for points of low
degree. These questions and many others are a matter for future investigations.

2. Basic notions

2.1. Graded nilpotent Lie groups and their metric structure. A connected
and simply connected graded nilpotent Lie group can be regarded as a graded linear
space G = H1 ⊕ · · · ⊕ H ι equipped with a polynomial group operation such that
its Lie algebra Lie(G) is graded. The subspaces Hj are called the layers of G. This
grading corresponds to the following conditions

(2.1) Lie(G) = V1 ⊕ · · · ⊕ Vι, [Vi,Vj] ⊂ Vi+j
for all integers i, j ≥ 0 and Vj = {0} for all j > ι, with Vι 6= {0}. The integer ι ≥ 1
is the step of the group. The graded structure of G allows us to introduce intrinsic
dilations δr : G→ G as linear mappings such that δr(p) = rip for each p ∈ H i, r > 0
and i = 1, . . . , ι. The graded nilpotent Lie group G equipped with intrinsic dilations
is called homogeneous group, [20]. With the stronger assumption that

(2.2) [V1,Vj] = Vj+1

for each j = 1, . . . , ι and [V1,Vι] = {0}, we say that G is a stratified group. Identifying
further G with the tangent space T0G at the origin 0, we have a canonical isomorphism
between Hj and Vj, that associates to each v ∈ Hj the unique left invariant vector
field X ∈ Vj such that X(0) = v.

We may also assume that G is equipped with a Lie product that induces a Lie
algebra structure, where its group operation is given through the Baker-Campbell-
Hausdorff formula:

(2.3) xy =
ι∑

j=1

cj(x, y) = x+ y +
[x, y]

2
+

ι∑
j=3

cj(x, y)

with x, y ∈ G. Here cj denote homogeneous polynomials of degree j with respect to
the nonassociative Lie product on G. We will refer to (2.3) in short as BCH. It is
always possible to have these additional conditions, since the exponential mapping

exp : Lie(G)→ G
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of any connected and simply connected nilpotent Lie group G is a bianalytic diffeo-
morphism. In addition, the given Lie product and the Lie algebra associated to the
induced group operation are compatible, according to the following standard fact.

Proposition 2.1. Let G be a nilpotent, connected and simply connected Lie group
and consider the new group operation given by (2.3). Then the Lie algebra associated
to this Lie group structure is isomorphic to the Lie algebra of G.

We will denote by q the dimension of G, seen as a linear space.

Definition 2.2. A linear subspace S of G that satisfies δr(S) ⊂ S for every r > 0
is a homogeneous subspace of G. If in addition S is a Lie subgroup of G then we say
that S is a homogeneous subgroup of G.

Using dilations it is not difficult to check that S ⊂ G is a homogeneous subspace
if and only if we have the direct decomposition

S = S1 ⊕ · · · ⊕ Sι,
where each Sj is a subspace of Hj.

A homogeneous distance d on a graded nilpotent Lie group G is a left invariant
distance with d(δrx, δry) = r d(p, q) for all p, q ∈ G and r > 0. We define the open
and closed balls

B(p, r) =
{
q ∈ G : d(q, p) < r

}
and B(p, r) =

{
q ∈ G : d(q, p) ≤ r

}
.

The corresponding homogeneous norm is denoted by ‖x‖ = d(x, 0) for all x ∈ G.
When the graded nilpotent Lie group is equipped with the corresponding dilations,
along with a homogeneous norm, is called homogeneous group.

In the special case G is a stratified group, the distribution of subspaces given by
the so-called horizontal fibers

(2.4) HpG = {X(p) ∈ TpG : X ∈ V1}
with p ∈ G satisfies the Lie bracket generating condition. In view of Chow’s theorem,
a left invariant sub-Riemannian metric, that is restricted to horizontal fibers, leads
to the well known Carnot-Carathéodory distance. This is an important example of
homogeneous distance. With this metric the Lie group G is also called Carnot group.
We denote by HG the horizontal subbundle of G, whose fibers are the ones of (2.4).
A graded basis (e1, . . . , eq) of a homogeneous group G is a basis of vectors such that

(2.5) (emj−1+1, emj−1+2, . . . , emj
)

is a basis of Hj for each j = 1, . . . , ι, where

(2.6) mj =

j∑
i=1

hi and hj = dimHj,

we have set m0 = 0. We also set m = m1 and observe that mι = q. A graded basis
provides the associated graded coordinates x = (x1, . . . , xq) ∈ Rq, then defining the
unique element p =

∑q
j=1 xjej ∈ G.
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Remark 2.3. It is easy to realize that one can always equip a homogeneous subgroup
with graded coordinates.

Throughout this work, a graded left invariant Riemannian metric g is fixed on the
homogeneous group G. This metric automatically induces a scalar product on T0G,
therefore our identification of G with T0G yields a fixed Euclidean structure in G.
The fact that our left invariant Riemannian metric g is “graded” means that the
induced scalar product on G is graded, namely, all subspaces H i with i = 1, . . . , ι
are orthogonal to each other. With a slight abuse of notation, the Euclidean norm
on G and the norm arising from the Riemannian metric g on tangent spaces will be
denoted by the same symbol | · |.

For the sequel, it is also useful to recall that when a Riemannian metric g̃ is fixed on
G, then a scalar product on Λk(TpG) is automatically induced for every p ∈ G. The
corresponding norm on k-vectors is denoted by ‖ · ‖g̃. A g̃-unit k-vector v ∈ Λk(TpG)
satisfies ‖v‖g̃ = 1.

Remark 2.4. One can easily check that when a graded scalar product is fixed, we
can find a graded basis that is also orthonormal with respect to this scalar product.

2.2. Degrees, multivectors and projections. In this section we present a suitable
notion of degree and of projection on k-vectors. Let us consider a graded basis
(e1, . . . , eq) of G and the corresponding left invariant vector fields Xj ∈ Lie(G) such
that Xj(0) = ej for each j = 1, . . . , q. We have obtained a basis (X1, . . . , Xq) of the
Lie algebra Lie(G). If the graded basis is orthonormal with respect to g, then our
frame automatically becomes orthonormal. In the sequel, we will consider graded
orthonormal frames.

If (x1, . . . , xq) are graded coordinates of graded basis (e1, . . . , eq), we assign degree
j to each coordinate xi such that ei ∈ Hj. We analogously assign degree j to each
left invariant vector field of Vj. In different terms, for each i ∈ {1, . . . , q} we consider
the unique integer di on {1, . . . , ι} such that

mdi−1 < i ≤ mdi .

It is easy to observe that di is the degree of both the coordinate xi and the left
invariant vector field Xi.

We denote by Ik,q the family of all multi-index I = (i1, . . . , ik) ∈ {1, . . . , q}k such
that 1 ≤ i1 < · · · < ik ≤ q. For each I ∈ Ik,q, we define the k-vector

(2.7) XI = Xi1 ∧ · · · ∧Xik ∈ Λk(Lie(G)) ,

whose degree is defined as follows

d(XI) = di1 + · · ·+ dik .

Remark 2.5. The set {XI : I ∈ Ik,q} constitutes a basis of Λk(Lie(G)). We also
notice that the degree of X1 ∧ · · · ∧Xq is precisely

Q = d1 + · · ·+ dq,
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where this number coincides with the Hausdorff dimension of G with respect to an
arbitrary homogeneous distance.

The space Λk(Lie(G)) can be identified with the space of left invariant k-vector
fields. The sections ξ of the vector bundle ΛkG =

⋃
p∈G Λk(TpG) are precisely the

k-vector fields of G. The left invariance of ξ is expressed by the equality

(Λklp)∗(ξ) = ξ

for every p ∈ G, where z → lpz = pz denotes the left translation by p. On a simple
k-vector field Z1∧ · · · ∧Zk made by the vector fields Z1, . . . , Zk of G, we have defined

(Λklp)∗(Z1 ∧ · · · ∧ Zk) = (lp)∗Z1 ∧ · · · ∧ (lp)∗Zk,

where (lp)∗Zj is the push-forward of Zj by lp. In the sequel, we will automatically
identify the space of k-vectors Λk(LieG) with the space of left invariant k-vector fields.
Indeed, whenever ξ is a left invariant k-vector field, the mapping that associates ξ to
ξ(0) ∈ Λk(T0G) is an isomorphism and Λk(T0G) is isomorphic to Λk(LieG).

Definition 2.6 (Projections on k-vectors). Let (X1, . . . , Xq) be a graded orthonormal
frame, let 1 ≤ k ≤ q and 1 ≤ M ≤ Q be integers. For each left invariant k-vector
field ξ ∈ Λk(Lie(G)), written as ξ =

∑
I∈Ik,q cI XI for a suitable set of real numbers

{cI}, we define the M-projection of ξ as follows

πM(ξ) =
∑
I∈Ik,q

d(XI)=M

cI XI ∈ Λk(Lie(G)).

This defines a mapping πM : Λk(Lie(G))→ ΛM
k (Lie(G)), where we have set

ΛM
k (Lie(G)) =

∑
I∈Ik,q

cI XI : d(XI) = M, cI ∈ R

 .

For each p ∈ G, we can also introduce the fibers

ΛM
k (TpG) =

{
ξ(p) ∈ Λk(TpG) : ξ ∈ ΛM

k (Lie(G))
}
,

along with the following pointwise M -projection

(2.8) πp,M(z) = πM(ξ)(p) ∈ Λk(TpG),

where z ∈ Λk(TpG) and there exists a unique ξ ∈ Λk(Lie(G)) such that ξ(p) = z. We

clearly have πp,M : Λk(TpG) → ΛM
k (TpG). By our identification of G with T0G, we

introduce the translated projection of k-vectors at a point p to the origin:

(2.9) π0
p,M : Λk(TpG)→ ΛkG.

For each z ∈ Λk(TpG), we consider the unique element ξ ∈ Λk(Lie(G)) such that

ξ(p) = z and π0
p,M(z) = πM(ξ)(0) ∈ Λk(T0G) ' Λk(G).



TOWARDS A THEORY OF AREA IN HOMOGENEOUS GROUPS 11

2.3. The homogeneous tangent space. In this section and in the sequel Σ denotes
an n-dimensional C1 smooth submanifold embedded in a homogeneous group G. A
tangent n-vector of Σ at p ∈ Σ is

τΣ(p) = t1 ∧ · · · ∧ tn ∈ Λn(TpΣ),

where (t1, . . . , tn) is a basis of TpΣ. This vector is not uniquely defined, but any other
choice of the basis of TpΣ yields a proportional n-vector. We define the pointwise
degree dΣ(p) of Σ at p as the integer

(2.10) dΣ(p) = max {M ∈ N : πp,M (τΣ(p)) 6= 0}
and the degree of Σ is the positive integer

(2.11) d(Σ) = max{dΣ(p) : p ∈ Σ} ∈ N \ {0} .
We say that p ∈ Σ has maximum degree if dΣ(p) = d(Σ).

Definition 2.7 (Homogeneous tangent space). Let p ∈ Σ and set dΣ(p) = N. If τΣ(p)
is a tangent n-vector to Σ at p and ξp,Σ ∈ Λn(Lie(G)) is the unique left invariant n-
vector field such that ξp,Σ(p) = τΣ(p), then we define the Lie homogeneous tangent
space of Σ at p, in short the Lie h-tangent space as follows

ApΣ = {X ∈ Lie(G) : X ∧ πN(ξp,Σ) = 0} .
We say that p ∈ Σ is algebraically regular if ApΣ is a subalgebra of Lie(G). In this
case we call the corresponding subgroup

ApΣ = expApΣ
the homogeneous tangent space of Σ at p, or simply the h-tangent space of Σ at p.

Remark 2.8. It is very important that the h-tangent space can be defined at any
point of a smooth submanifold of a graded group. In many cases, it precisely coincides
with the blow-up of the submanifold, when it is performed by intrinsic dilations and
the group operation.

Any point of a C1 smooth curve of G is algebraically regular, since any one di-
mensional linear subspace of a layer Hj is automatically a homogeneous subalgebra.
Points that are not algebraically regular may appear in submanifolds of dimension
higher than one, according to the next example.

Example 2.9. Let the first Heisenberg group H be identifed with R3 through the
coordinates (x1, x2, x3) such that the group operation reads as follows

(x1, x2, x3)(x′1, x
′
2, x
′
3) = (x1 + x′1, x2 + x′2, x3 + x′3 + x1x

′
2 − x2x

′
1).

Let Σ = {(x1, x2, x3) ∈ H : x3 = x2
1 + x2

2} be a 2-dimensional submanifold. Let us
show that the origin p = (0, 0, 0) ∈ Σ is not algebraically regular. It is easy to observe
that dΣ(p) = 2. We have TpΣ = span {e1, e2}, where (e1, e2, e3) is the canonical basis
of R3, therefore τΣ(p) = e1 ∧ e2. Introducing the left invariant vector fields

X1(x) = e1 − x2e3 and X2 = e2 + x1e3,
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have may define ξ = X1 ∧X2, of degree two, such that ξ(0) = e1 ∧ e2. This implies
that πp,2(e1 ∧ e2) 6= 0 and πp,j(e1 ∧ e2) = 0 for all j ≥ 3. The Lie h-tangent space is
defined as follows

ApΣ = {X ∈ Lie(G) : X ∧X1 ∧X2 = 0} = span {X1, X2} ,

that is not a Lie subalgebra of Lie(H). The homogeneous tangent space

ApΣ = expApΣ = {(x, y, 0) ∈ H : x, y ∈ R}

is a subspace of H, but it is not a subgroup.

Remark 2.10 (Characteristic points). We observe that in the previous example
the origin p is also a characteristic point of Σ. The general definition states that a
characteristic point q of a C1 smooth hypersurface Σ ⊂ G satisfies HqG ⊂ TqΣ. This
kind of point behaves as a singular point with respect to the metric strucure of G.

The notion of algebraic regularity fits with this picture in that characteristic points
are not algebraically regular, as it can be seen arguing as in Example 2.9 and taking
into account the invariance of the pointwise degree under left translations, as shown
in Proposition 3.6. On the other hand, for all C1 smooth hypersurfaces, characteristic
points are negligible with respect to the (Q− 1)-dimensional Hausdorff measure [36].

Example 2.11. Let p be a point of a 2-dimensional Legendrian submanifold Σ, see
Section 4, that is embedded in the second Heisenberg group H2. Then dΣ(p) = 2 and
p is an algebraically regular point whose homogeneous tangent space is a commutative
horizontal subgroup of H2. Here we consider H2 as R5 equipped with the horizontal
left invariant vector fields

X1(x) = e1 − x3e5, X2 = e2 − x4e5, X3(x) = e3 + x1e5, X4 = e4 + x2e5,

spanning the first layer of the stratified Lie algebra Lie(H2).

Remark 2.12. Examples 2.9 and 2.11 show that one can find different submani-
folds of the same dimension with points of the same degree, where only one of these
points is algebraically regular. This shows somehow that algebraic regularity encodes
the “behavior” of the submanifold around the point. The pointwise degree clearly
provides less information.

3. Special coordinates around points of submanifolds

Throughout this section, the symbol Σ ⊂ G will denote a C1 smooth submanifold
embedded in a homogeneous group G, if not otherwise stated. To perform the blow-
up of Σ at a fixed point, finding special coordinates is of capital importance. They
are also useful to determine degree and homogeneous tangent space of a fixed point.

From the proof of [43, Lemma 3.1], it is not difficult to see that special coordinates
can be found around any point of a submanifold, that need not have maximum degree.
This is the content of the following theorem.
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Theorem 3.1. Let Σ ⊂ G be a C1 smooth submanifold of topological dimension n
and let 0 ∈ Σ. There exist α1, . . . , αι ∈ N with αj ≤ hj for all j = 1, . . . , ι, an
orthonormal graded basis (e1, . . . , eq) with respect to the fixed graded scalar product
on G, a bounded open neighborhood U ⊂ Rn of the origin and a C1 smooth embedding
Ψ : U → Σ with the following properties. There holds Ψ(0) = 0 ∈ G, for all y ∈ U

Ψ(y) =

q∑
j=1

ψj(y)ej, ψ(y) = (ψ1(y), . . . , ψq(y))

and the Jacobian matrix of ψ at the origin is

(3.1) Dψ(0) =



Iα1 0 · · · · · · · · · 0
0 ∗ · · · · · · · · · ∗
0 Iα2 0 · · · · · · 0
0 0 ∗ · · · · · · ∗
0 0 Iα3 0 · · · 0
0 0 0 ∗ · · · ∗
...

...
...

. . . . . .
...

0 0 · · · · · · · · · Iαι
0 0 · · · · · · · · · 0


.

The blocks containing the identity matrix Iαj have hj rows, for every j = 1, . . . , ι.
The blocks ∗ are (hj − αj)× αi matrices, for all j = 1, . . . , ι− 1 and i = j + 1, . . . , ι.
The mapping ψ can be assumed to have the special graph form given by the conditions

(3.2) ψs(y) = ys−mj−1+µj−1

for every s = mj−1 + 1, . . . ,mj−1 + αj and j = 1, . . . , ι, where we have defined

(3.3) µ0 = 0 and µj =

j∑
i=1

αi for j = 1, . . . , ι.

Remark 3.2. The numbers αj provided by Theorem 3.1 are uniquely defined and do
not depend on the choice of the special coordinates ψj. One may also observe that

(3.4) µι = n and dΣ(0) =
ι∑
i=1

i αi,

where n is the topological dimension of Σ and dΣ(0) is the degree of Σ at the origin.

Proposition 3.3. Under the assumptions of Theorem 3.1, the homogeneous tangent
space of Σ at the origin can be represented as follows

(3.5) A0Σ = span
{
e1, . . . , eα1 , em1+1, . . . , em1+α2 , . . . , emι−1+1, . . . , emι−1+αι

}
.

Proof. From the form of the Jacobian matrix (3.1) and the definition of homogeneous
tangent space, there holds

π0
0,N (∂1ψ(0) ∧ ∂2ψ(0) ∧ · · · ∧ ∂nψ(0)) = e1 ∧ · · · ∧ eα1 · · · ∧ emι−1+1 ∧ · · · ∧ emι−1+α1 .
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The unique left invariant n-vector field ξ ∈ Λn(Lie(G)) such that

ξ(0) = ∂1ψ(0) ∧ ∂2ψ(0) ∧ · · · ∧ ∂nψ(0)

then satisfies

πN(ξ) = X1 ∧ · · · ∧Xα1 ∧ · · · ∧Xmι−1+1 ∧ · · · ∧Xmι−1+α1 .

As a result, in view of Definition 2.7 our claim is established. �

The special coordinates of Theorem 3.1 allow us to introduce an “induced degree”
on Σ, as in the next definition.

Definition 3.4. In the notation of Theorem 3.1, we define

(3.6) bi = j if and only if µj−1 < i ≤ µj

for every i = 1, . . . , n. The integer bi is the induced degree of yi, with respect to
the coordinates y = (y1, . . . , yn) of Σ around the origin, in Theorem 3.1. We define
accordingly the induced dilations σr : Rn → Rn as follows

(3.7) σr(t1, . . . , tn) = (rb1t1, . . . , r
bntn) where r > 0.

The coordinates y of Theorem 3.1 allow us to act on the homogeneous tangent
space ApΣ of Σ through the induced dilations σr. This is an important fact, that will
be used in the sequel.

Corollary 3.5. Under the assumptions of Theorem 3.1, we consider the frame of left
invariant vector fields

X1, . . . , Xq

adapted to the coordinates of the theorem, namely we impose the condition Xj(0) = ej
for each j = 1, . . . , q. Then there exist unique continuous coefficients Cs

i such that

(3.8) ∂iψ =

q∑
s=1

Cs
i (ψ)Xs(ψ) for all i = 1, . . . , n.

If 0 ∈ Σ has maximum degree, then the q×n matrix-valued function C of coefficients
Cs
i satisfies the following formula

(3.9) C =



Iα1 + o(1) o(1) · · · · · · · · · o(1)
o(1) ∗ · · · · · · · · · ∗
o(1) Iα2 + o(1) o(1) · · · · · · o(1)

0 o(1) ∗ · · · · · · ∗
o(1) o(1) Iα3 + o(1) o(1) · · · o(1)

0 0 o(1) ∗ · · · ∗
...

...
...

. . . . . .
...

o(1) o(1) · · · · · · · · · Iαι + o(1)
0 0 · · · · · · · · · o(1)


.
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The symbols o(1) denote a continuous submatrix that vanishes at 0. The constantly
null submatrices in (3.9) are denoted by 0. In the case 0 ∈ Σ is not of maximum
degree these submatrices are replaced by other matrices o(1) vanishing at 0.

Proof. The form (3.9) of C follows from (3.1) joined with the assumption that 0 ∈ Σ
has maximum degree. The assumption on the maximum degree of the origin is needed
only to obtain the constantly vanishing submatrices of (3.9). �

Theorem 3.1 and Corollary 3.5 provide special coordinates around any point of
a smooth submanifold. The next proposition shows that translations preserve the
“algebraic structure of points”.

Proposition 3.6. If Σ is a C1 smooth submanifold, p ∈ Σ and we define the translated
submanifold Σp = p−1Σ, then

dΣ(p) = dΣp(0), ApΣ = A0Σp and ApΣ = A0Σp.

Proof. We consider the tangent n-vector

τΣ(p) =
∑
I∈Ik,q

cIXI(p),

where XI are defined in (2.7) and cI ∈ R and the translated one

τΣp(0) = dlp−1

∑
I∈Ik,q

cIXI(p)

 =
∑
I∈Ik,q

cIXI(0).

We have used the left invariance of the basis (X1, . . . , Xq), that defines the k-vectors
XI . This invariance of the coefficients cI joint with the definition of degree and of
homogeneous tangent space immediately lead us to our claim. �

As we have previously seen, the continuous matrix (3.9) is related to the algebraic
structure of the homogeneous tangent space A0Σ and it plays an important role in
the proof of the blow-up of Theorem 1.1. This result considers four distinct cases
that correspond to different “shapes” of the submanifold around the blow-up point.
It is then imporant to make the form of the continuous matrix (3.9) explicit in each
of the four cases.

If G is of step two, the continuous matrix C of (3.9) takes the form

(3.10) C =


Iα1 + o(1) o(1)
o(1) ∗
o(1) Iα2 + o(1)

0 o(1)

 .
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In the case Σ is curve embedded in G, namely n = 1, αN = 1, we have

(3.11) C =



...
∗

IαN
+ o(1)
o(1)

0
...
0


,

where IαN
in this case denotes the 1 × 1 matrix equal to one. The remaining two

cases, related to the special structure of the homogeneous tangent space, need to be
treated in more detail. They are indeed related to specific classes of submanifolds.

4. Horizontal points and horizontal submanifolds

Horizontal points are a specific class of algebraically regular points, associated to
a class of subgroups. The interesting fact is that they have a corresponding class of
submanifolds, where all points are horizontal.

Definition 4.1 (Horizontal subgroup). We say that H ⊂ G is a horizontal subgroup
if it is a homogeneous subgroup contained in the first layer H1 of G.

Clearly horizontal subgroups are automatically commutative.

Definition 4.2 (Horizontal points and horizontal submanifolds). A horizontal point
p of a C1 smooth submanifold Σ embedded in a homogeneous group G is an alge-
braically regular one whose homogeneous tangent space is a horizontal subgroup. The
submanifold Σ is horizontal if all of its points are horizontal.

Horizontal points determine a special form of the matrix C in Corollary 3.5, as
shown in the next proposition.

Proposition 4.3. In the assumptions of Corollary 3.5, if the origin 0 ∈ Σ is a
horizontal point, then α1 = n, αj = 0 for each j = 2, . . . , ι and the continuous matrix
(3.9) takes the following form

(4.1) C =


Iα1 + o(1)
o(1)

0
...
0

 .

Proof. From Proposition 3.3, we have A0Σ = span {e1, . . . , eα1}. This immediately
shows the form of C given in (4.1). �
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Remark 4.4. Joining the previous proposition with Remark 3.2 and taking into
account the left invariance pointed out in Proposition 3.6, one immediately observes
that all points of an n-dimensional horizontal submanifold Σ have degree n. Therefore
the degree of Σ coincides with its topological dimension.

Remark 4.5. Proposition 4.3 shows in particular that a horizontal point p of a C1

smooth submanifold Σ must satisfy the condition

(4.2) TpΣ ⊂ HpG.
Then any C1 smooth horizontal submanifold is tangent to the horizontal subbundle
HG. In different terms, Σ is an integral submanifold of the distribution made by the
fibers HpG.

The inclusion (4.2) alone does not imply that p is horizontal, see Example 2.9.

Proposition 4.6. If Σ is a C2 smooth submanifold such that TpΣ ⊂ HpG for every
p ∈ Σ, then Σ is a horizontal submanifold.

Proof. Fix p ∈ Σ and consider two arbitrary C1 smooth sections X and Y of the
tangent bundle TΣ, which are defined on a neighborhood U of p. There exist aj, bl
C1 smooth coefficients on U such that

X =
m∑
j=1

ajXj and Y =
m∑
j=1

bjXj

where (X1, . . . , Xm) is a frame of horizontal left invariant vector fields, namely a basis
of the first layer V1 ⊂ Lie(G). It follows that

[X, Y ](p) =
m∑

j,l=1

aj(p)bl(p)[Xj, Xl](p) +
m∑

j,l=1

aj(p)Xjbl(p)Xl(p)

−
m∑

l,l=1

bl(p)Xlaj(p)Xj(p) ∈ HpG ∩ TpΣ.
(4.3)

Due to (4.3), we have proved that[
m∑
j=1

aj(p)Xj,

m∑
l=1

bl(b)Xl

]
(p) =

m∑
i,j=1

aj(p)bl(p)[Xj, Xl](p) ∈ HpG.

The coefficients aj, bl are arbitrarily chosen to get any possible couple of sections of
TΣ around p. In particular, we can choose any couple of vectors in TpΣ ⊂ HpG,
consider their associated left invariant vector fields and observe that their Lie bracket
evaluated at the origin is in dlp−1(TpΣ) ⊂ H0G, namely their Lie bracket is in V1. We
have proved that ApΣ is a commutative subalgebra of V1, hence p is a regular point
and its homogeneous tangent space ApΣ = expApΣ is a horizontal subgroup. �

Theorem 4.7. If Σ is a C1 smooth submanifold such that TpΣ ⊂ HpG for every
p ∈ Σ, then Σ is a horizontal submanifold.
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Proof. Let us consider a C1 smooth local chart Ψ : Ω→ U of the C1 smooth horizontal
submanifold Σ ⊂ G. Here Ω ⊂ Rk is an open set and U is an open subset of Σ. The
fact that Σ is horizontal precisely means that

dΨ(x)(Rk) ⊂ HΨ(x)G

for a every x ∈ Ω. These conditions coincides with the validity of contact equations,
according to [39]. However, they do not ensure a priori that the subspace of V1

associated to the subspace dΨ(x)(Rk) is a commutative subalgebra. To obtain this
information we use [39, Theorem 1.1], according to which Ψ is also differentiable with
respect to dilations and the group operation. In particular, this gives the existence
of the following limit

(4.4) lim
t→0+

δ1/t

(
Ψ(x)−1Ψ(x+ tv)

)
= Lx(v)

where v ∈ Rk and Lx : Rk → G is a Lie group homomorphism. We fix now a point
p = Ψ(x0) ∈ Σ, observing that

H0 = Lx0(Rk)

is a horizontal subgroup of G. We fix a graded basis (e1, . . . , eq) of G, hence we set

Ψ(x) =

q∑
j=1

ψj(x)ej and Lx0(v) =
m∑
j=1

(Lx0)j(v)ej.

The Baker-Campbell-Hausdorff formula joined with the limit (4.4) yields

(4.5) dψj(x0)(v) = (Lx0)j(v) for all j = 1, . . . ,m.

The same formula shows that the left invariant vector fields X1, . . . , Xq have a special
polynomial form. Indeed assuming that Xj(0) = ej, with the identification of G with
T0G, being G a linear space, we have

Xj(x) = ej +

q∑
l=m+1

ajl(x)el,

where ajl : G→ R a polynomials. We have

∂Ψ

∂xk
(x) =

q∑
j=1

∂ψj
∂xk

(x)ej =
m∑
j=1

∂ψj
∂xk

(x)ej +

q∑
j=m+1

∂ψj
∂xk

(x)ej

=
m∑
j=1

∂ψj
∂xk

(x)Xj(Ψ(x))−
q∑

l=m+1

m∑
j=1

∂ψj
∂xk

(x)ajl(Ψ(x))el +

q∑
j=m+1

∂ψj
∂xk

(x)ej

=
m∑
j=1

∂ψj
∂xk

(x)Xj(Ψ(x)),
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where in the last equality we have used the fact that any ∂xkΨ(x) must be horizontal,
namely ∂xkΨ(x) ∈ HΨ(x)G for all x ∈ Ω. Applying the definition of algebraically
regular point, we consider the left invariant vector fields

Yk =
m∑
j=1

∂ψj
∂xk

(x0)Xj ∈ V1 for k = 1, . . . ,m.

Setting (E1, . . . , Ek) as the canonical basis of Rk, by (4.5) we define

vk = Lx0(Ek) =
m∑
j=1

(Lx0)j(Ek)ej =
m∑
j=1

∂ψj
∂xk

(x0)ej ∈ H0.

Being H0 a horizontal subgroup, it is in particular commutative, therefore

[vk, vs] =
m∑

j,l=1

∂ψj
∂xk

(x0)
∂ψl
∂xs

(x0)[ej, el] = 0.

This proves that

[Yk, Ys] =
m∑

j,l=1

∂ψj
∂xk

(x0)
∂ψl
∂xs

(x0)[Xj, Xl] = 0,

due to the isomorphism between the Lie product on G and Lie(G), see Proposition 2.1.
We have shown that

ApΣ = span {Y1, . . . , Yk}
is commutative, hence Ψ(x0) is an algebraically regular point and the homogeneous
tangent space ApΣ = expApΣ is a horizontal subgroup. �

Remark 4.8. As a consequence of the previous theorem, all C1 smooth Legendrian
submanifolds in the Heisenberg group are horizontal submanifolds.

5. Transversal points and transversal submanifolds

This section is devoted to a class of submanifolds containing a specific type of
algebraically regular point. We start with the following definition.

Definition 5.1 (Vertical subgroup). We say that a homogeneous subgroup N ⊂ G
is a vertical subgroup if

(5.1) N = N` ⊕H`+1 ⊕ · · · ⊕H ι

for some ` ∈ {1, . . . , ι} and a linear subspace N` ⊂ H`.

One may easily observe that any vertical subgroup is also a normal subgroup of G.

Definition 5.2 (Transversal points and transversal submanifolds). Let Σ ⊂ G be
a C1 smooth submanifold. A transversal point p of Σ is an algebraically regular
point, whose homogeneous tangent space is a vertical subgroup. The submanifold Σ
is transversal if it contains at least one transversal point.
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Transversal points can be characterized by their degree. To see this, we introduce
the following integer valued functions `·, r· : {1, . . . , q} → N. For every n = 1, . . . , q,
the inequalities

(5.2)


`n = ι if 1 ≤ n ≤ hι

ι∑
j=`n+1

hj < n ≤
ι∑

j=`n

hj if hι < n ≤ q

uniquely define the integer `n ∈ {1, . . . , ι}. Thus, we also define

(5.3) rn :=


n if 1 ≤ n ≤ hι

n−
ι∑

j=`n+1

hj if hι < n ≤ q

for every n = 1, . . . , q, where rn ≥ 1. We finally set

(5.4) Qn = `n rn +
ι∑

j=`n+1

j hj ,

where the sum is understood to be zero only in the case 1 ≤ n ≤ hι, that is `n = ι.
If N ⊂ G is an n-dimensional vertical subgroup of the form (5.1), it is not difficult

to observe that the degree at every point of N equals Qn given in (5.4) with

dimN` = rn and ` = `n.

From formula (3.4), taking into account Proposition 3.6, it is not difficult to realize
that

(5.5) Qn = max
Σ∈Sn(G)

d(Σ).

The set Sn(G) denotes the family of n-dimensional submanifolds of class C1 that are
contained in G. The integer d(Σ) is the degree of Σ introduced in (2.11).

We are now in the position to prove the following characterization.

Proposition 5.3. A point p of an n-dimensional C1 smooth submanifold Σ ⊂ G is
transversal if and only if dΣ(p) = Qn.

Proof. If p is transversal, using left translations we may assume that it coincides with
the origin. Using the coordinates of Theorem 3.1 and applying formula (3.5), the fact
that A0Σ is a transversal subgroup gives

(5.6) A0Σ = span
{
em`−1+1, . . . , em`−1+r, em`+1, em`+2, . . . , eq

}
.

We have assumed that A0Σ has the form of (5.1) and dimN` = r. From (3.4) we
immediately get

dΣ(0) = r`+
ι∑

j=`+1

j hj ,
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where it must be r = rn and ` = `n, from (5.2) and (5.3). We have proved that
dΣ(0) = Qn. It is not restrictive to assume p = 0 also for the converse implication. In
this case we only know that dΣ(0) = Qn. Again, referring to the special coordinates
of Theorem 3.1 and the corresponding formula (3.4), the previous equality implies
that

(5.7)

 αj = 0 if j < `n

αj = rn if j = `n

αj = hj if j > `n

.

Applying formula (3.5), we have shown that A0Σ must be a vertical subgroup. �

Remark 5.4. The previous proposition and formula (5.5) show that any transveral
point has maximum degree.

We finally observe that with the assumptions of Corollary 3.5, when 0 ∈ Σ is
transversal, the matrix C of (3.9) becomes

(5.8) C =



...
... · · · · · · ∗

∗ ∗ · · · · · · ∗
Irn + o(1) o(1) · · · · · · o(1)
o(1) ∗ · · · · · · ∗
o(1) Ih`n+1

+ o(1) o(1) · · · o(1)
... o(1)

. . . · · · ...
...

... · · · . . . o(1)
...

... · · · o(1) Idhι + o(1)


,

where rn and `n are defined in (5.2) and (5.3), respectively. Indeed Proposition 5.3
shows that dΣ(0) = Qn holds and this implies the validity of the conditions (5.7).

6. Proof of the blow-up theorem

The general structure of (3.9) is important for the proof of the blow-up theorem.

Proof of Theorem 1.1. Taking into account Proposition 3.6, the translated manifold
Σp has the same degree of Σ, therefore

dΣp(0) = dΣ(p) = N.

Thus, the origin 0 ∈ Σp is a point of maximum degree for Σp. By Theorem 3.1,
following its notation, there exists a special graded basis (e1, . . . , eq), along with a C1

smooth embedding Ψ : U → Σp with Ψ(0) = 0 ∈ G and

(6.1) Ψ(y) =

q∑
j=1

ψj(y)ej,

that satisfies both conditions (3.1) and (3.2). For our purposes, it is not restrictive
to assume that Ψ is a C1 diffeomorphism. We also introduce the basis (X1, . . . , Xq)
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of Lie(G) such that Xi(0) = ei for all i = 1, . . . , q and consider graded coordinates
(xi) of a point p, such that p =

∑q
i=1 xiei ∈ G. With respect to these coordinates,

the vector fields

(6.2) Xi =
n∑
l=1

ali ∂xl

satisfy the following conditions

(6.3) ali =

{
δli dl ≤ di
polynomial of homogeneous degree dl − di dl > di

.

The homogeneity here refers to intrinsic dilations of the group, namely

(6.4) ali(δrx) = rdl−diali(x)

for all r > 0 and x ∈ G, see e.g. [54]. We can further assume that there exists c1 > 0
sufficiently small such that the domain U of the above diffeomorphism Ψ is defined
on (−c1, c1)n. The continuous functions Cs

i in (3.8) can be assumed to be defined on
a common interval (−c1, c1), where Cs

i (0) is the (s, i) entry of the matrix (3.1). For
the sequel, it is convenient to recall formula (3.8) here

(6.5) (∂iψ)(y) =

q∑
s=1

Cs
i (ψ(y))Xs(ψ(y)) for all i = 1, . . . , n

for all y ∈ (−c1, c1)n. Thus, from (1.2) and (1.3) we have the partial derivatives

(6.6) ∂tiΓ(t) = |ti|bi−1 (∂iψ)(η(t)) = |ti|bi−1

q∑
l,s=1

C l
i(Γ(t)) asl (Γ(t)) ∂xs

for all i = 1, . . . , n, where we have used both (6.2) and (6.5).
The main point is to prove by induction the validity of the following statement.

For each j = 1, . . . , ι, if 0 ≤ αj < hj there holds

(6.7) Γs(t) = o(|t|j) for mj−1 + αj < s ≤ mj.

Notice that in the case αj = hj = mj − mj−1 there is nothing to prove and the
statement is automatically satisfied.

Let us first establish the case j = 1. If α1 = 0, in all of the four assumptions where
this condition applies, we have bi ≥ 2 for each i = 1, . . . , n, therefore (6.6) gives

∇Γs(0) = 0 for every s = 1, . . . , q.

If 0 < α1 < m1 and α1 < s ≤ m1, again in all four assumptions, due to (3.1), we get

∂xiΓs(0) = 0 for all i = 1, . . . , α1.

In view of (6.6), the previous equalities extend to all i = α1 + 1, . . . , n, being bi ≥ 2.
In both cases, the vanishing of Γs(0) and ∇Γs(0) for any s = α1 + 1, . . . ,m1 and in
all of our four assumptions proves our inductvie assumption (6.7) for j = 1.
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Now, we assume by induction the validity of (6.7) for all j = 1, . . . , k − 1, where
2 ≤ k ≤ ι. We wish to prove this formula for j = k, in the nontrivial case 0 ≤ αk < hk.
Let us write the general formula (6.6) for partial derivatives

(6.8) ∂tiΓs(t) = |ti|bi−1

(
Cs
i (Γ(t)) +

∑
l:dl<ds

C l
i(Γ(t)) asl (Γ(t))

)
,

where s = mk−1 + 1, . . . ,mk. We consider the following possibilities:

bi < k, bi = k and bi > k.

Let us begin with the case bi < k. If αk > 0 and consider mk−1 + αk < s ≤ mk, then
the structure of (3.9) and the fact that bi < k yield

(6.9) Cs
i ≡ 0.

If αk = 0 and the fourth assumption holds, then the special structure of C, see (5.8),
implies that αj = 0 for all j = 1, . . . , k − 1. This gives bi ≥ k + 1 for all i = 1, . . . , n.
Taking into account the form (1.2) of η and the composition (1.3) we clearly have

Γs(t) = O(|t|k+1) = o(|t|k)

for all s = 1, . . . , q and in particular (6.7) is established. If αk = 0 and the first
assumption holds, then the form (4.1) always gives

(6.10) Cs
i ≡ 0 for m1 ≤ mk−1 < s ≤ q and i = 1, . . . , n.

If αk = 0 and the second assumption holds, then ι = 2 and we only have the case
k = 2, namely α2 = 0. From the form (3.10), then

(6.11) Cs
i ≡ 0 for m1 < s ≤ q and i = 1, . . . , n.

If αk = 0 and the third assumption holds, then n = 1 and the condition bi < k gives

(6.12) b1 = N < k = ds for all s = mk−1 + 1, . . . ,mk,

so that the form (3.11) yields

(6.13) Cs
1 ≡ 0 for mk−1 < s ≤ mk.

We are interested in the case s = mk−1 + 1, . . . ,mk and i = 1, . . . , µk−1, therefore the
vanishing of Cs

i joined with (6.8) gives

∂tiΓs(t) = |ti|bi−1
∑
l:dl<k

C l
i(Γ(t)) asl (Γ(t))

= |ti|bi−1
∑

l:dl<bi<k

C l
i(Γ(t)) asl (Γ(t)) + |ti|bi−1

∑
l:dl=bi<k

C l
i(Γ(t)) asl (Γ(t))

+ |ti|bi−1
∑

l:bi<dl<k

C l
i(Γ(t)) asl (Γ(t)) = T1 + T2 + T3.

(6.14)
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We have denoted by T1, T2 and T3 the first, second and third addend, respectively.
To study T1, we use the graph form of ψ given by (3.2). In fact, whenever αj > 0 we
have the identity

(6.15) bs−mj−1+µj−1
= j

for mj−1 < s ≤ mj−1 + αj and j = 1, . . . , ι, hence (1.2) and (1.3) yield

(6.16) Γs(t) =
|ts−mj−1+µj−1

|j

j
sgn (ts−mj−1+µj−1

) =
|ts−mj−1+µj−1

|ds
ds

sgn (ts−mj−1+µj−1
).

Each polynomial asl in the sum of T1 has homogeneous degree k − dl, hence it does
not depend on the variables xi, with i > mk−1. As a consequence of (6.16), for all
s = mk−1 + 1, . . . ,mk, the homogeneity (6.4) of asl , when joined with our inductive
assumption also implies that

asl (Γ(t)) = asl (Γ1(t), . . . ,Γmk−1
(t)) = O(|t|k−dl).

This immediately shows that T1(t) = O(|t|k) = o(|t|k−1). We now consider the second
addend

T2(t) = |ti|bi−1
∑

l:dl=bi<k

C l
i(Γ(t)) asl (Γ(t))

and set j = bi. The conditions dl = bi < k give

(6.17) µj−1 < i ≤ µj and mj−1 < l ≤ mj.

We consider the general case where 0 ≤ αk < hk. Since bi = j we have αj > 0,
therefore taking into account (3.9), for mj−1 < l ≤ mj−1 + αj it follows that

(6.18) C l
i = δ

l−mj−1

i−µj−1
+ oli(1)

where oli(1) vanish at the origin. When mj−1 + αj < l ≤ mj, we have

C l
i = oli(1)

and oli(1) vanish at zero. In view of (6.18), for i and l in the ranges (6.17), we set

mj−1 < lij := i− µj−1 + mj−1 ≤ mj−1 + αj,

therefore we obtain the expression

(6.19) T2(t) = |ti|bi−1

( ∑
l:dl=bi<k
l 6=lij

oli(1) asl (Γ(t)) + aslij(Γ(t))

)
.

Arguing as before, formulae (6.16) and the inductive assumption imply that

|ti|bi−1asl (Γ(t)) = |ti|j−1O(|t|k−dl) = |ti|j−1O(|t|k−j) = O(|t|k−1).

It follows that

(6.20) T2(t) = o(|t|k−1) + |ti|bi−1aslij(Γ(t)).
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The behavior of the second addend in the previous equality requires a special study,
that precisely relies on the group structure that is assumed on A0Σp. Taking into
account the definition of the set of indexes I defined through (1.4), in view of [43,
Lemma 2.5], if the group operation is given by the polynomial formula

xy = x+ y +Q(x, y)

with respect to our fixed graded coordinates, then the polynomial Qs, with s /∈ I, is
given by the formula

Qs(x, y) =
∑

v:dv<k,v/∈I

xvRsv(x, y) + yvUsv(x, y).

Both polynomials Rsv and Usv have homogeneous of degree k − dv. Since we have
mj−1 < lij ≤ mj−1 + αj, the condition lij ∈ I gives

∂Qs

∂ylij
(x, 0) = aslij(x) =

∑
v:dv≤k−j,v /∈I

xv
∂Rsv

∂ylij
(x, 0),

where we have used the relationship between left invariant vector fields and group
operation, along with the fact that v 6= lij for all v /∈ I. As we have already observed,
aslij only depends on (x1, . . . , xmk−1

) and by our inductive assumption (6.7)

Γv(t) = ov(|t|dv) whenever dv < k and v /∈ I.
Precisely, for all of these v′s, we have ov(|t|dv)/|t|dv → 0 as t→ 0 and there holds

aslij(Γ(t)) =
∑

v:dv≤k−j,v /∈I

ov(|t|dv)
∂Rsv

∂ylij
(Γ(t), 0),

Again, the inductive assumption gives ∂ylijRsv(Γ(t), 0) = O(|t|k−dv−j), that is

ov(|t|dv)
∂Rsv

∂ylij
(Γ(t), 0) = o(|t|k−j),

therefore aslij(Γ(t)) = o(|t|k−j). We have finally proved that

T2(t) = o(|t|k−1).

The treatment of the addend

T3 = |ti|bi−1
∑

l:bi<dl<k

C l
i(Γ(t)) asl (Γ(t))

in (6.14) strongly relies on our special four assumptions. Without these assumptions,
it is not clear whether for instance the factors C l

i(Γ(t)) for bi < dl < k behave like
o(|t|dl−bi), since C l

i are only continuous.
If the first assumption holds, then the special form (4.1) of C immediately proves

that there cannot exist nonvanishing coefficients C l
i whenever bi < dl, hence T3 ≡ 0.

If the second assumption holds, then 1 ≤ bi < dl < k implies k ≥ 3, that conflicts
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with the 2-step assumption on G, therefore T3 ≡ 0. If the third assumption holds,
then n = 1 = i and (6.12) gives

b1 = N < dl

that joined with the special form (3.11) gives C l
1 ≡ 0, therefore T3 ≡ 0 also in this

case. In the fourth assumption, where p is a transveral point, we consider the integer
`n defined in (5.2). By definition (5.3), according to (5.8), we have

α`n = rn ≥ 1 and bi ≥ `n,

therefore k > `n. This implies that αk = hk, hence the inductive assumption is
automatically satisfied. Collecting all of the previous cases, we conclude that in any
of the four assumptions for bi < k, we have that either the inductive assumption (6.7)
is satisfied or we have

∂tiΓs(t) = o(|t|k−1).

In the case bi = k, then αk > 0 and the condition mk−1 + αk < s ≤ mk joined with
the form of (3.9) yields

Cs
i (Γ(t)) = o(1),

therefore (6.8) gives

∂tiΓs(t) = |ti|k−1

(
o(1) +

∑
l:dl<k

C l
i(Γ(t)) asl (Γ(t))

)
.

In the previous sum the condition ds = k > dl yields asl (0) = 0, therefore also in the
case bi = k we have

∂tiΓs(t) = o(|t|k−1).

When bi > k, there obviously holds

∂tiΓs(t) = |ti|bi−1

(
Cs
i (Γ(t)) +

∑
l:dl<ds

C l
i(Γ(t)) asl (Γ(t))

)
= |ti|bi−1O(1) = o(|t|k−1).

Joining all the previous results, it follows that ∇Γs = o(|t|k−1), hence

Γs(t) = o(|t|k),

proving the induction step. This proves our claim (1.5). �

7. Measure theoretic area formula in homogeneous groups

We introduce some preliminary results and notions that will be needed in the
next sections. The symbol G always denotes a homogeneous group equipped with a
homogeneous distance d.
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7.1. Differentiation of measures in homogeneous groups. We denote by Fb the
family of closed balls in G having positive radius. The properties of the homogeneous
distance give diam(B(x, r)) = 2r for all x ∈ G and r > 0. Indeed, diam(B(x, r)) ≤ 2r
is trivial and the opposite inequality follows considering a horizontal segment passing
through x. As a consequence, if µ : P(X) → [0,+∞] is a measure that is finite on
bounded sets, then one easily realizes that

(7.1) Sµ,ζb,α = Fb \ {S ∈ Fb : ζb,α(S) = µ(S) = 0 or ζb,α(S) = µ(S) = +∞} = Fb,
where we have defined

ζb,α : Fb → [0,+∞), ζb,α(S) =
diam(S)α

2α
.

Definition 7.1 (Carathéodory construction). Let F ⊂ P(G) denote a nonempty
family of closed subsets and fix α > 0. If δ > 0 and E ⊂ G, we define

(7.2) φαδ (E) = inf

{ ∞∑
j=0

diam(Bj)
α

2α
: E ⊂

⋃
j∈N

Bj, diam(Bj) ≤ δ, Bj ∈ F
}
,

where the diameter diamBj is computed with respect to the distance d on G. If F
coincides with the family of closed balls Fb, then we set

(7.3) Sα0 (E) = sup
δ>0

φαδ (E)

to be the α-dimensional spherical measure of E. In the case F is the family of all
closed sets and k ∈ {1, 2, . . . , q− 1}, we define the Hausdorff measure

(7.4) Hk
|·| = Lk({x ∈ G : |x| ≤ 1}) sup

δ>0
φkδ (E)

where Lk denotes the Lebesgue measure and | · | is the norm arising from the fixed
graded scalar product on G.

Observing that Fb covers any subset finely, according to the terminology in [17,
2.8.1] and that condition (7.1) holds, we can apply Theorem 11 in [40] to the metric
space (G, d), establishing the following result.

Theorem 7.2. Let α > 0 and let µ be a Borel regular measure over G such that
there exists a countable open covering of G, whose elements have µ finite measure. If
B ⊂ A ⊂ G are Borel sets, then θα(µ, ·) is Borel on A. In addition, if Sα0 (A) < +∞
and µxA is absolutely continuous with respect to Sα0xA, then we have

(7.5) µ(B) =

∫
B

θα(µ, x) dSα0 (x) .

The spherical Federer density θα(µ, ·) in (7.5) was introduced in [40]. We will use
its explicit representation

(7.6) θα(µ, x) = inf
ε>0

sup

{
2αµ(B)

diam(B)α
: x ∈ B ∈ Fb, diamB < ε

}
.
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7.2. Intrinsic measure and spherical factor. The next definition introduces the
intrinsic measure associated to a submanifold in a homogeneous group, see [43]. For
hypersurfaces in Carnot groups this measure is precisely the h-perimeter measure
with respect to the sub-Riemannian structure of the group.

Definition 7.3 (Intrinsic measure). Let Σ ⊂ G be an n-dimensional submanifold
of class C1 and degree N. We consider our fixed graded left invariant Riemannian
metric g on G. To present a coordinate free version of this measure, we fix an auxiliary
Riemannian metric g̃ on G. Let τΣ be a g̃-unit tangent n-vector field on Σ, namely,

‖τΣ(p)‖g̃ = 1 for each p ∈ Σ.

We consider its corresponding N-tangent n-vector field, defined as follows

(7.7) τ g̃Σ,N(p) := πp,N(τΣ(p)) for each p ∈ Σ.

Then we define the intrinsic measure of Σ in G as follows

(7.8) µΣ = ‖τ g̃Σ,N‖g σg̃,
where σg̃ is the n-dimensional Riemannian measure induced by g̃ on Σ. This can be
also seen as the n-dimensional Hausdorff measure with respect to the Riemannian
distance induced by g̃ and restricted to Σ.

Remark 7.4. By definition of pointwise degree (2.10), we realize that under the
assumptions of Definition 7.3 a point p ∈ Σ has maximum degree N if and only if

τ g̃Σ,N(p) = πp,N(τΣ(p)) 6= 0,

as it follows from the definition of pointwise N-projection, see (2.8).

Proposition 7.5. If H ⊂ Rn is an open subset and Φ : H → G is a C1 smooth local
chart for an n-dimensional C1 smooth submanifold Σ of degree N, then

(7.9) µΣ

(
Φ(H)

)
=

∫
H

‖πΦ(y),N

(
∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)

)
‖g dy.

Proof. By our local chart, using (7.7) we can write

τ g̃Σ,N(Φ(y)) :=
πΦ(y),N

(
∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)

)
‖∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)‖g̃

,

therefore the integral ∫
Φ(H)

‖τ g̃Σ,N(p)‖g dσg̃(p),

after the standard change of variables p = Φ(y), becomes equal to∫
H

∥∥∥∥∥πΦ(y),N

(
∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)

)
‖∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)‖g̃

∥∥∥∥∥
g

‖∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)‖g̃ dy,

therefore concluding the proof of (7.9). �
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The relationship between intrinsic meausure and spherical measure requires some
geometric constants that can be associated to the homogeneous distance that defines
the spherical measure. These constants may change, depending on the sections of the
metric unit ball.

Definition 7.6 (Spherical factor). Let S ⊂ G a linear subspace and consider a fixed
homogeneous distance d on G. If | · | denotes our fixed graded scalar product on G,
then the spherical factor of d, with respect to S, is the number

βd(S) = max
d(u,0)≤1

Hn
|·|
(
B(u, 1) ∩ S

)
,

where B(u, 1) = {v ∈ G : d(v, u) ≤ 1}.

8. The upper blow-up and some applications

This section is divided into two parts. We give a proof of the upper blow-up theorem
and we establish a number of applications, that are summerized in Theorem 1.3.

8.1. Proof of the upper blow-up theorem. The upper blow-up theorem is the
second main result of this paper.

Proof of Theorem 1.2. We consider the special coordinates obtained in Theorem 3.1
for the translated manifold Σp = p−1Σ. This assumption is possible by Proposi-
tion 3.6, since algebraic regularity along with the first and the fourth assumptions are
automatically transferred to the origin of Σp. We follow notations of Theorem 1.1.
In some parts of the proof the identification of G with Rn with respect to the above
mentioned coordinates will be understood. For instance, the algebraic tangent space
A0Σp defined in (3.5) equals ApΣ by Proposition 3.6 and it can be also identified with
Rn.

Let Ψ be defined as in the proof of Theorem 1.1 and define the translated mapping
Φ : (−c1, c1)p → Σ as follows

(8.1) Φ(y) = pΨ(y).

We are going to use the local expansion (1.5) in order to compute the Federer’s
density, that is defined as follows

(8.2) θN(µΣ, p) = inf
r>0

sup
z∈B(p,r̃)
0<r̃<r

µΣ(B(z, r̃))

r̃N
.

Taking r > 0 sufficiently small and z ∈ B(p, r̃), in view of (7.9), we have

(8.3)
µΣ(B(z, r̃))

r̃N
= r̃−N

∫
Φ−1(B(z,r̃))

‖πΦ(y),N

(
∂y1Φ(y) ∧ · · · ∧ ∂ynΦ(y)

)
‖g dy.

Taking into account the relations

N =
n∑
i=1

bi =
ι∑

j=1

j αj,
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and the “induced dilations” σr introduced in (3.7), the change of variable y = σr(t)
implies that

(8.4)
µΣ(B(z, r̃))

r̃N
=

∫
σ1/r̃(Φ

−1(B(z,r̃)))

‖πΦ(y),N

(
∂y1Φ(σr̃y) ∧ · · · ∧ ∂ynΦ(σr̃y)

)
‖g dy .

Our first claim is the uniform boundedness of the following rescaled sets

σ1/r̃

(
Φ−1(B(z, r̃))

)
= σ1/r̃

(
Ψ−1(B(p−1z, r̃))

)
as r̃ < r and d(p, z) ≤ r̃ with r̃ sufficiently small. There holds

(8.5) σ1/r̃

(
Φ−1(B(z, r̃))

)
=
{
y ∈ Rn : δ1/r̃(z

−1p)δ1/r̃(Ψ(σr̃y)) ∈ B(0, 1)
}
.

We first observe that

ζ(τ) =

(
sgn (τ1) b1

√
b1|τ1|, . . . , sgn (τp)

bp

√
bp|τp|

)
is the inverse of η, hence in view of (1.3) and (6.1) we have

(8.6) ψ(σr̃y) = Γ(ζ(σr̃y)) = Γ(r̃ ζ(y)) .

In view of (6.15), we can write (1.5) as follows

(8.7) Γs(t) =

{
ηs−mds−1+µds−1

(t) if s ∈ I
o(|t|ds) if s /∈ I ,

therefore whenever s ∈ I we get

Γs(ζ(σr̃y)) = (η ◦ ζ)s−mds−1+µds−1
(σr̃y)

= (σr̃y)s−mds−1+µds−1

= (r̃)bs−mds−1+µds−1ys−mds−1+µds−1

= (r̃)dsys−mds−1+µds−1
.

(8.8)

As a result, taking into account that d
(
δ1/r̃(z

−1p), 0
)
≤ 1, an element y ∈ Rn of (8.5)

satisfies the condition

y1e1 + · · ·+ yα1eα1 +
Γα1+1(rζ(y))

r̃
eα1+1 + · · ·+ Γm1(r̃ζ(y))

r̃
em1

+ yα1+1em1+1 + · · ·+ yµ2em1+α2 +
Γm1+α2+1(r̃ζ(y))

(r̃)2
em1+α2+1 + · · ·+ Γm2(r̃ζ(y))

(r̃)2
em2

...
...

...
...

...
...

...

+ yµι−1+1emι−1+1 + · · ·+ ynemι−1+αι +
Γmι−1+αι−1+1(r̃ζ(y))

(r̃)ι
emι−1+αι+1 + · · ·

· · ·+ Γmι(r̃ζ(y))

(r̃)ι
emι ∈ B(0, 2).
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Since B(0, 2) is also bounded with respect to the fixed Euclidean norm on G and
(e1, . . . , eq) is an orthonormal basis the previous expression implies the existence of a
bounded set V ⊂ ApΣ such that

(8.9) σ1/r̃

(
Φ−1(B(z, r̃))

)
⊂ V

for r > 0 sufficiently small, 0 < r̃ < r and d(z, p) ≤ r̃. We notice that the previous
sums can be also written as follows

n∑
l=1

ylembl−1+l−µbl−1
+
∑
l /∈I

Γl(r̃ζ(y))

(r̃)dl
el ∈ B(0, 2).

The uniform boundedness (8.9) joined with (8.4) implies that θN(µ̃xΣ, p) < +∞,
hence there exist a sequence {rk} ⊂ (0,+∞) converging to zero and a sequence of
elements zk ∈ B(p, rk) such that

θN(µΣ, p) = lim
k→∞

∫
σ1/rk (Φ−1(B(zk,rk)))

‖πΦ(y),N

(
∂y1Φ(σrky) ∧ · · · ∧ ∂ynΦ(σrky)

)
‖g dy.

Possibly extracting a subsequence, there exists u0 ∈ B(0, 1) such that

(8.10) δ1/rk(z
−1
k p)→ u−1

0 ∈ B(0, 1).

We define the following subsets of the algebraic tangent space

Fk = σ1/rk

(
Φ−1(B(zk, rk))

)
and F (u0) = B(u0, 1) ∩ ApΣ.

Our second claim is the validity of the following limit

(8.11) lim
k→∞

1Fk(w) = 0

for each w ∈ ApΣ \ F (u0). Arguing by contradiction, if there exists a sequence of
positive integers jk such that

1Fjk (w) = 1

for every k ∈ N, then (8.5) gives

(8.12)
n∑
l=1

wlembl−1+l−µbl−1
+
∑
l /∈I

Γl(rjkζ(w))

(rjk)
dl

el ∈ δ1/rjk
(p−1zjk)B(0, 1),

since the previous element precisely coincides with δ1/rjk
(Ψ(σrjkw)). The estimate

(8.7) joined with the limit (8.10), as k →∞ give

n∑
l=1

wlembl−1+l−µbl−1
∈ B(u0, 1) ∩ ApΣ = F (u0),

that is a contradiction. We now define

(8.13) Ik =

∫
Fk

‖πΦ(y),N

(
∂y1Φ(σrky) ∧ · · · ∧ ∂ynΦ(σrky)

)
‖g dy,
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along with

J1,k =

∫
Fk∩F (u0)

‖πΦ(y),N

(
∂y1Φ(σrky) ∧ · · · ∧ ∂ynΦ(σrky)

)
‖g dy,

J2,k =

∫
Fk\F (u0)

‖πΦ(y),N

(
∂y1Φ(σrky) ∧ · · · ∧ ∂ynΦ(σrky)

)
‖g dy,

(8.14)

so that Ik = J1,k + J2,k for each k ≥ 0. Taking the limit of the following inequality

(8.15) J1,k ≤
∫
F (u0)

‖πΦ(y),N

(
∂y1Φ(σrky) ∧ · · · ∧ ∂ynΦ(σrky)

)
‖g dy,

we obtain

(8.16) lim sup
k→∞

J1,k ≤ Hn
|·|(F (u0)) ‖πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
‖g.

Joining (8.14) with (8.9), we also get

(8.17) J2,k ≤
∫
V \F (u0)

1Fk(y)‖πΦ(y),N

(
∂y1Φ(σrky) ∧ · · · ∧ ∂ynΦ(σrky)

)
‖g dy.

The boundedness of V and (8.11) joined with the classical Lebesgue’s convergence
theorem imply that

(8.18) lim
k→∞

J2,k = 0.

In view of (8.16) and (8.18), we have proved that

(8.19) θN(µΣ, p) ≤ Hn
|·|
(
B(u0, 1) ∩ ApΣ

)
‖πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
‖g,

where u0 ∈ B(0, 1), therefore the definition of spherical factor yields

(8.20) θN(µΣ, p) ≤ βd(ApΣ) ‖πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
‖g.

Our third claim is the validity of the equality in (8.20). Let v0 ∈ B(0, 1) be such that

(8.21) βd(ApΣ) = Hn
|·|
(
B(v0, 1) ∩ ApΣ

)
,

define vr̃ = pδr̃v0 ∈ B(p, r̃) for r̃ > 0 and fix λ > 1. We observe that

sup
0<r̃<r

µΣ

(
B(vr̃, λr̃)

)
(λr̃)N

≤ sup
u∈B(p,r′)
0<r′<λr

µΣ

(
B(u, r′)

)
(r′)N

for each r > 0 sufficiently small. From the definition of spherical Federer density
(8.2), it follows that

(8.22) lim sup
r̃→0+

µΣ

(
B(vr̃, λr̃)

)
(λr̃)N

≤ θN(µΣ, p) .
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We wish to write a formula for µΣ

(
B(vr̃, λr̃)

)
, therefore we consider (8.4) and apply

(8.5), replacing r̃ with λr̃ and z with vr̃. It follows that the set

(8.23) Er̃ = δ1/(λr̃)

(
Φ−1(B(vr̃, λr̃))

)
=
{
y ∈ Rn : δ1/r̃(Ψ(σλr̃y)) ∈ B(v0, λ)

}
gives the equality

(8.24)
µΣ

(
B(vr̃, λr̃)

)
(λr̃)N

=

∫
Er̃

‖πΦ(y),N

(
∂y1Φ(σλr̃y) ∧ · · · ∧ ∂ynΦ(σλr̃y)

)
‖g dy .

Setting Ẽr̃ = σλ(Er̃) and performing the change of variables y = σ1/λỹ, we get

(8.25)
µΣ

(
B(vr̃, λr̃)

)
(λr̃)N

=
1

λN

∫
Ẽr̃

‖πΦ(y),N

(
∂y1Φ(σr̃ỹ) ∧ · · · ∧ ∂ynΦ(σr̃ỹ)

)
‖g dỹ ,

where we have defined

Ẽr̃ =
{
y ∈ Rn : δ1/r̃(Ψ(σr̃y)) ∈ B(v0, λ)

}
.

Now, we fix 1 < λ̃ < λ, the subset

(8.26) Hr̃ =
{
y ∈ Rn : δ1/r̃(Ψ(σr̃y)) ∈ B(v0, λ̃)

}
and observe that (8.6), (8.7) and (8.8), in view of Ψ(y) =

∑q
j=1 ψj(y)ej, show that

(8.27) δ1/r̃(Ψ(σr̃y)) =
n∑
l=1

ylembl−1+l−µbl−1
+
∑
l /∈I

Γl(r̃ζ(y))

(r̃)dl
el

for each y ∈ Rn converges to

(8.28)
n∑
l=1

ylembl−1+l−µbl−1
∈ ApΣ as r̃ → 0+.

As a result, for any y ∈ B(v0, λ̃) ∩ ApΣ there holds

lim
r̃→0+

1Hr̃∩B(v0,λ̃)(y) = 1.

Thus, taking into account that (8.22), (8.25), (8.26), the following limit superior

lim sup
r̃→0+

1

λN

∫
B(v0,λ̃)∩ApΣ

1Hr̃∩B(v0,λ̃)(ỹ)‖πΦ(y),N

(
∂y1Φ(σr̃ỹ) ∧ · · · ∧ ∂ynΦ(σr̃ỹ)

)
‖g dỹ

is not greater than θN(µΣ, p). Then Lebesgue’s convergence theorem gives

1

λN
Hn
|·|(B(v0, λ̃) ∩ ApΣ) ‖πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
‖g ≤ θN(µΣ, p).

Letting first λ̃→ 1+ and then λ→ 1+, due to (8.21), we get

(8.29) βd(ApΣ) ‖πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
‖g ≤ θN(µΣ, p).
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Joining this inequality with (8.20) we get a formula for the Federer density

(8.30) θN(µΣ, p) = βd(ApΣ) ‖πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
‖g.

Finally, by (3.1) and (8.1) we observe that

πΦ(y),N

(
∂y1Φ(0) ∧ · · · ∧ ∂ynΦ(0)

)
=X1 ∧ · · · ∧Xα1 ∧Xm1+1 ∧ · · · ∧Xm1+α2 ∧ · · ·
· · · ∧Xmι−1+1 ∧ · · · ∧Xmι−1+αι ,

which has unit norm with respect to ‖ · ‖g. This completes our proof. �

8.2. Area formulae for the spherical measure. In this section we show how the
upper blow-up theorem automatically leads to general area formulae for the spherical
measure. By a special symmetry condition on the distance, we establish the relation-
ship between Hausdorff measure and spherical measure on horizontal submanifolds.

Throughout this section G denotes an arbitrary homogeneous group and Σ ⊂ G is
an n-dimensional C1 smooth submanifold of degree N. Its characteristic set and its
subset of maximum degree are defined by

(8.31) CΣ = {p ∈ Σ : dΣ(p) < N} and MΣ = {p ∈ Σ : dΣ(p) = N} ,

respectively. We also fix the intrinsic measure µΣ, along with the Riemannian metrics
g̃ and g, as in Definition 7.3. We use the spherical measure SN

0 of (7.3), that does not
contain any geometric constant.

Theorem 8.1 (Transversal submanifolds). If Σ ⊂ G is an n-dimensional transversal
submanifold of degree N, then for every Borel set B ⊂ Σ we have

(8.32) µΣ(B) =

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p) =

∫
B

βd(ApΣ) dSN
0 (p),

where g̃ is any fixed Riemannian metric.

Proof. From the definitions of (8.31), by Theorem 1.2 of [42] we get SN
0 (CΣ) = 0. The

definition of intrinsic measure (7.8) joined with Remark 7.4 yield µΣ(CΣ) = 0. This
allows us to restrict our attention to points of MΣ. For every Borel set E ⊂ MΣ,
each point p ∈ E has maxium degree, therefore Proposition 5.3 implies that it is a
transversal point. Then we are in the position to apply part (4) of Theorem 1.2 to
each p ∈ E, getting formula (1.6). The everywhere finiteness of the spherical Federer
density θN(µΣ, ·) shows that µΣxE is absolutely continuous with respect SN

0 xE and
the measure theoretic area formula (7.5) applied to µΣ yields

µΣ(E) =

∫
E

βd(ApΣ) dSN
0 (p).

This formula joined with the negligibility of CΣ immediately leads us to (8.32). �

The next results are the first important consequences of the upper blow-up theorem.
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Theorem 8.2 (Submanifolds in two step groups). If G has step two, SN
0 (CΣ) = 0

and p ∈ Σ is algebraically regular for all p ∈ MΣ, then for any Borel set B ⊂ Σ we
have

(8.33) µΣ(B) =

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p) =

∫
B

βd(ApΣ) dSN
0 (p),

where g̃ is any fixed Riemannian metric.

Proof. Taking into account definitions (8.31), by our assumptions joined with (7.8)
and Remark 7.4, we get

(8.34) µΣ(CΣ) = SN
0 (CΣ) = 0.

If E ⊂ MΣ is any Borel set, we may apply part (2) of Theorem 1.2 to each p ∈ E,
since all of these points are algebraically regular. This allows us to establish (1.6).
In particular, the spherical Federer density θN(µΣ, ·) is everywhere finite on E, hence
µΣxE is absolutely continuous with respect SN

0 xE. We are in the conditions to
apply the measure theoretic area formula (7.5), obtaining that

µΣ(E) =

∫
E

βd(ApΣ) dSN
0 (p) ,

therefore (8.33) holds. The previous equality joined with (8.34) gives (8.33). �

Theorem 8.3 (Curves in homogeneous groups). Let Σ ⊂ G be a C1 smooth embedded
curve of degree N, let g̃ be a fixed Riemannian metric and consider a Borel set B ⊂ Σ.
The following formula holds

(8.35)

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p) =

∫
B

βd(ApΣ) dSN
0 (p).

Proof. Taking into account the definitions (8.31), Theorem 1.1 of [33] gives

(8.36) SN
0 (CΣ) = 0.

From the definition of intrinsic measure and taking into account Remark 7.4, one
also notices that µΣ(CΣ) = 0. At any point p of MΣ, the N-projection πp,N(τΣ(p))
is obviously a vector, hence the homogeneous tangent space ApΣ is automatically a
one dimensional subgroup of G. This shows that any point of MΣ is algebraically
regular. As a consequence, considering any Borel set E ⊂MΣ, we apply part (3) of
Theorem 1.2 at each point p ∈ E, getting

(8.37) θN(µΣ, x) = βd(ApΣ).

In particular, the finiteness of the spherical Federer density θN(µΣ, ·) on E yields the
absolute continuity of µΣxE with respect to SN

0 xE. Joining the measure theoretic
area formula (7.5) with the negligibility condition (8.36) our claim (8.35) follows. �

Remark 8.4. In any Heisenberg group Hn = H1 ⊕ H2 equipped with a homoge-
neous distance d the blow-up at nonhorizontal points of C1 smooth curves is the one
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dimensional vertical subgroup H2. Thus, from the Definition 7.6 of spherical factor
and Theorem 8.3, we have the following area formula

(8.38) S2
dxΣ(B) =

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p)

for any C1 smooth nonhorizontal curve Σ ⊂ Hn and any B ⊂ Σ Borel set. In this
case have defined

ωd(1, 2) = βd(H
2) and S2

d = ωd(1, 2)S2
0 .

The spherical factor βd in all the previous theorems strongly depends on the choice
of the homogeneous distance d. It is then worth to consider special classes of dis-
tances that make βd a fixed geometric constant. This is in analogy to what occurs
in Euclidean space Rn for the Hausdorff measure Hk

|·|, that in its definition includes
the geometric constant ωk. Indeed, such a constant corresponds to the volume of
maximal k-dimensional sections of the unit ball in Rn.

Definition 8.5 (Multiradial distance). Let d : G×G→ R be a homogeneous distance
and let ϕ : [0,+∞)ι → [0,+∞) be continuous and monotone nondecreasing on each
single variable, such that

(8.39) d(x, 0) = ϕ(|x1|, . . . , |xι|),

xj = PHj(x) and PHj : G→ Hj is the canonical projection with respect to the direct
sum decomposition of G into subspaces Hj. The function ϕ is also assumed to be
coercive in the sense that

ϕ(x)→ +∞ as |x| → +∞.

Let us stress that the symbol | · | indicates the Euclidean norm arising from the fixed
graded scalar product, see Section 2.

Remark 8.6. In any homogeneous group one can find a multiradial distance. Setting
ε1 = 1 and suitably small εi > 0, one can always construct a nonsmooth homogeneous
distance defining

‖x‖∞ = max{εi|xi|1/i : 1 ≤ i ≤ q}
and then d(x, y) = ‖x−1y‖∞ for x, y ∈ G, see for instance [51]. One can easily realize
that d is multiradial.

We use multiradial distances to study the relationship between Hausdorff measure
and spherical measure on horizontal submanifolds of class C1.

Proposition 8.7. If d is a multiradial distance on G, then there exists a geometric
constant ωd(n, n) such that

(8.40) βd(V ) = Hn
|·|(B ∩ V ) = ωd(n, n)

for any n-dimensional horizontal subgroup V ⊂ H1, where B = {x ∈ G : d(x, 0) ≤ 1}.
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Proof. Consider an n-dimensional horizontal subgroup V ⊂ H1 and the intersection

V ∩ B(z, 1) =
{
v ∈ V : z−1v ∈ B

}
.

Since d is multiradial, we have

V ∩ B(z, 1) =
{
v ∈ V : ϕ(|PH1(z−1v)|, . . . , |PHι(z−1v|) ≤ 1

}
and the monotonicity properties of ϕ give

V ∩ B(z, 1) ⊂ {v ∈ V : ϕ(|v − PH1(z)|, 0, . . . , 0) ≤ 1} = ζ1 + C,

where ζ1 = PH1(z) and C = {v ∈ V : ϕ(|v|, 0, . . . , 0) ≤ 1}. It follows that

Hn
|·| (V ∩ B(z, 1)) ≤ Hn

|·| (ζ1 + C) = Hn
|·|(C) = Hn

|·| (B ∩ V ) .

This proves (8.40), along with the fact that βd(V ) does not depend on the choice of
the n-dimensional horizontal subgroup V . �

Theorem 8.8 (Horizontal submanifolds). If Σ ⊂ G is an n-dimensional horizontal
submanifold, then for every Borel set B ⊂ Σ we have

(8.41) µΣ(B) =

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p) =

∫
B

βd(ApΣ) dSn
0 (p),

where g̃ is any fixed Riemannian metric. If in addition d is multiradial, then for
any homogeneous tangent space V of Σ, the spherical factor βd(V ) equals a geometric
constant ωd(n, n) and defining Sn

d = ωd(n, n)Sn
0 , there holds

(8.42) Sn
dxΣ(B) =

∫
B

‖τ g̃Σ,N(p)‖g dσg̃(p).

Proof. From the definition of horizontal submanifold, all points of Σ are algebraically
regular. In view of Remark 4.4, we also observe that all points of Σ have degree
n. As a result, Σ = MΣ and choosing any Borel set B ⊂ Σ, we apply part (1) of
Theorem 1.2 to each p ∈ B, getting formula (1.6). The everywhere finiteness of the
spherical Federer density on B joined with the measure theoretic area formula (7.5)
lead us to the integration formula (8.41). In the case d is multiradial, Proposition 8.7
allows us to define the geometric constant ωd(n, n) = βd(V ), independent of the choice
of the homogeneous tangent space V at any point of Σ. Then (8.41) immediately gives
(8.42), concluding the proof. �

As a consequence of the previous theorem, joined with the area formula of [35], we
will find the formula relating spherical measure and Hausdorff measure on horizontal
submanifolds.

A multiradial distance d is fixed from now on. We consider the set function φkδ of
(7.2) with respect to d, where F is the family of all closed sets α = n. In the sequel,
we consider the Hausdorff measure

(8.43) Hn
0(E) = sup

δ>0
φn
δ (E)
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for every E ⊂ G. We will also use the “normalized Hausdorff measure”

(8.44) Hn
d = ωd(n, n)Hn

0 ,

where ωd(n, n) is defined in (8.40).

Lemma 8.9. Let d be a multiradial distance on G and let V,W ⊂ H1 be horizontal
subgroups of dimension n. It follows that

(8.45) Hn
0(B ∩ V ) = Hn

0(B ∩W ) = 1,

with B = {x ∈ G : d(x, 0) ≤ 1}.

Proof. Let us consider the Euclidean isometry T̃ : V → W with respect to the fixed
graded Euclidean norm | · | on G. The same scalar product defines the multiradial
distance, see (8.39). For each x, y ∈ V there holds

d(T̃ x, T̃ y) = d((T̃ x)−1T̃ (y), 0) = d(T̃ y − T̃ x, 0) = d(T̃ (y − x), 0)

where the last equality follows by the fact that W is commutative. By definition of
d, we have

d(T̃ x, T̃ y) = ϕ(|T̃ y − T̃ x|, 0, . . . , 0) = ϕ(|y − x|, 0, . . . , 0) = d(x, y),

where the last equality holds, due to the commutativity of V . Choosing proper

orthonormal bases, we extend T̃ to an isometry T : H1 → H1 with respect to | · | such

that T |V = T̃ . Since d is multiradial it is easy to observe that

T (B ∩H1) = B ∩H1.

By definition of T̃ , it follows that

(8.46) T (B ∩ V ) = T (B ∩H1 ∩ V ) = B ∩H1 ∩ T̃ (V ) = B ∩W.
We now consider the Hausdorff measures

H̃n
V : P(V )→ [0,+∞] and H̃n

W : P(W )→ [0,+∞]

defined in (8.43), but where the metric space G is replaced by the horizontal subgroups

V and W , respectively. Since T̃ is an isometry also with respect to d, taking into
account (8.46) and the standard property of Lipschitz functions with respect to the
Hausdorff measure, we get

H̃n
W (B ∩W ) = H̃n

W (T̃ (B ∩ V )) = H̃n
V (B ∩ V ).

Exploiting the special property of the Hausdorff meausure about restrictions

H̃n
V = Hn

0 |P(V ) and H̃n
W = Hn

0 |P(W )

the first equality of (8.45) follows. Finally, we apply the isodiametric inequality in
finite dimensional Banach spaces, see for instance [7, Theorem 11.2.1], and observe
that the restriction ‖x‖d = d(x, 0) for x ∈ V yields a Banach norm, due to the com-
mutativity of V . By standard arguments, the isodiametric inequality in the Banach

space (V, ‖ · ‖d) gives H̃n
V (B ∩ V ) = 1, therefore concluding the proof. �
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Proof of Theorem 1.4. Since our argument is local, it is not restrictive to consider an
open set Ω ⊂ Rn and assume that there exists a C1 smooth embedding Ψ : Ω → G
such that Σ = Ψ(Ω). Joining Proposition 7.5 and Theorem 8.8, for every open subset
H ⊂ Ω there holds

(8.47) Sn
dxΣ

(
Ψ(H)

)
=

∫
H

‖πΨ(y),n

(
∂y1Ψ(y) ∧ · · · ∧ ∂ynΨ(y)

)
‖g dy.

From the area formula of [35]:

Hn
d(Ψ(H)) =

∫
H

Hn
d(DΨ(x)(BE))

Ln(BE)
dx,

where DΨ(x) : Rn → G is the Lie group homomorphism defining the differential, see
[35] for more information. For each x ∈ Ω both Hn

d and Hn
|·| are Haar measures on

the horizontal subgroup Vx = DΨ(x)(Rn) ⊂ H1, therefore

Hn
dxVx =

Hn
d(Vx ∩ B)

Hn
|·|(Vx ∩ B)

Hn
|·|xVx.

The Haar property of these measures follows from the commutativity of Vx, hence
the BCH yields yA = y + A, whenever y ∈ Vx and A ⊂ Vx. By Proposition 8.7 and
definition (8.44) we have

(8.48) Hn
dxVx = Hn

0(Vx ∩ B)Hn
|·|xVx = Hn

|·|xVx,
in view of Lemma 8.9. We have proved that

(8.49) Hn
d(Ψ(H)) =

∫
H

Hn
|·|(DΨ(x)(BE))

Ln(BE)
dx.

The Lie group homomorphism DΨ(x) : Rk → G is defined as the limit

(8.50) DΨ(x)(v) = lim
t→0+

δ1/t

(
Ψ(x)−1Ψ(x+ tv)

)
,

that exists for all x ∈ Ω, in view of [39, Theorem 1.1]. Exploiting the BCH formula
in the limit (8.50) and the fact that the image of DΨ(x) must be in a horizontal
subgroup, we have

(8.51) DΨ(x)(h) = dΨ̃(x)(h) ∈ Vx ⊂ G,

where Ψ̃ = PH1 ◦Ψ and h is any vector of Rn. Finally, the expression

πΨ(y),n

(
∂y1Ψ(y) ∧ · · · ∧ ∂ynΨ(y)

)
can be more explicitly written as

m∑
j1,...,jn=1

πΨ(y),n

(
(∂y1Ψ(x))j1Xj1(Ψ(x)) ∧ · · · ∧ ∂ynΨ(x))j1Xj1(Ψ(x))

)
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where the special polynomial form of the vector fields Xj implies that the component
(∂yiΨ(x))j of ∂yiΨ(x) with respect to the basis (X1(Φ(x)), . . . , Xm(Φ(x)) coincides
with ∂y1Ψ

j(x). This allows us to conclude that

‖πΨ(x),n

(
∂y1Ψ(x) ∧ · · · ∧ ∂ynΨ(x)

)
‖g = JΨ̃(x) =

Hn
|·|(dΨ̃(x)(BE))

Ln(BE)
.

As a consequence, by (8.51), (8.49) and (8.47), our claim follows. �
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