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AsstracT. We prove a Rademacher-type theorem for Lipschitz mappimgs a subset
of a Carnot group to a Banach homogeneous group, equippédavgtiitably weakened
Radon-Nikodym property. We provide a metric area formugd #pplies to these mappings
and more generally to all almost everywhere metricalljetlentiable Lipschitz mappings
defined on a Carnot group.
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1. INTRODUCTION

A Banach spacéX has the so-called Radon-Nikodym property, in short RNP, when
all Lipschitz curves that take values X are almost everywhere &chet diferentiable.
Clearly, allX-valued Lipschitz mappings defined on the Euclidean spacalarost every-
where Féchet diferentiable if and only iiX has the RNP.

An important space that does not possess the RNP and thagplalgsin some questions
of theoretical computer scienceli$(0, 1). In this context, it has been proved in [14] that
a new counterexample to the Goemans-Linial conjecture advbala consequence of the
nonexistence of bi-Lipschitz embeddings of the first Hei®eg groupH* into L(0, 1).
The work [3] by J. Cheeger and B. Kleiner has proved the absdribese embeddings by
proving a Rademacher type theorem for these mappings wipeceto a suitable notion of
differentiability. We consider dierent classes of Banach spaces that need not have the RNP
and we prove that either the Heisenberg group or any othero€group, under suitable
algebraic conditions, do not admit any bi-Lipschitz embeddnto these targets. This will
be a consequence of dlddirentiability result, according to our Theorem 1.1. Subse®.4
presents some examples of Banach homogeneous groupslttabhfaie the RNP and such
that our Theorem 1.1 still holds for these targets.

Precisely, our targets are Banach spaces equipped with a lBamagroup structure,
that are metrized by a suitable left invariant distancehéndommutative case, they include
classical Banach spaces, but their main feature is that theiRdiy required for a closed
and possibly infinite dimensional subspace, that in theefiditnensional framework is
known as thénorizontal subspace

These infinite dimensional Lie groups can be naturally daBanach homogeneous
groups since they are a natural extension of their well known fiditeensional version.
For the finite dimensional case, the reader can consult ftamece [8]. A simple way to
present the infinite dimensional versions may consist inirgty the validity of the char-
acterizing properties that hold in the finite dimensionae;aas the existence of a group
operation with a special structure, the existence of a h@megus norm, along with dila-
tions and so on. This presentation by axioms can be foundlip [2

We follow a diferent approach, detecting these groupgrasled nilpotent Banach Lie
algebras since all the above mentioned properties are just consegaesee Section 2.
In fact, one can see a Banach homogeneous group as a BanaclVseagcegpped with a
graded nilpotent Lie product that turns it into a Banach Lgeella. Thus, we automatically
get the group operation by the Dynkin formula for the Baker-@hetl-Hausdaf series,
in short BCH, that locally converges in general Banach Lie alggl6]. In our case, this
series is just a finite sum, since we consider nilpotent Lgelalas.

In sum, we equidM with three structures, since it is a Banach space, a Banach Lie
algebra and also a Banach Lie group. Its main feature is thentlgasition into the direct
sumM = H; & --- @ H,, whereH; are closed subspaces bf, seen as Banach spaces.
This yields a precise gradation on the Lie algebra struatidd that allows us to introduce
dilationsé, : M — M, that are automatically group isomorphisms. Furthermone,
can also construct a homogeneous normiMbthat respects both the group operation and
dilations, hence defining the metric structuré\df see Section 2 for more details.
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As in the finite dimensional case, one can also define theapass of Banach stratified
groups, or Carnot groups, since the additional conditiomh thalLie generatesM in the
finite dimensional case [8, 19], can be also stated in theitaftimensional case. This
was already pointed out in the seminal work by M. Gromov, [Hjwever, we will focus
our attention on the larger class of Banach homogeneous ¢aoggts, that presents some
additional dificulties in the proof of the almost everywherdtdientiability of Lipschitz
mappings, as explained below.

Several examples of infinite dimensional Banach homogergroups will be presented
in Section 2. We mainly exploit a natural product constattby means of the Banach
spaceg® of p-summable sequences. The simplest example of infinite diimeal Banach
homogeneous group is the well known Heisenberg group mdaeiéi? x R, whereH is
a real Hilbert space with scalar prodyet). For any @, hy, t1), (h,, h,, t,) € H2 x R, the
group operation is defined as follows

(1) (ha, o, t1) (7, h/zat’z) = (M +h,hy+ 0t + t’z +<hy, h'2> —(hy, h'1>)-

This product arises from the quantization relations of tleskinberg algebra realized in
Quantum Mechanics, see for instance Chapter XlI, Section 4t Notice that this
group has an underlying Hilbert space structure. In Sulise2t2, we introduce the infinite
product of Heisenberg groufi¥°, whose underlying Banach structure is given &)3x £*.
In Subsection 2.5 we present a construction to obtain ant@fwnoduct of the same Carnot
group. This provides many Banach homogeneous groups whaselying linear space is
a genuinely infinite dimensional Banach space and we will ats® that we have some
freedom in the choice of the Banach topology. It is clear that oould use a similar
construction also for products offterent Carnot groups. Motivated by the simple case
given by (1) that arises from the Heisenberg group of QuarNleohanics, one might also
expect further physical interpretations for special eassf Banach homogeneous groups.
We wish to clarify that the terminology “Carnot group” willfex throughout to a finite
dimensional group. The notion offtkrentiability between Carnot groups, [19], naturally
extends to the case of infinite dimensional Lie group targets Definition 3.2. This leads
us to the statement of our main result.

Theorem 1.1.Let M be a Banach homogeneous group such that its subspatasithe
RNP. IfG is any Carnot group and A G, then any Lipschitz mapping fA — M is almost
everywhere dferentiable.

Since all finite dimensional linear spaces have the RNP, irspleeial case whera is
open andM is a Carnot group, then Theorem 1.1 also contains tifierdntiability result by
P. Pansu, [19]. If the source space of a Lipschitz mappingngstaic measure space with a
Poincaé inequality, namely a Pl space, and its target is a Banacle sp#tthe RNP, then
J. Cheeger and B. Kleiner have established the dferentiability in a suitable sense [2].
However, when the source space is a Carnot group, fiieremtiability from a Pl space
does not imply the dierentiability in the sense of Carnot groups, where “noniiabte
directions” are also considered, see Definition 3.2. Néebess, dierentiability on Pl
spaces can still provide bi-Lipschitz non-embedding teew into Banach spaces with
the RNP, although this fferentiability does not include the case of Lie group targéts
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is also easy to observe that a special case of Theorem 1.fesrthe bi-Lipschitz non-

embeddability of noncommutative Carnot groups into any Bargmace with the RNP.

In fact, these Banach spaces clearly constitute the simgdest of commutative Banach
homogeneous groups, whose first layer has the RNP.

In connection with area formulae and change of variables im@ayroups, subsequent
works have extended this Rademacher type theorem to the ¢teseMis any subset of a
Carnot groupG andM is another Carnot group, [16], [22]. Furtheffdrentiability results
in this vein are also written for targets corresponding toiegular Carnot-Caraéodory
spaces, see [12] and references therein. On the other Imeadtiof these works a key point
is that all targets are also length metric spaces and tlow/slbne to use the existence of
one dimensional Lipschitz extensions in order to achieeedale. diferentiability on an
arbitrary subset. In Theorem 1.1 the target need not be ghenetric space, therefore this
theorem turns out to be new also when the codomain is a finitersional homogeneous
group that is not stratified. In fact, we overcome thifidulty by Theorem 3.1, that is
the key tool. Here we establish the almost everywhefferintiability of Lipschitz curves
defined on an arbitrary subset of the real line and that takeesan an arbitrary Banach
homogeneous grou. Although this Lipschitz curve need not have a Lipschitzeston
with respect to the homogeneous distapcen M, we use its Lipschitz extension with
respect to the Banach norm. This leads us to the aleretiability of the projection of
the curve into the first layer of the target, that has the RNRnTlwe use the geometric
properties of the density points, along with a suitable igpibn of the Dynkin formula,
exploiting the explicit expression for the addends appegin the finite expansion of the
group operation, [5]. This provides a new and simpler apghida the a.e. dierentiability
of graded group-valued Lipschitz mappings defined on anrargisubset of the real line.

A natural issue related to Theorem 1.1 concerns the existehaontrivial Lipschitz
mappings. We wish to make sure that there are Lipschitz magpphat are not a mere
composition of a Carnot group-valued Lipschitz mapping withipschitz embedding into
a Banach homogeneous group. In Subsection 2.6, we consipstthitz mappings that
cannot have the form previously described. In fact, we d®rsh suitable infinite product
of a family of Lipschitz mapping$f*},.o, under the condition that all vanish at some point.
The corresponding product mappi@gturns out to be a Lipschitz mapping taking values
in the infinite productH* introduced in Subsection 2.2. In the case all mappifigdo
not vanish at some point, the corresponding product magpiisgan example of Lipschitz
mapping withinfinite dimensional imageSince the horizontal layer di* has the RNP,
our Theorem 1.1 shows thé&t is also almost everywhereftirentiable, when the source
space is any Carnot group.

A stronger condition than the nonexistence of bi-Lipschitzbeddings is that gdure G-
unrectifiability. A purelyG-unrectifiable metric spac#,(p) has the property that the image
of any Y-valued Lipschitz mapping from a subset of fQedimensional Carnot grou@
has vanishing Hausdﬁrmeasurer. In particular, this implies that there does not exist
any bi-Lipschitz embedding d@f into the metric spac¥. In the finite dimensional setting,
the area formula leads to an algebraic characterizatigrualy G-unrectifiablestratified
groups, along with rigidity theorems, [17]. The simplestance of this characterization is
that any set of positive measure in the Heisenberg groupnypnancommutative Carnot
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group) does not bi-Lipschitz embed into any fixed Euclidegaace, as was first observed
by S. Semmes, [23]. This naturally introduces the questi@suitable area formula from
a measurable set of a Carnot group into an infinite dimensiangét. We will present a
rather general area formula that also includes the mappihgseorem 1.1.

For a general metric space target, the choice of the sousmsp crucial. In fact, for
metric space-valued Lipschitz mappings on a subset of adaasi space, B. Kirchheim
has proved their almost everywhere metrigetientiability and also the corresponding area
formula, [13]. Carnot groups have afBaiently rich structure to introduce the notion of
metric diferentiability, when any of their subsets constitutes thes®space, see Defini-
tion 4.1. In this case, the metricftirential is given by &domogeneous seminoymamely
a continuous functiors : G — [0, +oo[ such thats(x) = s(x 1), s(6,X) = rs(x) and
S(x-y) < s(xX) + S(y) for all x,y € G andr > 0. The additional condition thai(x) = 0
impliesx = 0 means thas is ahomogeneous norm

On one side, when the source space is a noncommutative Camgi, gsuch as the
Heisenberg group, then counterexamples to the mettlierdntiability of Lipschitz map-
pings can be constructed, [15]. On the other side, if weicéstretric diferentiability to
horizontal directions, then we still have an almost evemgreh(horizontal) metric dieren-
tiation for metric space-valued Lipschitz mappings on Cagnoups, [20].

Theorem 1.1 clearly provides nontrivial cases where mspéce-valued Lipschitz map-
pings on Carnot groups are almost everywhere metricaffgr@intiable. Other new targets
where the almost everywhere metri¢tdrentiability holds can be found by another recent
result of J. Cheeger and B. Kleiner, [4]. In fact, one can ndtiia the seminornf - ||
of Theorem 1.3 in [4] can be seen as a homogeneous seminorhe avhble Heisenberg
groupH, therefore the limit in the statement of this theorem, veitlequal to the unit ele-
ment, exactly yields the almost everywhere metritedentiability of Lipschitz mappings
from H to L(0, 1), see also [3]. We observe that in all previously mentioresks, where
the almost everywhere metricfiérentiability holds, one can apply the following new met-
ric area formula.

Theorem 1.2.Let Ac G be measurable, let f A — Y be Lipschitz and almost every-
where metrically dyerentiable. It follows that

@) f 3(md 1(x)) dHR(¥) = f N(F.y) dH(y).

where Nf,y) = #(f-(y)) for all y € Y is the multiplicity function, d is the homogeneous
distance ofG, p is the metric of Y and Q is the Hausgdimension ofG.

As usual, the point of an area formula is its notion of Jacobidemetric Jacobian (s)
of the homogeneous seminoris defined as follows

Q
Hs (By) if sis a homogeneous norm
3) IS =1 HY(BY) '
0 otherwise

If G is a Euclidean space, then (3) yields the Jacobian of [13jhdftarget is a Banach
homogeneous grouM equipped with a distange given by a homogeneous norm, then
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we have to observe thatftBrentiability with diferentialL : G — M implies metric
differentiability with homogeneous seminoim— s_(h) = p(L(h), 0) with h € G. Thus,
we get a more explicit formula for (3), that in the specialecadereM is another Carnot
group fits into the sub-Riemannian Jacobian introduced if g Remark 4.1 for more
comments.

Concerning the proof of (2), a substantiaitdrence in our approach with respect to that
of [13] is in the proof of the negligibility of the image of pus where the metric tferential
is not a homogeneous norm. In [13], this fact is achieved lmghining the integral repre-
sentation of Kirchheim’s Jacobian with the usesedpproximating graph extensions of the
mapping, as in [7]. Our argument is surprisingly more eletasgn since it only uses the
very definition of metric dierentiability without any use of the notion of metric Jacobi
see Lemma 4.3.

By the metric area formula (2), for each Carnot grd@iym Banach homogeneous group
whose horizontal subspace has the RNP is pu@elynrectifiable if none of its homoge-
neous subgroups is h-isomorphic@ see Definition 3.1. In particular, a Banach space
with the RNP is purelyG-unrectifiable wheneve@ is honcommutative. IfG has step
higher than two, then any two step Banach homogeneous groogestorizontal subspace
has the RNP must be purei~unrectifiable and so on. We have already mentioned that
whenever a metric spaceé is purely G-unrectifiable, then in particular it cannot admit
any bi-Lipschitz embedding frorf into Y. As a consequence, the previous theorems on
purely G-unrectifiability of some Banach spaces automatically mleview bi-Lipschitz
non-embeddability theorems into infinite dimensional éésg

2. BANACH HOMOGENEOUS GROUPS

We start from the notion oBanach Lie algebranamely a Banach spadd equipped
with a continuous, bilinear and skew-symmetric mapping { MxIM — M that satisfies
the Jacobi identity. Adilpotent Banach Lie algebrM is characterized by the existence of
a positive integer € N such that wheneveq, x, ..., X,.1 € M, we have

[' o [[Xl’ X2]7X3] o ']a Xv]’Xv+1] =0

and there exisfy, Ys, . ..,Y, € M such that

[~ [[ys, Yol. yal -~ 1.y»] # 0.

The integer is uniquely defined and it gives tistep of nilpotencef M. Therefore the
algebraM can be equipped with a canonical Banach Lie group operation

(4) Xy=X+y+ > Pr(Xy),
m=2
that is the “truncated” Baker-Campbell-Hausfigeries. For anyn > 2, the polynomial
Pm is given by theDynkin’s formula
1 9 gz times Ok times
(5) Pm(x’y):z(_lk) m Xo...oXoyo...oyo...oXo...oXoyo...oy’

pulad - pdo! —— ,
p1 times pk times
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wherex, o X, 0---oX, = [---[[X,,X,], %] - - - ], X ] and the sum is taken over th&-Riples
(P, G, P2 G - - - » P G) SUcCh thatp; + ¢ > 1 for all positivei, k e N andY , pi + ¢ = m.
Notice thatP,(x,y) = [x,y]/2. Formula (5) was established by E. B. Dynkin in [5]. We
say thatM equipped with the group operation (4) i€anach nilpotent Lie grouplf we
denote byL (M) the Lie algebra ofM as a Lie group, we may wonder whethgiM) is
isomorphic toM seen as a Lie algebra equipped with the initially given Liedoict [, -].
The answer to this question is yes, according to the follgyairoposition, whose proof can
be established by the use of the BCH series for the group exgansi

Proposition 2.1. If M is a Banach nilpotent Lie group, then the given Lie algebracttire
on M is isomorphic to IM).

If S1,S,,..., Sy € X are closed subspaces of a Banach spaseich that the mapping
J:S; % xSy — Xwith J(s1,..., %) = XL, § is an isomorphism of Banach spaces,
thenX = S; 8- -- & S, denotes the corresponding direct sum. Any canonical piiojeon
S;is denoted byr; : X — S;.

Definition 2.1. We say that the Banach spab# is a Banach homogeneous grotufpit
is equipped with a Banach Lie product-] : M x M — M and there exist closed
subspacesl, ..., H, such thatM = H; @ --- @ H, and whenevek € H; andy € H; we
have K,y] € Hi,jif i + ] < cand [x,y] = 0 otherwise. This equip®l with a special
family of Banach isomorphism& : M — M, r > 0, defined by, x = r'xif x € H; for
alli =1,...,.. These mappings are both group and algebra automorphisivisaoid are

calleddilations

Remark 2.1. A Banach homogeneous group can be seenBaach graded nilpotent Lie
groupequipped with dilations. This is the natural terminologynir the finite dimensional
case of graded Lie groups, see [8, 9]. The decompositios: H; @ --- @ H, with the
properties stated in the previous definition defingsaalationof M.

The gradation oM along with the Dynkin formula (5) yields some positive c@mgs
o1,...,0, depending on the norm of the Lie product, such that

6) IxI| = maxeilx[Y 1< <)

with oy = 1, satisfied|o,x|| = r ||| and||xyi] < |IX|| + |lyll. We have denoted bly- | the
underlying norm oriM that makes it a Banach space. This convention will be undedsto
in the sequel. The properties [pf|| that we have previously seen, allow us to say thal

is aBanach homogeneous nowhiM.

If we setp(x,y) = |Ixty||, then we have obtained a left invariant homogeneous distanc
on M with respect to the group operation such th@h x, 6,y) = r p(x,y) for all x,y € M
andr > 0. We say thap is aBanach homogeneous distarmeM. In the sequel, we assume
that every Banach homogeneous grdvis equipped with the Banach homogeneous norm
(6) and the corresponding homogeneous distanoaless otherwise stated.

For the subsequent examples, we recall the standard cl&ssath spaces

P = {(Xk)kzo eRY : Z %P < 00}
pary
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wherep > 1 is any real number anék)wsolp = (o XdIP)P.

2.1. Two steps Banach homogeneous groupst is not difficult to construct the general
model for a two step Banach homogeneous group. We consideBawach spaceX and

T. We have the Banach spaGe = X @ T with the product norm. The structure of Banach
homogeneous group is given by the bounded skew-symmelinedi formg: XxX — T
via the formula [, t), (X, t')] = (0,8(x, X)) for all x, X € X andt,t’ € T. Thus, the Lie
group operation ofis; is given by the following formula

1) -G ) = (X+ X+ )+ [(6 1), (X, )] = (X+ X, t+ 1" + B(X X)).

Let |(x,t)] = [XIx + lylr denote the product norm in the Banach sp@ge Letc > 0 be
such thatB(x, X)lr < c|x|x|X|x for all x, X € X and fix any constant- > 0 such that
o < v2/c. Then the functioni(x, )| = max|xlx, olt//*} defines a homogeneous norm on
G, and clearly for any > 0 the group isomorphisi (x,t) = (rx, r?t) for (x,t) € Gy is a
dilation of G,. In sum, only the mapping sufices to equipG, with the structure of two
step Banach homogeneous group.

2.2. An infinite product of Heisenberg groups. We wish to consider a concrete example
of nontrivial two step Banach homogeneous group. This grthet, we denote byH®,
can be seen as a suitably topologizefinite product of the same Heisenberg groujs
a Banach spacE™ coincides with {?)? x £, where the horizontal subspaceXs= (¢?)?
andT = ¢*. Any elementx € H* corresponds toxX, Xz, X3) Wherex;, = (Xj)js0. We also

write |Xi|» = /Z‘J?‘;O xﬁ fori = 1,2 and|xgls = X 72, %sjl- For anyx,y € H*, we define the
skew-symmetric bilinear mapping): (£2)? x (£?)> — ¢* as follows
B((%1, %2), (Y1, ¥2)) = (0,0, (Xaj Y2j — X2j Y1) j20)-
It follows that for all (X1, %), (Y1, ¥2) € (€2)? we have
B((X. %2). (V1. Y2))l1 < (1Xaf3 + [X213) " *(lyal3 + Iy213)"%.
According to the general model of two step Banach homogengousp, the function

1/2

1(X1, X2, X3)|| = max{ |x1|§ + %2, \/|x3|1} defines a homogeneous normHF.

2.3. Infinite products of Engel groups. Let us consider the Engel grolpwith graded
decompositior5; @ S, @ Sz andgradedbasis €11, €1, €3, €1), namely €:1, €1,), (e3) and
(e4) are bases 08,, S, and S;, respectively. The only nontrivial bracket relationskbf
as a Lie algebra ar€(e11,€10) = e3 and L(e11,€3) = &4, thenL : E X E — E defines a
Lie product onE. We defineH; = (¢2)?, H, = (P, Hz = ¢9 and setfE® = H; x H, x Hj,

where 1< p < 2 andg > 1. An elementx of E® can be written asxg, x,, X3), where
X1 = (Xa1, X12), X1 = (Xkeo € €21 = 1,2, % = (X)ieo € €* andXg = (X)ie0 € €4

We observe that for alf, 5 € £2 and( € ¢°, we have

€D Yeolp < D IED < el and (€ eola < D 16524 < Ielalnla < €] Il
k=0 k=0
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Thus, the products - n = Y2, &€l € (P andé - £ = 32, &€l € 9 are well defined,
where (B’E,)kzo and @é)kzo are the canonical Schauder basig®band9, respectively. A nice
point in the construction dE* is that we do not need to construct the group operation, but
it suffices to construct a continuous Lie product. Thus, we set

[X,¥] = (0, Xq1- Y12 — X12- Y11, X11- Y2 — X2 - Y11).

We fix the product Banach norfl = [X11]> + [X12l2 + [Xolp + [Xslq @nd observe that

1% Y1l < 4iXI Iyl

showing the continuity of-[-] with respect to the Banach norm|. The Jacobi identity
follows from the one of£(, ).

Remark 2.2. Notice that the arbitrary choice @f € [1, 2] andq € [1, +0) in the infinite
product of Engel groups emphasizes, as one could expetthér@ are infinitely many
Banach topologies that we can use for our construction of ad@ahamogeneous group.
This fact will be also seen in Subsection 2.5.

2.4. Banach homogeneous groups that fail the RNPIt is possible to construct Banach
homogeneous groups that do not have the RNP, although ttstilafper has this property.
As a consequence, these targets satisfy the assumptioheoféim 1.1.

A simple example is a Banach Heisenberg griélip- H; @ H,, whereH; = L?(0, 1)
andH, = L(0, 1). We defingg : Hy x H; — H, as

B((Uz, V1), (U2, V2)) = U1Va — UpVy

that clearly satisfie§8((us, v1), (U2, V2))llLryy < 11(Uz, Vi)llz@ay [1(Uz, V2)ll21y2- Using the
group operation of Subsection 2.1, we have defined a two sis@eneous group that
fails the RNP and whose first layer has the RNP.

Let us now construct a Banach Engel group that fails to haveRtiE. We define the
Banach spackE = H; @ H, @ H3, where

H, = L3(0,1) x L3(0,1), H,=L%*%0,1), and Hs;=L%0,1).

Fori = 1,2, we considex; € E as (i, V;, z,t), whereu;, v € L3(0,1), z € L¥?%(0, 1) and
t; € L1(0, 1). Then define Lie product

[X1, %] = (0,0, Uy Vo = Up V1, U1 2o — Uz Zy ).
We fix the Banach norix| = |Uilisg1) + Vils.1) + |Zlis2) + ItilL2o,1) @nd observe that
[X0, %] < 4Ixq] %] -

It follows that the Lie product:[-] is continuous with respect t{e|. The Jacobi identity is a
simple verification. We also notice that the first layeifdfias the RNP, hence Theorem 1.1
also applies to this target.
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2.5. Infinite products of Carnot groups. The previous cases suggest a general “product
construction” for any graded group=S; @ --- & S,.. Thus, we seG® = Hy x --- x H,,
whereH; = (") andn; = dimS; for alli = 1,...,v and the real numberg; > 1,
whenever < i, j < v andi + j < v, satisfy the following inequality

1
(7) Pij > 5 max p;, p;}.

Foranyi = 1,...,v we set the basi®(, ..., e,) of S;, hence eu)lliiéﬁ is a basis ofz. For
an elemenk of G we will use the equivalent notatiomy . . ., x,), wherex; = (X1, . . ., Xin,)
andxy = (X))o € €P. We set the norms

1/pi v
(8) 1%l =[Z me] and X = > Ixlp.
i=1

1<u<n; k=0

. . 1/pi . . .
Notice that we can also write|, = (Zlgugni (|Xiu|pi)pi) " Using the previous notation, for

anyx € G* we set
X< = Z X eu € G.

I<i<v
1<u<n

We denote by, the Lie product ofG, then for anyx,y € G* and anyk € N, we set
LOEY) =) Lu( e eG.

I<i<v
1<u<n;

We also definef(x,y) = L(x*,y¥) and LX(x,y) = Liu(X<,y¥). Taking into account that
whenever ki, j <wv,i+j<v,1<u<mn,1<v<n;, wehave

©) LEwep) = . Blujy v

1<r<nij

for some cofficientss!, ., that determine the Lie algebra structurespfve expandC(x¥, y¥)

iu, jv

using (9), establishingj the formula

L:T, (X’ y) = Z ﬁ;u,bv Xlr:lu ylév

1<ab<v, a+b=i,
1<u<ng, 1<v<ny

whereke N,i =2,...,vandr = 1,...,n;. As a consequence, we introduce the elements
-Eir (X’ y) = (‘El(r (X’ y))kZO and ‘Ei(x, y) = (Lil(x’ y)’ RN ‘Eini (X’ y))
By elementary computations, one can check that there existaotsC,; > 0 such that

LK YIP < Co D (1K) (YKl

l<abs<v
a+b=i

wherex§ = (X, ..., X ) and (X|p,)P = 22, X5 [P foranyx € G* and anya = 1,..., v.
Thus, we can consider the sum with respedt &amdr, getting constant€, > 0 such that

(10) > i ILEOYIP < Co D i(lxﬁpa)” (1Y) -

1<r<n; k=0 1ab<v k=0
a+b=i
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Finally, we observe that

had 1/pi
(D0 (55 < 0ol ol
k=0

and the condition (7) yields

Z:(|X|a§|pa)pi (I¥lp,)? < (|(|X|6(1|pa)k20|pa |(|ylli<)|pb)k20|pb)pi'

k=0

Taking into account (8), we ha¥@x¥|p,)isolp. = [Xalpa @NAI1YEIoo)isolps = [¥blps- AS @ result,
taking into account (10), we get

(l‘Ei(X’ y)lpi)pi = Z Z |-£:(r (X’ y)|pi < CZi Z (lxa|pa)pi (|Yb|pb)pi < (:Zivzlxlpi |Y|pi s

1<r<n; k=0 1<ab<v
a+b=i

that immediately implies that
[x Y] = (0, Lo(X.Y), ... L,(xY) € G* and [[x Y]l < D (Cav’)"™ XIy.
i=2

Finally, the Jacobi identity for the product ] follows from the Jacobi identity of".

Remark 2.3. Itis clear that the previous “product construction” can bikebly generalized
to the cases of élierent Carnot groups. The obvious case is taking the produgt afith
a different Carnot grouf¥,, but many other similar possibilities can arise.

2.6. An infinite product of Lipschitz maps. Let us consider any sequence of Lipschitz
mappingsf¥ : X — H, where ¥, d) is a metric space and is the first Heisenberg group

equipped with the homogeneous nolff1, &2, £3)le = max{|(§1,§2)|, \/|§_3|} and the group

operation &1, &2, £3) (1, 112, 113) = (€1 + N1, €2 + M2, 3 + 113 + €12 — §2m1). We have denoted
by | - | both the Euclidean norm iR? and inR. Up to left translations, we can assume that

for somex, € X we have
(11) fX(x) =0 forall keN.

Let us define Lipt*) = supyex xpy il OO F4(W)Ie/d(X, y)}, then we set = Lip(f¥) and
select any sequencgi ko Of positive numbers such that

o0 1/2
(12) Co = (Z r2 Lﬁ) < +00.
k=0

We wish to construct the infinite product of the mappiggs- 6, o f*, wherek € N. We
expect that the new target is the infinite prodHct = (¢£2)? x ¢*, defined in Subsection 2.2.
Following the notations of this subsection, we 8&i) = (f{,(X), f{5(X), fX(x)) € H, so that

(X = (N F00, r (), r2fX(x)) e H forall ke N.
Settingg“(x) = (d,(X), d§,(¥), d5(x)) € H, we defineGy;(x) = (g;(X))kz0 With j = 1,2 and
G2(X) = (g5(X))ks0. Clearly, Lip@*) = ryL, therefore condition (11) yields

max{gh00l, Ig5001} = 100k < ricLicd(x %)
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wheregt(x) = (9%,(X), g,(X)). By (12), it follows thatG11(x), G12(X) € £? andG,(x) € ¢*.
As a consequence, we have tf@g(x), Go(x)) € H* for all x € X, where we have defined
G1(X) = (G11(X), G12(X)). We use both the nornh- || and the group operation introduced
in Subsection 2.2 for the Banach homogeneous giidtip With these notions, for the
mappingG : X — H* defined as5(x) = (G1(X), G2(x)) for x € X, we have

IGOYGW)II = max{|— G1(X) + Ga(y)lz. Vi- G2(¥) + Galy) — G11(¥) - Gaa(y) + G12(X) - G1a(N)h

where we have used the productw = Y°,zjwje; € ¢, wherezw € ¢? and @)kso iS
the canonical Schauder basis®@f The condition (12) finally leads us to the following
Lipschitz continuity

IG(X)'G(y)l| < Cod(x,y) forall xyeX

3. DIFFERENTIABILITY

This section is devoted to the proof of Theorem 1.1. We equaanot groupG with
a continuous left invariant distancesuch thatd(é, x, 6;y) = rd(x,y) for all x,y € G and
r > 0, namely, &anhomogeneous distanc&he seB,, c G denotes the open ball of center
and radiug with respect tal. When the centex of the open ball is the origin, namely the
unit element ofG, we simply writeB;. The same rule is used for closed bdbg of center
x and radiug > 0. The set oflensity points DA) of A c G is formed by allx € G with

HI(AN By,)
|m+ Q— = 1.
=00 H(Byr)
In the sequelM is a Banach homogeneous group with gradakigs - - -&H, and equipped
with homogeneous norift || given by (6). The Carnot group has the decomposition into

the direct sun;, @ --- ® S,, where the layers satisfy the conditid®[S;] = S;,1 for all
j=1...,u—-1andB.,S,] = {0}.

Definition 3.1. A homogeneous homomorphisimshort h-homomorphism, froi@ to M
is a continuous Lie group homomorphidm G — M such that_(65x) = sML(x) for all
x € G andr > 0, wheres® ands™ are dilations inG andM, respectively.

Definition 3.2. Let A ¢ G and letM be a Banach homogeneous group equipped with a
Banach homogeneous distancéle say thatf : A — M is differentiableat the density
pointx € A if there exists an h-homomorphisim: G — M such that

p(f() 7 (x2, L(2) = o(d(z 0))

asz € x !Aandd(z 0) — 0. The mappingd. is the diferential off at x, that is uniquely
defined and denoted Wy f (X).

In the sequel, saying thad; has the RNFprecisely means that the restriction of the
Banach norm oM ontoH; turns this closed subspace into a Banach space with the RNP.

Theorem 3.1.LetM be a Banach graded Lie group such that ks the RNP. Let A R
and lety: A — M be a Lipschitz mapping. Thenis almost everywhere fierentiable.
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Proof. We can obviously assume thAtis closed, since the target is a complete metric
space. Our Lipschitz bound (Hﬁ%(y(t)‘ly(t + h))|| for all t,t + h € Aimplies that

yi(t+h) —7i(®) + Xz Pmi( = (O, y(t + )l
hi

is also bounded, wheie,; = mj o Pn. It is not restrictive to assume that> 0 andA is
bounded. SincéM is a Banach space andis also Lipschitz with respect to the Banach
norm, we can apply the [11], to get Lipschitz extensiodefined on a bounded interval
containingA. In the sequel, we denote dy the mappingrjo f forall j+ 1,...,.. The
Radon-Nikodym property dfl; implies thatf; is a.e. diferentiable on the bounded interval
containingA. For a.et in the bounded interval, we have

t+h
(13) % Ifi(s) — fi(t))ds— 0 as h— O,
t—h
where the integral is understood to be the Bochner integral[l Chapter 5] for the basic
properties of the Bochner integral. We can restrict our é&tiarto all density points of A
that are also points of flerentiability and such thdt satisfies (13). Now, we fix any point
t of A having these properties.

We consider the left translatey{s) = f(t)"f(s) € M. We also sey; = r; o g for all
j=1,...,¢, 0bserving thag,(s) = f1(s)- fi(t) € H;. Both mappingg andg; are Lipschitz
continuous with respect wand| - |, respectively, and have the same Lipschitz constants of
f andf,, respectively.

If we fix n € N\ {0}, then we havé,; > 0, depending om andt, such that for all
h e (A-1t) N ]0, hn[ we have disth,t + 1h) < Lh < M fori =0,...,n. Thus, there exist
pointst; € A, fori =0,1,...,n, so that

[ h
(14) ‘t + ﬁh_ ti| < Y
to = tandt, = t + h. We writeg;(t + h) = A; — B;, where
(15) Aj = 215 (9)(tn) — 95(t) + Zines Pni(-0(t), 9(t42)))
Bj = X0 Zinez Pmi(—0(t), 9(ti1))

We observe that

n-1 n-1

A< D Ir(et) gl = D b (FE) ™ f (b)),

i=0 i=0
henceA; is bounded by> 4 ti.1 — ti|l, up to a constant factor only depending on the
Lipschitz constant of . Sincelti,; — ti| < 3h/n, we get a constant; > 0 such that
(16) Al < kqj hi/ni™t,
We denote by, > 0 a number only depending on the Lipschitz constarft ahd such that

max{([| f (')~ (")l 1F () = FE)L () = fo(t)] . 1R(0) = R < To I 1]
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for all t’,t” belonging to the bounded interval containiAg By the Dynkin formula (5),
the termPn,;(—9(ti), 9(ti+1)) in (15) can be written as a linear combination of

17) 7 (Ao g(ry) o -+ 0 O(Tme2i)) .

whereA; € {-g(ti) o g(ti+1), 9(ti+1) o (— 9(ti))} andryj, ..., Tm2; € {ti,ti1}. Therefore we
haveA; € {=g(t) o g(ti;1)} and the previous term can be written as

(18) <7 (9(t) © (9(tics) — 9(t)) © O(rsi) 0 - © Y(tm-2i)) -

Up to a change of sign, this term is the sum of elements

(19) (gll(ti+1) - g|1(ti)) o g, (t) o gs(7i) o -+ 0 G (Tm-2i) »

where 1< |;,...,In < jandl; +--- + 1, = j. Recall thatthe range oh e Nis2<m< .
We start with the case = |, where the element to consider is

(20) (n(tie1) = Gu(t)) © Gu(t) 0 Ga(rri) © -+ © Ga(Tm2s)

We can write this element as follows

(fti+l gl) ° [( tti 01— gl(t)) + (4 — t)gl(t)] o Qa(ryi) -+ © O1(Tm-2,)-

5
This can be considered as the sun{ gﬁ” () 0 (ftt‘ G1 = G1(t)) © Ga(rai) © - © Ga(Tm2i)
and( f”l ) o ((t - t)gl(t)) o gi(r1;) o - - - 0 Ga(Tm-2;). The norm of the first element is not

. . max{t;,ti1} t+h
larger tharig)‘2 hi=2 (f |gl|) (f |01 — 'gl(t)l), hence we get
t

min{ti,tiy1)
t+ (2

<ipn( [ 92 | e - u0)

ti+1 i
@) | ft n)o( [ 8-@00) oo 0armai)

The second one can be written as

( . - 01— gl(t)) ° ((ti - t)gl(t)) ogi(rei) oo Ui(Tm2i),

t++2p

hence its norm is less than or equaxll("gblhj‘1 f(_ 1: |g1 - gl(t)|. We have proved that
t+2=h

|gl(ti+1) © gl(ti) o gl(Tl,i) 0---0 gl(Tm_z,i)| is less thann
sy t+£i+721h t+h - t+ﬁi+72)h
15202 )(f 1 - 0] + 150 0 - G1(0)].
0 ey |91| : 101 — QD1 + 1, e |91 0a( )|

This proves that
t+§¥2h

(O .
(22) 9:(t.)00u(0)o -0 0ulrm2)l < 3 (L [ in-eOl+ [ o0
n Ji &

t+
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Notice that in the case= 2, the estimate (22) can be read as
2 3 1 t+h _ . t+(i+2)h . .

@) | Y Prel-a o) < 3lh (5 [ -ao [ e a0])
o 2 \nJ; t+ B

forall 0 < h < h,, t+h e Aand all possible choices tfe A satisfying (14), that clearly
also depend oh. Arguing by induction, suppose that

n t+

I t+h t+ (+2p
h 1 . L
@9 | Y Put-o0). o) <wali (G0 [ oo [ - a0
m=2 = o

holdsforalll =2,..., j,forallt,t+he A 0 < h < hy; and any choice df € A satisfying
(14)foralli=1,...,n-1,t; = tandt, = t + h. In view of (23), the induction hypothesis
is true forj = 2. Thus, for anyt € A, we have to find ai, ;.1 > 0 such that

j+1 S h 1 [th t+ 2

C(—aft : S B ¢ ¢

(25) ‘mZ:; Prji+1)( g(t,),g(t.ﬂ))’ < Kaj+1) D (n2 + Lh [¢}] gl(t)l+££%2h |91 gl(t)|)
for any choice ot; € A satisfying (14) and all 6< h < hyj.1 such that + h € A. Since
o(t + h) = A — B, we observe that our inductive assumption yields

t+h . ) hl
(26) lgi(t + h)| < 3ky W't fh 101 — Q1 (O)] + (ka1 + k21) Py
t—

foranyt,t+he AwithO < h < hyjandalll = 2,...,j, wherej > 2. Arguing as in
the previous steps, by the Dynkin formula, the single addéhg. 1)(—9(ti), 9(ti+1)) with
2 <m< j are finite sums of elements

(27) (01, (tien) — 9, (6)) 0 9, () 0 G (723) © - © G (Tm-2i)

where 1< Iy,...,In < j,lh+--+lhy=j+1land2<m< j+ 1. If m= j+1, then the
general validity of (22) in our case gives

1 t+h ) . t+(i+2)h ) .
28) (6 0 m®) o oGm0l <350 (1 [ im-a0r+ [ - 30
t-h t+Eh
forall 0 < h < h,; and allt; € A satisfying (14). Let us now consider the case th< j+1,
where we have to apply our inductive hypothesis. Concerrdidgye have two main cases.

The first one is whely = 1. Thus, we consider the set
Jb={jeN:2<j<ml;>2}.

Sincem < j + 1, we havel, # 0. PreciselyJ, is made byp distinct element$j, ..., jp}
withl<p<m-1 Wealsosely=1{2,...,m}\ Jo. If p<m-1, namelyly # 0, then
lo = {i1,....imp-1} @andl; = 1 for alli € lo. By the consequence (26) of the inductive
assumption, since @ ti,; — t,t; —t < h < hyyj, it follows that the norm of (27) is less than
or equal to

|

_1 t+h ) . h
lo Itiv1 — &l (|oh)wp n (3K2| hi- f 101 — G2 ()] + (ku + k21) ﬁ)
| t-h

igw-dip
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forall 0 < h < hyyj, witht + h € A. Thus, there existe(m, p) > 0, only depending oy,
ky andky, foralll = 2,.. ., j, such that

t+h h

(1 .
(29) |(9I1(ti+1) — 9, (t)) 0 G, (t) 0 G (rri) 0 -+ 0 glm(Tm—Z,i)| < xg(m, p) b’ (r—] fh |91—91(t)|+ﬁ)~

t—

Explicitly, we can chooses(m, p) = 915" " (12, + 1)P* ( MaXeq<j kil + /<2|)p

The remaining case is > 2. We observe that for the integdrsuch that 2< | < ¢, the
consequence (26) of the inductive assumption yields
(30) 191(E)] < (' = 1) (ku + k2 + 12k lo)

forall ' € Asuch that O< t' —t < h,g;. In the caseé = 1, we havdg;(t')] < lo (" —t) for
allt’ € An (t, +o0). Now, the general term (27) can be written as the sum of

l1
(B1)  (9utia) = 9u() + D Pri(— 9(t), 9(t2)) © 9 (t) © Giy(T1) © - - © Gy (Tm-2)

m=2

and of
l1
(32) (D P (= 9, 9(t42))) © G (t) © Gy (T1) © -+ © Gy (Tm-2.).
m=2

Since the first factor of (31) i&l(g(ti)‘lg(tiﬂ)), the norm of (31) is not greater than

It — ti,al"

(33) ||01 (ky + ko + o+ 12K2||0)m—1 Rzt

I1

Now, we observe that the norm of (32) is less than or equaledatowing number

(34)

I1
Z P, (= 9(t), g(ti+1))| 19, (019 (T2l -+ - 19 (Tm-20) -
m=2

By the induction hypothesis (24), the first factor of this prodis less than or equal to
t+£i+721h )

(o1t L
ka1, Y (ﬁ-'-ﬁ»[—h |91—91(t)|+ft+(i;nl)h |01 — 0u(®)

hence, as before, taking into account (26), the producti§349t larger than
t+§i+722h

La(h 1 L o]
(35) ka1, Y™ (F"‘ﬁft_h |91—91(t)|+‘ft+0_71)h |91—91(t)|)l<4(m) hztim,

wherexs(m) = (ky + k2 + lo + 124 10)™ L. Taking into account the decomposition of (27)
into the sum of (31) and (32) and using the estimates (33) @By (ve get a geometric
constanis(m), only depending oy and allky; andky with | = 2,.. ., j, such that

O, (tiv1) — 9, (6)) 0 G, (ti) 0 - - - © Gy (Tm-2) h 1 (t+h _ t+ 2 . .
( I, (liv1) — 0 ) I I 2 ‘ < —+ —f 101 — G1(t)| + - |g1 - gl(t)|
h t+£%1h

(36)

xs(m) h “n? nJ
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in the casé; > 2. Joining both casds = 1 andl; > 2, namely, joining (29) with (36), we
get a new constamrt(m) > «x5(m) depending on the same constantg«§im), such that

(gll(ti+l)_gll(ti))oglz(ti)°"'°glm(7w2.i)‘ h 1 & t+2h _ _
(37) o < F+ﬁft_h Igl—gl(t)|+ft+£i_71)h |01 - 6u(0)]
whenever 2< m < j+ 1, 1,0, ..l =2 L i+ +---+1n = J+1, t,t+h e A

0 < h < min{hyj, ot} andt; € A satisfy (14) for alli = 1,...,n -1, wherety = t and
t, = t + h. Thus, under the same conditions, sifGg;.1)(—g(ti), 9(ti.1)) is a finite linear
combination of elements (27), we also have

/h 1 t+h t+(i+2)h
Pr-(-00. 0D <@ (4= [ =i+ [ o - )
nc NJen t+Dp
for a suitable constant,(m) > 0, depending org(m). This immediately leads us to (25)
and concludes our argument by induction. As a consequeakimgtinto account that

gi(t+h)=A; - BjandB; = 35 >, Pmi(=g(t), 9(ti+1)), we obtain

t+2h i
: . . h’
(39) O+ 1< 37 [ - a1+ ey )
t—2h
forall j =2,...,cand all 0< h < h,y ;. It follows that
(t+h
(39) imsup @y L
h—0 |h|J n

hence for the arbitrary choice ofe N \ {0}, we have proved that there exists

; -1
lim 53 (y(Oy(t+ ).
t+heA
This concludes the proof. m]

Proof of Theorem 1.1We can clearly assume thats closed, sincd is Lipschitz and the
target is a complete metric space. It is also not restri¢tvessume thak is also bounded.
Letvi,Vo,...,Vny € S; be a set of horizontal directions & such thatjy;| = 1 for all
i=1,...,Nand for somd& > 0 we have that

V ={6yVi---0pWn : Il <T}

is a neighbourhood of the origin containiBg. For allx € G andv € G \ {0} we write the
one dimensional set of parameters for which we hit theAsetA(Xx, v) = {t € R | x6;v € A}.
Take one of the directions and denote by, the one-dimensional subgroup spanned by it.
Let W, be the complementary subgroup, so tfias the semidirect product of, andW,.
Then by Theorem 3.1 for anye W, the limit

(40) lim 61 (f(xdvi) ™ f (x0svidevi))
tEA(tX;)s(\)/i,Vi)
exists for £-almost everys € A(x,v;). ConsideringW; as a vector space and using the

Fubini's theorem, we get the existence of the limit in (40)f5-almost everyX, s) € WixR
for which xésv; € A, wheren denotes the topological dimension®f
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Since bothHQ with respect to the homogeneous distadand £" with respect to the
understood Euclidean metric @hare Haar measures Gf applying the previous argument
to all directionsv;, for H<-almost allx € A all the limits

(41) oy f(x) = lim S1(f(9~Hf (x5ew))
teA(X,Vv;)

withi =1,2,..., N exist. Let us fix any > 0. SinceA is bounded, in view of both Lusin
and Severini-Egorov theorems, we have a compadt sefA, made of density points, such
that for alli = 1,2,..., N the limitsd,, f(X) exist at every poink € C, the convergence

(42) 6%(f(x)‘1f(x5tvi)) —-o,f(x) as t—0 and teA(Xxw)
is uniform onC, the maps — 9, f(X) are continuous o€, the convergence of the densities
HYB(X, r) N AN {X5V; : t €R))

(43) o -1
asr | 0 is uniform forx € C andH®(A\ C) < €. Let us choos& € C. We know that
(44) ACxD _ o

m =
a0 d(0,2)
Now, we choos@ = 6,V - - - 6y, Wy With [ti] < T andt € (-1, 1). Thus, we are able to find a
sequence’, ..., Vy € G so that

(45) xVp---vieCand  d(V, 6y Vi) = d(C, XV - - - Vi_161, i)

foralli = 1,...,N. Such a sequence exists sirtas compact. We will also use the
elementsV,...,w,, € Gsuch thatforall = 1,...,N we havexV, --- Vi Wi € A,

W e {opvi the R} and dW,oqvi) = d({XV} -V 100V s he R} N A XV -« Vi 6y V).
Such a sequence exists becaAss closed and (43) uniformly holds. Moreover, the same
uniform convergence of (43) yields
d(vvit’téttivi) 0
uniformly with respect toc that varies irC, |t < T andi = 1,..., N, ast — 0. Notice that

we have not emphasized the dependence. drhe diferent sets of projected elemefis
and{w!} are illustrated in Figure 1. For dlle (-1, 1), we have

(46)

N
S1(FOYHO0E W) = [ | 8(F OV -V ) 0 -+ ).
i=1

From (43) it follows in particular that whenever € C for everya > 0 the following
homogeneity property
(47) 0a0y T(X) = day f(X).
Thus, we defing! = xV, ---Vi_, € Cfor everyi = 1,...,N and consider the inequality
P () W), ds,w F(9) < p(62(F () f (i), 05yt f(m))
+ P05 yui (), D £ (7)) + B F (1) D F(X)) -
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Ficure 1. The choice of elements andw} in the proof of Theorem 1.1.

The first addend on the right hand side uniformly converge® whenx varies inC, as
t — 0. In fact,n} € C and the uniform convergence of (41) is preserved under liagca
wherea%w} = dn, Vi @andh; uniformly converges to one dd ast — 0, due to (46).

Since we have the rescaling of partial derivatives, we get

p(66%Wf f (77}), aéti Vi f (Tllt)) = p(5htti 0y f (nit)’ 00y f (77}))

that uniformly goes to zero ase C andt — 0, again due to (46). This implies the uniform
convergence of the second addend to zero. Finally, the tiénind converges uniformly to 0
by the continuity ob,, f onC. Joining (44) and (45), we have that

(48) 51/t(Vt1 i V|t) - l_[5t|V|
I=1

uniformly with respectto ali = 1,..., N and|tj| < T ast — 0. It follows that
t1d(V,64vi) =0 as t—0
foralli =1,...,Nand|t| < T. This convergence is not uniform with respecki@lthough
we could make it even uniform with respectxdy choosing this element in a “slightly
smaller subset of”. We havet=*d(w, V) < t™td(W}, 6y, vi) + t~2d(0y, Vi, V) — O ast — 0.
This gives
5 (faw) () >0 as t— 0.
Combining the previous limit with (42), we get that
S1(F i) D)) = o3 (FOm) ™ f (piwi))o (F (i) (i) — B, F(X)

ast — 0. This limit is uniform with respect to alij| < T, but it may depend om.
Therefore, we are led to the existence of the following limit

N
(49) lim o (f) (v -+ W) = ]‘[a f(x),
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that is uniform with respect ta € V. This allows us to defing,(u) = [], ds,v F(X) for
allu=éyVvy--- 6, Wn € G. Therefore the definition df,(u) is independent of the choice of
the representation af The choice of the “nonlinear fierence quotient”

S (FOO 00k W)

has been made in order to get the existence of the h-homomorpk. In fact, L, is an
h-homomorphism since for all = 6;,v; - - - 6y, Vn @ndw = 6., V; - - - 6, VN, We have

N N
L (uw) = ]_[ s, T(X) ﬂ 35w T(X) = L(U)Lx(w).
i=1 i=1

The homogeneity ok, is obvious due to the homogeneity of partial derivatives.(4&t
(yi)i2, € Abe any sequence so that— x. Defined, = d(x,yp) and letz, € G be such that
X" lyp = 64,Zp. It follows that

jim 2T 00): L)) fim %p(f(x)-lf(xaﬂpzp), Le(61,25)
e Ap

peo d(x, yp)
= IL|)i_r]c]o/0(<‘>%(f(X)_lf(th,,Zp)), Lx(2p)) = 0

since both the limits (49) and (48) foe N are uniform. Thusl. is the h-diferential off
atx. The arbitrary choice of > 0 concludes the proof. m]

4. THE METRIC AREA FORMULA

Let us fix a metric spac¥ equipped with a distangeand letG denote a stratified group
equipped with both a homogeneous distatesd the Hausdﬁ‘rmeasureH(? constructed
with respect tal. The integeiQ is the homogeneous dimension®f SinceG is a locally
compact real Lie group, the measmﬁ%g Is the Haar measure &. For all homogeneous

distancesr on G, we setHy = 8o hd and

> diam.(E)° *©
h2(A) = sup inf { > '”;# :Ac| JE, diam,(E)) < g}
&>0 =0 j=0

where the constaly > 0 is fixed.

Definition 4.1 (Metric differentiability) Let A c G and letf : A — Y. We fix adensity
point xe A. Then we say that is metrically djferentiableat x if there exists a homoge-
neous seminorns such thap(f(x), f(x2) — s(2) = o(||z]) asz € x *A and||z7| — 0*. The
homogeneous seminorsis unique and it is denoted bgd f(x), which we call thanetric
differentialof f atx.

Notice that in the cas& is a Euclidean space, formula (2) yields the Kirchheim'saare
formula established in [13], where the following notion atdbian is used

Nwn
(50) J(9) = :

S SO~ AHT(X)
Here s denotes a seminorm dR" and| - | is the standard Euclidean norm. In fact, the
metric diferential in this case is precisely a seminorm. By the speeahgtric properties
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of normed spaces, Lemma 6 of [13] shows &l - [I) = H (A)/H|(A) for any A c X
of positive measure, whep€ is a finite dimensional Banach space with ngfm|. This
immediately shows that formula (3) gives the Kirchheim'sal@an when the Carnot group
is replaced by a Euclidean space. The following remark shbatsthe metric Jacobian in
stratified groups coincides with the sub-Riemannian Jaoaififil 6].

Remark 4.1. Let L: G — M be an injective h-homomorphism from a stratified group
G to a Banach homogeneous graip Let us defines (X) = p(L(x),0) for all x e G and
notice thats, is a homogeneous distance Gnhdue to the injectivity oL. One can easily
check thatH(By) = H2(L(By)). It follows that

HI(L(By))
H(BL)

When M is in particular a Carnot group, then (51) shows that the mdaicobian (3)
coincides with the “sub-Riemannian Jacobian” introduce®adtinition 10 of [16]. One
can relate these Jacobians with the classical ones compytedtrices. In fact, as proved
in Proposition 3.18 of [16], there is a geometric consta priori also depending on the
subspacé (G), such that

(52) J(s) = C yJdet(]Lo).

wherel, is the matrix representing as a linear mapping fror@ to L(G) with respect to
a fixed scalar product. Of course, when one chooses distantemany symmetries the
constantC will not depend on the subspatéG). Formula (52) extends to our framework,
since in the general case where the target is a Banach honmgegeupM, we have that
L(G) is still a finite dimensional linear subspaceldt

(51) I(s) =

The key ingredient for the area formula is the linearizapoocedure associated to the
a.e. diferentiability, see Lemma 3.2.2 of [7]. For metric valuedddpitz mappings with
Euclidean source space, Kirchheim uses the separabiligyl @dompact convex sets, ac-
cording to 2.10.21 of [7], in order to get the following segaility of norms: there exists
a countable family of norm§| - ||;} such that for every & ¢ < 1 and every nornfj - || we
have somg! - I, such that (£ &)l - [li, < II- 1| < (L + &)l - [l

Let us point out that a metric ball with respect to a homogesatistance need not be
a convex set. However, the previous separability of norntishetids for homogeneous
norms, since the point is that a Carnot grdtiis a boundedly compact metric space and
the class of nonempty compact setsiis separable with respect to the Hausgtldistance
between compact sets.

Lemma 4.1. There exists a countable famify of homogeneous norms such that for every
€ € (0,1) and every homogeneous nowpthere exists &€ F such that

(53) (1-g)s<v<(l+¢s

Next, we recall the measure theoretic notion of Jacobian[X4.
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Definition 4.2 (Measure theoretic Jacobiar)et E ¢ G be a closed set, fE — Y
Lipschitz and x E. Then we define

HIF(END
Ji(X) = limsup o E? X’r)).
r—0* Hy (Dyr)
Lemma 4.2. Let E c G be closed and let fE — Y be Lipschitz. Denote b c E

the subset of points where f is metricallyfeientiable and the metric gerential is a
homogeneous norm. Then the following statements hold.

(1) There exists a family of Borel sefE;}icy such thatD = (J;2,E and fg is bi-
Lipschitz onto its image.
(2) For H%-a.e. xe D we have Imdf(x)) = J;(X).

Proof. Let ¥ = {s : i € N} be as in Lemma 4.1. Fix an arbitragye (0, 1) and define for
alli,n € N the set

Din={xeD : |p(f(xu), (X)) — s(u) < es(u) for all u e x E with ||u| < e™}.

Combining metric dferentiability with Lemma 4.1 give® = | jay Din. SinceG is
separable, we can cover, , with a countable family of setS, ¢/, N D;, with| € N. Then
for all X,y € Dy en/4 N Dipn, We immediately get

(54) (1- &) s(xty) < p(f(x). f(y) < (L + &) s(xMY).

This concludes the proof of the first statement. Now, wefxD;,, N D(D;,). Then for
allr €]0,e™"/2[ andx,y € D, N D, the inequalities (54) again hold. As a consequence,
settingL = Lip(f), we get
H(1(Dur NE)) _
HI(Dz)

HE(Dur) | oHE (D \ Din)

s Q
oD, H(Dy)

and

HA(I(Oer N E)  HZ(F(Oxr N D) H(Dzr N Di)

(1-¢)°

HP(D,)  HID) H (D)
Therefore we have
HID HO(f(D,, NE HE(D
(1—8)Q z( 1)§I'msu p( E?Z,r ))S(1+8)Q sQ( 1)’
7-[d (D1) r—0* 7‘{d (DZ,r) Hd (D1)
for an arbitrarye > 0. This leads us to the conclusion. O

Lemma4.3.Let f: G — Y be a Lipschitz mapping. LetBe the set of points x G for
which there exists,e G with ||vy|| = 1 such that for alle > 0 we have) < r, < £ such that

(55) p(f(x6;vx), f(X)) < e,
forall 0 < r <. It follows thatH( f (Eo)) = O.
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Proof. LetL > 1 denote a Lipschitz constant bf choosex € Eq and fix an arbitrarnR > 0.
Take an arbitrarg > 0 such that 4 < 1 andB, . c Bg. By definition ofEy, we havev, € S
and O< r, < &/2 such that (55) holds. Defining

Sy.e = U Bxdrvx,”T‘g C Bxe,
o<r<rg
by triangle inequality, we get(S,, ;) c B,(f(x), 2er.). Now, fix N = [L/2¢] and choose
two distinct integers, j between 0 andN. By triangle inequality, one observes that

BX‘(SZ‘ergiVx,iLrS N B % = @
L

X0 2¢rgj Vs
L

This leads us tdH(S,,.) > Cs21rl. As a result, the measugg = (fig);H on'Y
satisfies

ur(Bo(F(9.2e1.)) ¢

2100 - X%
From the arbitrary choice of > 0, it follows that
imsuptR B0

{50+ tQ

for everyx € Eq N B, Whereug is a finite Borel regular measure o Finally, standard

differentiation theorems givé{pQ(f(Eo N Bg)) = 0 and the arbitrary choice ®® > 0
concludes the proof. m|

Corollary 4.1. Let E c G be a closed set and let fE — Y be a Lipschitz mapping,
whose metric giferential exists on a subsebE- E and at all point of this set it is not a
homogeneous norm. Thé#?(f(E)) = 0.

Proof. The imagef (E) is separable ifY, so in particular it is a separable metric space that
can be isometrically embedded ita Hence we can assume that [. With this target,
the componentwise extension bimmediately yields a Lipschitz extensidndefined on
all of G, having the same Lipschitz constant. Take E, ¢ D(E) andvy € G such that
lIvill = 1 andmd f(x)(vx) = O. Itis easy to check thdtis metrically diferentiable ak and
md f(x) = mdf (X). Thereforef satisfies conditions of Lemma 4.3 and our claim holds.

Proof of Theorem 1.28ince7-(§ is Borel regular and is Lipschitz, it is not restrictive to
assume thad\ is closed and that is everywhere metrically éfierentiable. By definition of
metric Jacobian)(md f(z)) = 0 whenever belongs to the subsét of A where the metric
differential is not a homogeneous norm. Corollary 4.1 impfr(;%(f(Ao)) = 0, hence (2)
holds for the restrictiorfis,. By Lemma 4.2, we havA \ A, = Ui, Ej whereE; are Borel
sets andig, is injective andJy equalsJ(md f(-)) H-almost everywhere, hence Theorem 2
of [18] establishes (2) fofiaa,) and concludes the proof. o
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