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Abstract

In the geometries of stratified groups, we show that H-convex functions locally
bounded from above are locally Lipschitz continuous and that the class of v-convex
functions exactly corresponds to the class of upper semicontinuous H-convex functions.
As a consequence, v-convex functions are locally Lipschitz continuous in every stra-
tified group. In the class of step 2 groups we characterize locally Lipschitz H-convex
functions as measures whose distributional horizontal Hessian is positive semidefinite.
In Euclidean space the same results were obtained by Dudley and Reshetnyak. We
prove that a continuous H-convex function is a.e. twice differentiable whenever its
second order horizontal derivatives are Radon measures.
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1 Introduction

The notion of convexity plays an important role in several areas of Mathematics, as Cal-
culus of Variations, Differential Geometry, Real Analysis, Optimal Control Theory, Partial
Differential Equations and other more. In the setting of stratified groups, different no-
tions of convexity have been recently proposed by Danielli, Garofalo and Nhieu, [9], and
by Lu, Manfredi and Stroffolini, [23]. A stratified group is a nilpotent simply connected
Lie group G with a graded Lie algebra G =V, @ --- @V, and a natural family of dilations
dr : G — G which are compatible with the group operation, [14]. The sub-Riemannian
geometry of a stratified group is determined by its first layer Vi, which yields the so-called
“Carnot-Carathéodory distance”, [5]. Directions spanned by vector fields of V; are called
“horizontal directions”. Their privileged role appears in the following definition.

A “weakly H-convex” (weakly horizontally convex) function, [9], or a “CC-convex”
(Caffarelli-Cabré convex) function, [23], u : G — R satisfies the inequality

u (283(z"y)) < (1= N uz) + Mu(y) M

whenever z,y € G, 0 < XA < 1 and the geometrical constraint 'y € V; C G holds,
where Vi = exp V7 C G is the subset of horizontal directions, see Section 2 for precise
definitions. In the sequel, we will refer to functions satisfying (1) simply as “H-convex
functions”. This notion amounts to require that the restriction of the function to all
“horizontal lines” t — zd:h with h € V; is a one-dimensional convex function, as we
will precisely illustrate in Proposition 3.9. We note that in groups of step higher than
two, horizontal lines introduced in Definition 3.7 are not always lines in the usual sense
with respect to graded coordinates. For instance, in Remark 3.8 we show an example of
horizontal line that is defined by a parabola with respect to a system of graded coordinates.
The most interesting geometric phenomenon related to H-convex functions is the validity
of the following principle: the information on the behaviour of a function on the subset
of horizontal directions satisfying the Hormander condition yields a “global” information
on the function in terms of the Carnot-Carathéodory distance, which is in turn generated
by curves moving along horizontal directions. The explanation of this phenomenon comes
from the well known Chow theorem, according to which the Hormander condition on a set
of vector fields, that is a “local” condition, implies the connectedness by horizontal curves,
that is a “global condition”, see for instance [5]. In a deeper and more general form the
previous observations constitute part of the leading themes of [17].

Our first result in this direction is given in Theorem 3.18. Here we prove that every
H-convex function which is locally bounded from above is locally Lipschitz with respect to
the Carnot-Carathéodory distance. Here we use in a suitable way the following “generating
property”: let hy, ha, ..., hy, be elements of Vi such that (exp~! hy,...,exp~! hy,) is a basis
of Vj. Then every direction v € G in the closed unit ball can be written as the following
ordered product

v = 5a1hz’15a2hi2 e 5aNhiN’



where N € N and (i1,...,in) € {1,2,...,m}" depend only on G and the vector a =
(a,...,ay) depends on v and it varies in a compact neighbourhood of the origin in R¥.
This allows us to extend the one-dimensional Lipschitz property along horizontal lines to
all the space. Note that the Lipschitz continuity result of Theorem 9.1 in [9] does not apply
directly to H-convex functions which are locally bounded from above in that one needs to
prove first that they are at least in Llloc. In fact, locally summable H-convex functions are
locally Lipschitz continuous, after redefinition on a set of measure zero, see Proposition 6.6.
Rickly has recently proved that only measurability of H-convex functions suffices to prove
Lipschitz continuity, [31].

Another interesting approach is that of [23], according to which a “v-convex function”
(convex in the viscosity sense) is an upper semicontinuous function u : G — R such that

¢

V%u >0 in the viscosity sense. (2)

The symmetrized horizontal Hessian V%{u of a function w of class C? is the matrix of
elements (X;X;u + X;X;u)/2, for every i,j = 1,2,...,m, where (X1, Xs,...,X,,) is an
orthonormal basis of V;. Condition (2) means that for every = € Q and every ¢ € C?(G)
such that ¢ > u in a neighbourhood of z and u(z) = ¢(z), we have V% ¢(x) > 0. Here
it is rather natural wondering whether the class of v-convex functions coincides with that
of upper semicontinuous H-convex functions. The second main result of the paper gives
a positive answer to this question, see Theorem 4.5. Recently, different proofs of this
result have been given in [21], [30] and [36]. As a consequence of Theorem 4.5 and of
Corollary 3.19, it follows that v-convex functions are locally Lipschitz continuous in every
stratified group. Let us briefly describe our approach. Proposition 4.3 shows that upper
semicontinuous H-convex functions are v-convex in every stratified group. The difficult part
is to prove the converse to this statement. This is the heart of the proof of Theorem 4.5.
Reasoning by contradiction, we assume that u is not H-convex, then we look for a point
¢ € G and a test function ¢ of class C? that touches u from above at ¢ and that satisfies
the condition X2¢(¢) < 0. The horizontal direction X; corresponds to that direction
where the function u fails to be one-dimensional convex. Working in graded coordinates,
see Definition 2.2, and performing a left translation, it is not restrictive to assume that
u(0) > max{u(e,0,...,0),u(8,0,...,0)}, with a < 0 < 8. The general scheme of our
proof is that of [4], where remarkable modifications are added, due to the complexity of
stratified groups. Let us briefly recall this scheme. We consider suitable smooth functions
1. and open neighbourhoods O, of the segment |(c,0,...,0),(3,0,...,0)[ such that | X4
restricted to O, is less than or equal to a constant independent of e. The shape of O, shrinks
around the direction of z1 as ¢ — 07, in addition the upper semicontinuity of u allows for
proving that u < 9., = —Cx? + 1., on dO,, for suitably small positive numbers g9 and
C. The constant C can be chosen so that X?(—Cz? + 1.,) < 0 on O,. Finally, the strict
inequality between u and 7., on 00, gives a number vy such that ¢ = vy + 7., touches u
from above at some point ¢ € O, and XZ¢(¢) < 0.

Several obstacles are hidden along this path in the case of general stratified groups.
First of all, the group operation is far from being manageable due to the nontrivial Baker-



Campbell-Hausdorff formula, [19]. The first idea is of using a family of test functions
containing the polynomial coefficients of the vector field X itself

q

Ye(z) = g2 Zm? + Z (:Ef + a15($)2) , (3)
=2

s=m+1

where X7 = 9;, + > 7 41 015(x) Op,. After this choice, the demanding technical part is
finding a constant C' > 0 such that supy_|X 21p.| < C for every € > 0 suitably small. This
requires the study of the second order differential operator X?. Here a nontrivial technical
piece appears in Lemma 4.4, where we study some partial derivatives of coefficients of X1,
which are of crucial importance to the estimate of X1, on O.. To do this, we systematically
use the relation between the homogeneous polynomials appearing in the Baker-Campbell-
Hausdorff formula and the coefficients of X, as we recall in formula (19). The fact that
the set O, is defined by

Og:{$eﬂ%q‘a<x1<ﬁ,1/)E(x)<M+l} (4)

permits us to estimate all the factors 6‘2a1ja15 and E_ijals appearing in the expression
of X21)., see (50) and (51). In fact, due to (3) and (4) we clearly have

sup {max {J; a1,(a) €21, oy () (o) =21} ) < CEED

x€0;:
The constant M is the maximum of u on some fixed compact neighbourhood of the seg-
ment [(«,0,...,0),(8,0,...,0)]. For ¢ suitably small the open set O, is contained in this
neighbourhood, then the definition of O, and a suitable rescaling of u, which preserves v-
convexity, imply that u(z) < —Cz? +1.(z) for every z € JO,, where C only depends on M
and on the fixed rescaling of u. This conflicts with v-convexity of u, proving Theorem 4.5.

The third main result of the present paper studies the relationship between H-convexity

and the horizontal Hessian. In Euclidean space Bakel’'man, [3], proved that the distribu-
tional second derivatives of a convex function are signed Radon measures. Reshetnyak
established that a locally summable function is equivalent to a convex function if and only
if its distributional Hessian is positive semidefinite, [29]. The characterization of distribu-
tions with positive semidefinite Hessian as convex functions is due to Dudley, [11]. Clearly
the same question can be tackled considering H-convex functions and the distributional
horizontal Hessian D%, see Definition 5.3. It has been proved in [9] and [23] that for
every locally summable H-convex function u the matrix of distributions D%Iu is nonnega-
tive, hence it is formed by Radon measures. The natural way to obtain this result is the
approximation by convolutions

us () = /G e Q0(6,.y) uly\z) dy = /G 90 (8, (zy ™)) uly) dy,



where 9 is a smooth nonnegative function with compact support which satisfies fGﬁ =1
and @ is the Hausdorff dimension of the group. In fact, H-convexity is preserved by left
translations, then one easily checks that the H-convexity of v implies the H-convexity of u,
for every € > 0 and this fact along with LlloC convergence of u. to u suffices to prove that
D%u > 0. However, this method fails if used to show that locally summable functions u
with D%{u > 0 are equivalent to locally Lipschitz H-convex functions. It suffices to check
that the equality

XiX; [0 (61/c(xy )] = e 2(XiX;0) (61/c(xy 1))

in general does not hold, when y is fixed and the operators X; differentiate with respect to
the variable z. In fact, X; are not right invariant differential operators. To overcome this
problem, one simply defines the different convolution

ug () = /G6_Q19(51/5y) u(xy_l) dy = éE_Qﬁ (61/2(?/_1:1;)) u(y) dy, (5)
that satisfies
Vius(a) = [ (Vi) ulw) dy. ©)

where 9. (y) = 5*Q79((51/5y). From the assumption D%u > 0, we would be tempted to infer
from (6) that V%u.(z) > 0, but we are not allowed for this conclusion. In fact, to use the
hypothesis D%u > 0, the horizontal Hessian V% inside the integral (6) must differentiate
with respect to the variable y. To overcome this difficulty, we seek those stratified groups
and those mollificators ¥ such that the following key property holds

(VEd)(y) = (VEI) (). (7)

In Euclidean space (7) becomes trivial for even functions, because V% coincides with the
usual V2. The situation changes in the case of noncommutative stratified groups, where
the form of V%I depends on the algebraic structure of the group. In Theorem 5.6 we prove
(7) for all 2 step stratified groups. The proof of this result relies on a detailed analysis of
the operators X;X; in the case of 2 step groups. Due to (7) we have

V(o) = |

(VHI:) (2 y) uly) dy:/VZH [De(z"y)] uly) dy, (8)
G G

where the symbol V,p specifies that the operator V%{ differentiates with respect to the
variable y. This allows us to desume that quu8 > 0, then u. is H-convex. The rest of
the proof follows by standard compactness arguments and the estimates (9), which are dis-
cussed below. All these considerations can be extended without difficulty to distributions
represented by signed Radon measures, instead of locally summable functions. Then we
are arrived at our main result, stated in Theorem 5.7. Here we prove that in every step 2



stratified group a distribution T represented by a signed Radon measure is defined by a lo-
cally Lipschitz H-convex function if and only if D%{T > 0. This proves the sub-Riemannian
versions of Dudley’s and Reshetnyak’s theorems in all step 2 stratified groups.

The last part of the present paper concerns the a.e. existence of second derivatives of
H-convex functions. In the Euclidean setting the celebrated Aleksandrov-Busemann-Feller
theorem (shortly, ABF theorem) states that convex functions on a finite dimensional space
are a.e. twice differentiable. We precisely consider the version of Theorem 1 in Section 6.4
of [12]. The problem of obtaining ABF theorem on stratified groups has been raised in
several recent papers [1], [4], [9], [23]. In particular, Ambrosio and the author pointed out
in [1] that the validity of the following L>-estimates

C
uldy  and  [Vaulose <7 f W@l ©
£,cr

for every H-convex function u, along with the second order differentiability in the L! sense

. 1
lim = /B )~ Fig ()l dy =0 (10)

for a.e. z, where P;) is a polynomial of homogeneous degree less than or equal to 2, would
imply the following second order pointwise differentiability

lim

=0 11
yoe o pla ()

for a.e. z. We give a complete proof of this fact, see Theorem 6.5. Inequalities (9) have
been established in [9], [23] and [21]. The validity of (10) for a.e. z has been proved
in [1] for the class of functions with locally H-bounded second variation, see also [25].
Gutiérrez and Montanari have proved that H-convex functions have locally H-bounded
second variation, filling the gap to obtain Aleksandrov theorem, [16]. Extension of this
result to step two Carnot groups has been established by Danielli, Garofalo, Nhieu and
Tournier, [10]. Recently, Trudinger has achieved a further improvement for free divergence
Hormander vector fields of step two, [33].

2 Basic materials on stratified groups

In this section we present essential materials needed for the paper. A stratified group is
a simply connected nilpotent Lie group G endowed with a graded Lie algebra G, which is
decomposed into a direct sum of subspaces V; subject to the conditions Vj41 = [V}, V] for
every 7 € N\ {0} and V; = {0} whenever j is greater than a positive integer. We denote
by ¢ the maximum integer such that V, # {0} and we call it the nilpotence degree of the
group or the step of the group. The left translation [, : G — G is defined by I, (y) = zy
for every z,y € G. The assumption that G is simply connected and nilpotent ensures that



the exponential map exp : G — G is a diffeomorphism. The inverse map of exp is denoted
by In : G — G. The subset of horizontal directions in the group is defined by Vi = exp V.

The underlying metric of the group is a left invariant Riemannian metric g such that
the subspaces V; are orthogonal each other. We will always refer to these metrics, called
graded metrics. The Riemannian volume measure on G with respect to a graded metric
will be denoted by v,. We also write |A| = v,(A) for every measurable subset A C G. It
is clear that v, is left invariant, hence it is the Haar measure of the group. For ease of
notation, we will use the symbol dz when the integration is considered with respect to the
Riemannian volume v,. The averaged integral of a summable map u : A — R is defined
as us = fyu=|A| [ u

The grading of G allows us to define dilations on the group as follows.

Deﬁmtlon 2.1 (Dilations with sign) For every ¢ > 0 we consider the family of maps

: G — G defined as 5t(z LU5) = Z _, t'vj, where the sum E ‘_vj € G is the
unlque representation of a Vector of g, prov1ded that v; € V; for every j = 1,...,¢. This
notion is motivated by the fact that the composition J; := exp obpoln : G —» G is a group
homomorphism and satisfies the one parameter group law d, (dsy) = 0,5y for every r,s > 0
and every y € G. If t < 0, then we define 6;y := (5‘t|y*1 for every y € G. Denoting by e the
unit element of the group we also define dyy := e for every y € G.

By virtue of the left invariance of ¢ we can construct a natural left invariant distance on G
in such a way that it is 1-homogeneous with respect to dilations. To do this, we consider
the class of horizontal curves, e.g. absolutely continuous curves v : [a,b] — G, such
that for a.e. t € [a,b] they satisfy v/(t) = Y., ci(t) X; (y(t)), where > c2(t) < 1 and
(X1,...,X) is an orthonormal basis of V7. The fact that the Lie algebra generated by V3
coincides with G ensures that any pair of points of G can be joined by an horizontal curve.
Hence we can define the finite number

p(z,y) := inf {b—a ‘ v : [a,b] — G is horizontal and y(a) = z, v(b) = y}

for any z,y € G. One can verify that d is a distance on G. This is the so-called Carnot-
Carathéodory distance. Throughout the paper we will always refer to this distance. The
usual Euclidean norm is denoted by |- |. The distance p(y, e), where e is the unit element
of the group, is simply denoted by p(y), hence p(e) = 0. The left invariance of Carnot-
Carathéodory distance on stratified groups yields the symmetry property p(y~') = p(y).
This equality and the notion of dilation with sign give the useful formula

p(dry) = [t p(y) (12)

for every ¢t € R and every y € G. The open ball of center x € G and radius r > 0 with
respect to the Carnot-Carathéodory distance is denoted by B, . Balls of radius r centered
at e will be denoted simply by B,. The symbols D,, and D, denote closed balls with
analogous meanings. Note that we have

|B:w‘| = |Bl|7"Q (13)



for every x € G and any r > 0. One can check that the integer @ is the Hausdorff dimension
of G with respect to the Carnot-Carathéodory distance and it is strictly greater than the
topological dimension ¢ of the group whenever G is not Abelian. More information on
stratified groups can be found for instance in [14] and [32].

Definition 2.2 (Graded coordinates) We define n; = dimV; and m; = Z;Zl n; for
any i = 1,..... We also define mg = 0 and m; = m. We say that a basis (X;,...,X,) of
G is an adapted basis if (Xp,_y 41, Ximj_1+2,- -+, Xmm;) is a basis of V; for any j = 1,.....
We say that (X,...,X,) is a graded basis if it is an adapted and orthonormal basis with
respect to a graded metric. The graded coordinates with respect to the basis (X1,..., Xy)
are given by the diffeomorphism F' : R? — G defined by

F(z) =exp <i$ij> .
j=1

The degree of the coordinate z; is the unique integer d; such that X; € V..

We will assume throughout that (X7,...,X,) represents a graded basis of G and that
(X1...,X,,) is an orthonormal basis of the first layer V;. The notions of polynomials on
stratifed groups and of homogeneous degree will be important tools throughout the paper.
Here we briefly recall these notions, referring to Chapter 1.C of [14]. A polynomial on G is
function P : G — R such that Po F'is a polynomial on R?, where F' is a system of graded
coordinates. For every polynomial P : G — R we have the expression

P(z) =) cqz® (14)

Q

where a € N9, 7@ = 2 ... 25° and only a finite number of coefficients ¢, € R do not
vanish. For every a € N? we define the homogeneous degree of a as follows

q
d(a) = Z dy, a,
k=1

and the homogeneous degree of a polynomial P : G — R with expression (14) by
h-deg(P) := max{d(a) | co # 0}.
We define the vector space
Pui(G) = {P | P is a polynomial on G with h-deg(P) < k}.

Throughout the paper the remarkable Baker-Campbell-Hausdorff formula will be needed.



Theorem 2.3 (Baker-Campbell-Hausdorff formula) Let X,Y € G, where G is the
nilpotent Lie algebra of a simply connected group G of step v and define

In (eprepr) =X0oY.
Then we have

LL(—1)n ! AdX)™ (AdY)P - - (AdX)% (AdY )P~ (Y
X©Y:;(71 Z( ) ( )a!ﬂ!(erﬁ)'( ) ()7

(15)
1<]al+|8|<t

where for any Z € G the map AdZ : G — G s the linear operator defined by AdZ(W) =
[Z,W] and for any o € N" we have assumed the convention o! = [[|_, oy and |a| =

2

A proof of this important formula can be found for instance in [34]. In order to obtain
manageable expressions of vector fields (X1,...,X,,) with respect to graded coordinates
we will also use a less explicit form of (15). In fact, there are uniquely defined homogeneous
polynomials P; : R? x R? — R with h-deg(P) = ds, such that

exp(Zq:;Uij> exp(i:ij]) :exp<zq:Ps($,y) XS). (16)
j=1 j=1 s=1

Recall that a homogeneous polynomial P with h-deg(P) = k satisfies the homogeneity
formula P(§,z) = r*P(z) for every r > 0 and every z € G. By definition of graded

coordinates with respect to (Xi,...,X,) we have
q
FUF@)F(y) =) Psl(a,y) es = Qx,y), (17)
s=1
where z,y € R? and (e, e2,...,eq) is the canonical basis of R?. The vector field X; with

respect to graded coordinates is defined by X = F'X 4j» where for every p € N the formula

LX) =df (f ' (p) (X (f ' (p))

defines the image of X under f, whenever f : M — N is a C! diffeomorphism of diffe-
rentiable manifolds and X is a vector field of M. The vector field X is left invariant with
respect to left translations on R? defined by y — Q(z,y), then

Xj(z) = (9y, Q) (2,0)

and a careful calculation leads to the formula

q
X] = aa:j + Z ajs(fL'l,.'L'Q, cee ,.'135_1) a’fs (18)
s=m+1



for every 5 = 1,...,m. The functions a;; are homogeneous polynomials with degree d; —d;
and are defined by the formula

ajs(z) = (Oy, Ps)(z,0), (19)

see p.621 of [32] for more details. Throughout the paper, we will often identify vector fields
X; on R? with vector fields X; on G.

Definition 2.4 (Horizontal gradient) Let 2 be an open set of G and let £ € Q. The
horizontal gradient of u € C*() at ¢ is the vector Vgu(¢) = (Xiu(§),. .., Xpmu(f)), where
(X1, Xo,...,Xyy) is an orthonormal basis of V.

The notion of horizontal Hessian naturally appears when one considers the Taylor expansion
with respect to the horizontal coordinates. To see this in a more rigorous form, let us
consider u : Q — R of class C? and fix ¢ € 2. We wish to obtain the Taylor expansion of
u at £ in the horizontal submanifold £Vy. Let (X3, Xo,...,X,,) be an orthonormal basis
of V1 and consider the following function of class C?

m
h—s f(h) = u(g exp (Z thj))
j=1
along with its Taylor expansion

f(h) = f(0) +(VF(0),h) + % (V2f(0)h, h) + o(|h[?) (20)

It is easy to check that Vf(0) = Vyu(§). Consider the canonical basis (e1,...,ey) of R™
and note that
2

dt?

Then we obtain the formula
1

The previous relation motivates the following definition.

Definition 2.5 (Horizontal Hessian) Let Q be an open set of G and let £ € €. Consider
u € C%(Q) and an orthonormal basis (X1, Xo, ..., X;,) of V1. The horizontal Hessian of u
at ¢ is defined by the matrix

(V3u(©),, = 3 (XiX;u(6) + X, X;u(c) (22)

(tei +€))),_, = (Xi + X;)2u(€) = (O, + 02;)” (0).

(XiXju(€) + X;Xiu(f)) - (21)

where 1,5 =1,...,m.

In view of previous definition and the Taylor expansion (20) we get

u(€exp (S hX)) = ul€) + (Vuu(€), h) + 5 (Vhu©h, ) +o(hP).  (23)
j=1

10



3 Lipschitz continuity of H-convex functions

In this section we recall the notion of H-convex function and of H-convex set, see [9], [23].
The main result is stated in Theorem 3.18, where we prove that H-convex functions locally
bounded from above are locally Lipschitz continuous.

Definition 3.1 (H-convex set) We say that C C G is H-convex if for every z,y € C
such that 7'y € Vi we have zd;(z~'y) € C for every t € [0, 1].

The following proposition is a straightforward consequence of Definition 3.1

Proposition 3.2 Let C C G be H-convex. Then for every x € G and every r > 0 the set
x (6,C) is H-convez.

Convex sets in Kuclidean space are authomatically connected. On the contrary, this is not
true for H-convex sets in stratified groups, as the following example shows.

Example 3.3 Consider the Heisenberg group H? with coordinates (z,y,t) and the group
operation (z,y,t)(&,n, 7) = (z+&, y+n, t+7+xn—yE). Let us define the closed disconneted
subset C = LUM with L =[0,1] x {0} x {0} and M = [0,1] x {0} x {1}. It is immediate
to check that C is H-convex, in that for every (z,y) € L x M we have 2~ 'y ¢ Vi, due to
the expression Vi = {(z,y,0) | z,y € R}. It is also easy to see that the individual subsets
L and M are H-convex, hence C' is H-convex, but it is not connected.

Throughout the section the open set {2 will be assumed to be H-convex.

Definition 3.4 (H-convex function) We say that a function u : & — R is H-convex if
for every z,y € Q such that 'y € Vi and every 0 < X < 1 we have

u (z6x(z 1Y) < (1= X)u(z) + Au(y). (24)

Example 3.5 Let H? be the Heisenberg group and choose graded coordinates (z,v,t)
with the group operation (z,y,t)({,n,7) = (z+ &,y +n,t + 7+ —2xn+ 2y£). Then the left
invariant gauge defined by

N(z) = [(z? + 22)? + 1622] /" (25)

is homogeneous and it satisfies the triangle inequality with respect to the group operation.
This function is clearly not convex in the usual sense. However, it has been proved in [9]
that this function is H-convex in the more general class of H-type groups.

The H-convexity of the gauge provides us an easy way of constructing an example of H-
convex open set which is not connected.

11



Example 3.6 We consider the metric balls B, ; in H? defined using the gauge (25). Due
to Proposition 7.4 of [9] these balls are open H-convex sets. Let us define z;, = (0,0, h)
with A > 0. Using the group operation (z,y,t)({,n,7) = (z + &y +n,t + 7+ —2xn + 29¢),
one can check that the intersections

{ac_1 czn-y|le,y€e BNV and B.NB, .

are empty for h > 0 sufficiently large and ¢ > 0 sufficiently small. Then the union B.UB;, .
is open, H-convex and not connected.

Definition 3.7 (Horizontal line) For every z € Q and every h € V; we say that the
function [, : R — G defined by I, () = xd;h is an horizontal line of direction h.

Remark 3.8 Note that in groups of step higher than 2 horizontal lines do not appear as
“Kuclidean lines” when read through a system of graded coordinates. Let us consider the
Engel group E* with the only nontrivial bracket relations

(X1, Xo] = X3, [X1,X3] =Xy (26)

where the Lie algebra ¢! = V; ® V2@ V3 is formed by Vi = span{ X1, X}, Vo = span{ X3} and
V3 = span{X,}. Using graded coordinates (z1,x9,z3,z4), the Baker-Campbell-Hausdorff
formula (15) for 3 step groups shows that

ey -te; = (0,1,0,0) - (£,0,0,0) = (t,1,—/2,12/12)

and F(es - ter) = (exp X2)d(exp Xi) where exp X1 € Vy. In other words, the horizontal
line t — (exp X2)d;(exp X1) € E* becomes a parabola if read in graded coordinates.

Proposition 3.9 (Characterization) A function u: Q — R is H-convex if and only if
for every (z,h) € Q x Vy the composition wolyp, is convex on all disjoint open intervals of

Q) CR.

PROOF. Assume that u is H-convex. By continuity of /,;, the set l;}L(Q) is a family of
disjoint intervals {J | J € I}, where Z is countable or finite. Let us choose an interval
J € I. We wish to prove that J >t — u(l;;(t)) is convex. We fix two points t,7 € J.
The assumption h € V; implies that

dirr-h =exp((t+ 7)Inh) =exp(tlnh + 7Inh) = exp(tInh) exp(rInh) = §;h 0, h,

where we have used the trivial equality [Inh,lnh] = 0 and the Baker-Campbell-Hausdorff
formula (15). We have proved that

(5t)\_|_(1_)\)7h = 5T+>\(t—r)h =6:h (t—T)h = 0,;h 0y ((5Th)_15th) =0,h 6y (lx’h(T)_llm,h(t))

12



for every A € [0,1]. It follows that
Lep(EA+ (1 = X)7) = 205 (1-x)rh = Lo (T) Oa(lopn(T) e () -
Clearly I, 4 (7) ;. n(t) € Vi, then the definition of H-convexity gives us the inequality
u(len(tA+ (1= X)7) < (1= A) ullyn (7)) + Aullsn(t)).

This proves the convexity of uol; on J. Conversely, assume that u ol 5 is convex on all
the intervals where it is defined and for every choice (z,h) € 2 x V;. Choose z,y € € such
that z~ly € V. By H-convexity of €2, defining h = =1y, we have I, () € Q for every
A € [0,1], then it follows that u (zdx(z7'y)) = wo lyn(A) < A u(y) + (1 — A) u(z). This
completes the proof. O

Remark 3.10 Note that H-convexity expressed in terms of one-dimensional convexity of
restrictions to horizontal lines does not require that the open set 2 is necessarily H-convex.
In the sequel, we will refer to this notion when H-convex functions are considered on an
arbitrary open set.

Lemma 3.11 Let u : @ — R be an H-convex function and let L = sup,epp, , uaB, 5 |4(2)]
be a finite number, where D¢ p C 2 and 0 < 3r < R. Then for every x,y € B¢, such that
z 'y € Vy, defining M, r = 2L/(R — 3r), we have

u(z) —u(y)| < My.r p(z,y). (27)

PROOF. Let us fix two arbitrary points z,y € Be, such that 27 'y € V; \ {e} and define
h = z'y. Notice that h € By, and that the horizontal line I, (t) is contained in B s,
for every t € [0,1]. In particular we have I, ,(0) = z and l;4(1) = y. For elementary
topological reasons the horizontal line /;; meets the boundaries 0B¢ 3, and 0B¢ g, then
there exist numbers ¢2 < 1 <0 <1 < Ty < Ty such that I, ;(t2) € OBg r, lpp(t1) € 0Bg ar,
lyn(Th) € 0B¢ 3, and Iy, ,(To) € 0Bg¢ p. We can find an open interval I C l;}z(Q) containing
the subset {¢;,T; | i = 1,2} and by Proposition 3.9 the restriction of the function @ =wuolyp
to I is convex. From convexity of ¢ we reach the inequality

|o(t) — o(t')] [p(t2) — @(t1)| [o(T2) — @(T1)]
It—t’lémax{ to—t:| 7 |T2 =T } 2%)

for every t,t' € [t1,T1] such that ¢ # ¢'. Now a delicate step appears: due to the condition
h € Vi, we have the equality

p(zdih, xéyh) = |t —t'| p(h) = |t — | p(z,y). (29)
In fact, if we consider h = exp v with v € V7, then we have §;h = exptv and

(6:h) Loy h = exp(—t)v expt'v.
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Since the vectors (—t)v and t'v are proportional, the Baker-Campbell-Hausdorff formula
becomes trivial giving, (6;h) '8y h = exp(t' — t)v. The condition v € V; also implies that
d(p—y)expv = exp(t' — t)v, then (29) follows. Here we have used dilations with sign and
relation (12). We divide inequality (28) by p(z,y), then formula (29) yields

00 {let) ] _lo(T) ot )
p ((lm,h(t)a l:t,h (tl)) N p ((l:n,h (t2)7 l:c,h(tl)) ’ p ((Zm,h(TQ)a l:t,h(Tl)) .
Taking into account that dist(0Bg 3., 0B¢ g) > R —3r > 0 and considering (30) with ¢ =1
and ¢’ = 0, it follows that
july) —u(@)] _ 1
plz,y) — R-
By hypothesis, the previous inequality becomes

(30)

— max {[u(lyn(t2)) = wllon(t))], [ulen(T2)) = ullon(T1)]}-

|u(y) — u(z)| < p(z,y). (31)

R—3r
This ends the proof. O

In order to extend the Lipschitz property (27) to all points =,y € Bg, without the geometric
constraint !y € V, the following proposition will be of crucial importance. It will be also
applied in Theorem 3.17, in order to obtain boundedness of H-convex functions bounded
from above.

Proposition 3.12 (Generating property) Let hy, ho,... hy be elements of Vi such
that Inhy,...,Inhy, is a basis of Vi. Then there exists a positive integer N, a vector
of integers (i1,...,in) € {1,2,...,m} and an open bounded neighbourhood of the origin
O C RY such that the following set

N
{H%@S

s=1

(al,ag,...,aN)EO} , (32)

15 an open neighbourhood of e € G, where the product of elements is understood respecting
their numbering order.

The proof of Proposition 3.12 is contained in Lemma 1.40 of [14], see also the proof of
Corollary 3.3 in [28]. Using notation of this proposition, we define the map F : RY — G,

N
]:(al,aQ,...,aN):H%Shis. (33)
s=1

According to the previous proposition we observe that there exists ro > 0 such that 0B,, =
F(Co), where Cp is compact set of RY which is contained in O. For every r > 0 the map
F satisifes the homogeneity property

N
F(rai,...,ran) = o <H 5ashz‘s> =0y (F(a1,...,an)). (34)
s=1

14



This immediately implies that F is surjective and that the compact set C7 = ry L0y satisfies
the condition
F(Cy) = 0B;. (35)

Theorem 3.13 Let u : Q& — R be an H-convex function such that SUpp, . lu| < oo,
where D¢ g C Q. Then there exists ¢ > 0 depending only on the group such that for every
0 <7 < R/3c and every x,y € B¢, we have

) ) < s bl (=55, ) o) (36

PROOF. Let us consider F : RN — G defined in (33) and let C; C RY denote the compact
subset which satisfies condition (35). Let us define the numbers

N
vy = Iryrel%}f|b|’ v = ;p(his) and c¢=2vgv; (37)

We arbitrarily choose two different points z,y € B¢, and we define the number 7 =
p(z,y) > 0. By (34) we can write y = zF(7b) for some b € Cy, then condition 3¢r < R
implies that for every K =1,2,..., N we have

k
z [ [ +6. b, € Beer- (38)
s=1

In view of Lemma 3.11 there exists a constant M., g such that for every z,w € B¢ ., with
2w € V; we have

|u(2) = w(w)| < Mer,r p(2,w). (39)

We define the points 2o = « and z, = = Hle drp hi, for every k =1,..., N, observing that
z, ' 7 = 0 hi, € Vi and zy = y. Thus, from conditions (38) and (39) we conclude that

lu(zr) — w(zr—1)| £ Merr p(@k, 2p—1) < Mepr |bi| p(hiy) p(2,y)
for every k =1,2,...,N. Due to (37) we arrive at the following estimate
lu(zr) — u(zp—1)| < Mer,rvo p(hiy) p(z,y).
The expression of M., r given in Lemma 3.11 and the triangle inequality yield

2L vy cL

[u(ex) = u(zo)| = luly) —u(z)] < o~ p(w.y) = 5o —p

< o (e.y)  (40)

where L = sup,cp, ,. uaB, 5 [4(2)|. The arbitrary choice of z,y € Be, leads us to the
conclusion. O
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Remark 3.14 Note that the factor supp, |u| in (36) could be precisely replaced by
SuszaBgygmeaBg,R |U(Z)|

Corollary 3.15 Let u: Q2 — R be an H-convez function such that Supp, ,., lu| < oo and
D¢ ser C Q, where c is defined in Theorem 8.13. Then u is locally Lipschitz and for every
z,y € Be, we have

1
[u(z) —u(y)] <~ llullzee (D oer) (25 Y)- (41)

Remark 3.16 The Lipschitz condition (41) implies the a.e. intrinsic differentiability of u,
see [28] for the general result. As a consequence, we have

1
Viu(@)] < - lullzeo(pg o) (42)

Theorem 3.17 (Boundedness) Let u : @ — R be an H-convez function and assume
that it is locally bounded from above. Then it is locally bounded.

PROOF. Let C) be the compact set in (35) and define the compact set U<t C1 = C. By
formulae (34) and (35) one can easily check that F(C;) = D;. Let us define the number
aj = 1+ max s |aj| and the interval I; = [—a;, ay] for every j = 1,...,N. We set
Ky = vazl I; ¢ RY and we note that D; C F(Ky) = K C G. Let us assume that
K C Q. We choose h;, defined in (33). By Proposition 3.9, the convexity of the function
Iy 3 ay — u(ba, hiy) gives

M1 = 2“(6) - M < 2“(6) - u((s*alhil) < u(5a1 hil) (43)

where M = sup,cj u(z) is finite by hypothesis and a; € I;. We denote by e the unit
element of G. We fix a; € I; and consider the convex function Iz 3 ay — u(dq, b, 0gyhiy),
where h;, is defined in (33). It follows that

p2 = 2p1 — M < 2u(0a, hiy) — w(0ay hiy 6—azhiy) < w(day hiy dayhiy) (44)
for every (aq,as) € I x I5. One can clearly repeat this argument N times, achieving
N-1 N-1 N
pN < 2u (H 5(151%) —u (H Oashi, 5—ath'N> <u (H 6ashis> (45)
s=1 s=1 s=1

where pi; = 2p;_1 — M for every j =2,...,N and (a1, a2,...,an) € Ko. We have proved
that uy < inf,c g u(z), hence u is bounded on K. Let £ € Q and r > 0 such that £0, K C Q.
Then the function K 3 y — u(&d,y) is H-convex and it is bounded on K, namely u is
bounded on £0, K D D¢ ,. This proves that u is locally bounded. O
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Theorem 3.18 (Lipschitz continuity) An H-convex function u : Q@ — R which is lo-
cally bounded from above is locally Lipschitz.

PROOF. We first note that Theorem 3.17 ensures the local boundedness of u. Let £ € (2 and
choose a closed ball D¢ r contained in €. Let us fix 2r = R/4c, so that by Corollary 3.15 u
is Lipschitz on B¢ o,.. The arbitrary choice of £ immediately yields the continuity of u. Let
K be a compact subset of 2 and let C = {Bg,,, | j = 1,...,v} be a finite open covering
of K such that u is Lipschitz on Bg, o, with Lipschitz constant L; = (2Tj)_1||u||Loo(D§’8CTj)
for every j = 1,...,v. We define C; C C x C as the subfamily of couple of balls B, B’ € C
such that dist(B, B') > 0, then we fix the number

M = max {max {7’;1 lp=1,2,...,v} ,max{dist(B, B')™" | (B,B') € Ci}}. (46)

We denote by M; the maximum of |u| on K. Now we choose two arbitrary points z,y €
K and we consider the following possible cases. If z,y belong to the same ball, then
lu(z) — u(y)] < max{L; | j = 1,2,...,v} p(z,y). If z,y belong to different balls B, B’
with dist(B,B’) > 0 then |u(z) — u(y)] < 2M M p(z,y). The last case occurs when
HANS B§p,7"p7 Y € Bey s ng,,«p # Bg, », and diSt(ngJp,ng’Tk) =0 Ifye€ Bgmgrp, then
lu(z) —u(y)| < max{L;|j=1,2,...,v}p(z,y), otherwise y ¢ B, 2, and we have

Py, z) = py, &p) — p(z,&p) = 21 — pla, &) > 7p-

In this case we obtain |u(z) — u(y)| < 2Mir,'p(z,y) < 2M1 M p(z,y). Joining the
estimates obtained in all possible cases we conclude that

u(z) — uly)| < (2MM1 +max{L;|j=12,.. .,y}) oz, y)
for every z,y € K. This finishes the proof. O
Corollary 3.19 Every upper semicontinuous H-convex function is locally Lipschitz.

PROOF. It suffices to observe that upper semicontinuous functions are locally bounded
from above, then Theorem 3.18 concludes the proof. O

4 H-convexity coincides with v-convexity

In this section we compare the notion of H-convexity with that of v-convexity. The notion
of convexity in the “viscosity sense” has been introduced by Lu, Manfredi and Stroffolini
in [23]. We will show that v-convexity and H-convexity are equivalent notions for upper
semicontinuous functions.

Definition 4.1 (v-convex function) An upper semicontinuous function v : @ — R is
v-convex if for every ¢ € C?(£2) that touches u from above at &, namely u(£) = ¢(¢) and
u < ¢ on a neighbourhood of &, we have V4¢(¢) > 0. In a more concise way we write

V#u >0 in the viscosity sense. (47)
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The following proposition shows that v-convexity is preserved under intrinsic dilations and
left translations.

Proposition 4.2 Let u: 2 — R be v-convex. Then for every x € Q and every r > 0 the
function ug, : Qp, — R is v-convez, where ug,(y) = u(él/r(xfly)) and Qg , = 6,4

PROOF. Suppose that ¢ € C?(£2) touches uy, from above at & € ;. Then the function
¢%" = ¢ ol o d, touches u from above at n = 51/T($_1§) € Q and by hypothesis we have
V2.¢™"(n) > 0. Observing that V%¢*"(n) = r? V4 $(£) the thesis follows. O

Proposition 4.3 FEvery upper semicontinuous H-convex function u : & — R is v-convex.

PROOF. By contradiction, suppose that v is not v-convex. Then there exists ¢ € C?(2)
that touches u from above at ¢ € Q and V% ¢(€) is not nonnegative. Thus, we have at least
one direction h = (hq,..., hy,) such that

2
3 EN), Ly = (VHHORT) <0,

where h = exp (Z;n:l h; X j> € V;. By continuity of second derivatives of u we have that

% ¢(&d¢h)),_, < 0 for every 7 € [—a, o], where a > 0 and £4:h € Q for every ¢ € [—a, al.
Then the function [—«, a] 5 t — ¢(£d:h) is strictly concave in [—a, a]. We can choose «
suitably small, such that u(&6:h) < @p(€0:h) for every t € [—a, a]. By strict concavity of
t — ¢(&0,h) we have that

(9(£0-ah) + ¢(£dah)) < P(£) = u(f),

DN | =

? (u(Eah) + u(Esah) <

hence u cannot be H-convex due to Proposition 3.9. O

The next technical lemma will be used in the proof of Theorem 4.5, which is the main
result of this section. We will rely on the notions of homogeneous polynomial and on the
explicit formula for vector fields X; recalled in Section 2.

Lemma 4.4 Let Zd()\):er cx 2 denote the expression of Oy, a1, where a1 satisfies (18)
and j =m+1,...,q. Then we have ¢(q; 20, 0) = 0 and in the case dj = 2 the homogeneous
polynomial 0y, a1; vanishes.

PRrROOF. For every fixed j > m + 1 the homogeneous polynomial P; of (16) can be written
as follows

Pi(z,y) = Y apzy’,
d(o)+d(B)=d;

where h-deg(P;) = d;, and the expression (19) yields

a1j(z) = 0y, Pi(2,0) = > Yae, z°
d(a)=d; -1
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where e; = (1,0,...,0) € N The partial derivative of a1; with respect to z; is written as

follows
Oz, Q1 () = Z Y (s,0),e1 pimho) = Z Cx z
d(s,0)=d;—1 d(\)=d; -2

where 0 = (02,...,04) € N9" and ¢4, 20,...0) = (dj = 1) ¥(d;1)er,er- The polynomial P;
can be written in the following form

F)j (.’E, y) = Z 7&,61 {If'a 1 + R(ZE, y) (48)
d(a)=d;—1

As an immediate application of the Baker-Campbell-Hausdorff formula (15), we observe
that Pj(z1e1,yie1) = 0 for every z1,y1 € R, then (48) yields

dj
d; di—1 di—s
Pj(zie1,y161) = W&y +Ydj—1)er,e Ty Y1+ Y vszy yi =0
s=2

for every z1,y1 € R, then in particular y(4; 1)e;,e; = ¢(a;-2.0,..,0) = 0. In the case d; =2
we achieve
81U1a1j(x) = Z Y (s,0),e1 'I(Silﬁ) = Yer,e1 = 0.
d(s,0)=1

This concludes the proof. O

Theorem 4.5 (H-convexity equals v-convexity) Let u : & — R be an upper semi-
continuous function. Then u is H-convex if and only if it is v-conver.

PROOF. The first implication follows by Proposition 4.3. We have to prove that v-convexity
implies H-convexity. By contradiction, assume that u is not H-convex. In view of Proposi-
tion 3.9, we can find p € G, h € V; and «, 8 € R such that

p[éah,éﬁh] :p{(sth | le [a718]} C Qa

a <0< fandu(p) > max{u(pdoh),u(pdgh)}. By virtue of Proposition 3.2 left translations
preserve H-convex sets and by Proposition 4.2 they also preserve v-convexity, then we can
translate p to the the unit element of the group e and assume that u(e) > max{u(dnh,dgh)}
and [0qh,05h] C Q. Up to rescaling u by u o 6., with a suitable r > 0, we can find
a graded basis (Xi,...,X,) of G such that h = exp X;. By virtue of Proposition 4.2,
this rescaling preserves v-convexity. The function v will be considered with respect to the
graded coordinates F' : R? — G associated to the previously fixed graded basis of G. With
this convention we can assume Q C RY, [a, 8] x {0} C Q and «(0) > max{u(aei),u(Be1)}.
Here we have denoted by (e1,...,e,;) the canonical basis of RY. Adding a constant to u
and multiplying u by a suitable large positive number the H-convexity is preserved and we
can suppose that 4(0) = 0 and

max{u(aer),u(fe;)} < —1. (49)
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Let K C Q be a compact neighbourhood of [, 5] x {0}. The upper semicontinuity of u
implies that there exists M = maxg u > 0. Define the function

m q
pe(w) =2 | ai+ D (25 +a1;(2)?) |,
where ¢ > 0 and z = (z1,...,24) C R% The polynomial functions a;; appear in the

representation of the vector field X; with respect to the coordinate system F', namely,
X1 = 0y, + 22511 a15(2) Or;. We define the open set

Og(a,ﬁ,M):{a?ERq‘a<$1<B, 1115(:1:)<M+1}

for every 0 < & < 1. The vector field X; = F, X, in R? has the form (18). For ease of
notation, we will use the same symbol X; to denote it. Due to (18), by a direct computation
we obtain

q q
X; =02+ > (0n,01j O, + 2015 02,05,) + Y a1; (9,01 O, + a15 02,0, ,
j=m+1 l,j=m+1

then it follows that

q q q
2
Xj e = § aazlalj aa:jws + E aiy axlalj 81:]-1,[)5 + E aip aij aa:laa?jd)s-
Jj=m+1 Lj=m-+1 Lj=m+1

We have 0,,9. = 6*2233,1 and

q
Ot = 5_2{2$j + Z 2a1s ijals}
s=j—+1

q

for every j =1,...,q9—1. We will assume that the formal expression Zs:j—l—l

for every function 6 whenever j = ¢q. With this convention we have

6(s) vanishes

& — i (:L‘ O a1 -2 - - B a2 o
9 j Oz,015 € )+ Z Z (als 1015 € ) z; Als
Jj=m+1 j=m+1s=j+1
q q q
+ Z (2 ay e7%) Opa1; + Z Z (a1s ay €7%) O a1 O a1s (50)
l,j=m+1 l,j=m+1s=j+1
q q q
+ Z (a%j 572) + Z Z (all a1; 572) [axlalsamjals + alsamlamjals] . (51)
j=m+1 l,j=m+1s=j+1
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We wish to prove that in the previous expression all products inside the brackets (---) and
restricted to the open subset O.(a, 8, M) are bounded by a constant depending only on M

and v, where we have defined v = max{|f|, |a|}. For every z € O.(«, 8, M) we have
- _ M+1
max {|z; a15(z) e 72|, la1;(z) ars(z) e 72|} < (2)

whenever j,s = m +1,...,q. Let us consider 0,,a1; = Ed(A):dj—2 cxz*. By Lemma 4.4
we have ¢(q;—2,0,..,0) = 0 and Oy, a1 is identically zero when d; = 2. In the case d; > 2

every monomial c) z? with ¢y # 0 contains at least one factor wl)‘l with [ > 1 and \; > 1.
Then for every z € O.(«, 5, M) the estimate

Oayarj(@)] <o D> ey (M +1)Z5=22 = ewj(y, M)
d{(\)=d; —2

holds whenever 0 < ¢ < 1. For every ¢,7 > 0 we define w;(t,7) = 0 whenever d; = 2. This
gives in turn the estimate

max {|z; 0y, a15(z) € 72|, |a1;(7) Opya15(z) 72|} < ws(y, M) VM + 1

for every z € O.(«, 8, M). The function w;(t,7) is nondecreasing with respect to ¢t > 0.
As a consequence, we can find a positive function C'(¢, 7) nondecreasing with respect to ¢
such that

| XT4p:(z)| < C(y, M) (52)

for every z € O.(a, 8, M) and every 0 < ¢ < 1. The monotonicity of C(-, M) implies the
existence of g > 0 such that

C(t,M)t> <1 forevery 0<t< t. (53)

The compact set K is also a neighbourhood of 0, then we can find p; > 1 such that
01/, K C K and y/p1 < to. Define the v-convex function ui(r) = u(d,,z) on the open
subset 6y, (2 and the numbers a; = a/u1, f1 = B/p1 and v1 = v/p1. Fix 0 < g1 <1 s0
that O (a1, 1, M) C K1 = 01/, K for every 0 < e < 1. Clearly we have maxg, u1 = M
and by (52) the inequality

| XTepe (2)] < Cy1, M) (54)
holds for every z € O. (a1, 1, M) and every 0 < € < £1. Now we define
pe(x) = —Cly1, M)t + e (2).

Our next claim is to prove that ¢.(z) > u;(z) for every z € 00:(ay, 1, M) when € > 0
is chosen suitably small. The inequality (49) implies that max{u;(aie;),ui(Bre1)} < —1,
therefore the upper semicontinuity of uq yields 0 < £y < €1 such that

max {u(alel —i—szq;:ts €3>,u(,31€1 —i—szq;xs es)} < -1 (55)
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whenever 1/)5()(23:2 Tg 65> < M + 1. We will utilize the following topological formula

d(ANB) C (ANIB) U (BN OA) for any couple of subsets A and B of a topological space.
Now we observe that

Ogo (1,1, M) = {a: € Rq‘oq <z < 61}ﬂ{az € Rq‘z/)go(a:) < M—i—l}

Let © € 00.,(c, 51, M) and consider the case z € {(a1,y), (B1,y)} with y = Y9, yses.
We have

Peo(2) > —Cv1, M)V; + 120 (y) > —C(y1, M)yi > —1.
If e, (y) < M + 1, then

max{ui (a1, y), u1(f1,9)} < —1 < peq (). (56)
In the case 9.,(y) = M + 1 and oy < z; < ) we have
peo (@) 2 =Cly, M)yy + M +1> M > uy(x). (57)
Estimates (56) and (57) prove that
Yeo(x) > ui(z) for every z € 0., (e, f1, M). (58)
Due to inequality (54) we also have
Xieo(®) = =2C(y1, M) + Xitpey (2) < =C(m, M) <0 (59)
for every x € O, (a1, 1, M). Let us define the number
vy = inf{t eR ‘ t+ o () > uy(z) for every z € 650(041,61,M)}

Note first that 0 < vy < oo in that ¢, (0) = u1(0) = 0 and ui(z) < M for ev-
ery * € Og(a,B1, M) C Ky. It is easy to check that vy + ¢, () > uyi(z) for every
7 € Ogy(1, 81, M). By definition of vy we can find & € O, (a1, 81, M) where the equality
is attained. In view of (58) the point £ belongs to the open set O, (a1, 1, M). As a result,
the function ¢ = vy + ¢., touches u; from above at &, but X2¢(¢) < 0. This conflicts with
v-convexity of u; and concludes the proof. O

Corollary 4.6 In every stratified group v-convex functions are locally Lipschitz continuous.

PrOOF. By Theorem 4.5 and Corollary 3.19 the proof immediately follows. O
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5 Distributional characterization of H-convexity

The main result of this section is Theorem 5.7, where we prove that in 2 step stratified
groups every distribution represented by a Radon measure is defined by a locally Lipschitz
H-convex function if and only if its distributional horizontal Hessian is positive semidefinite.
Throughout the section the symbol € will denote an H-convex open set of G. We start
with the following simple characterization of H-convexity in the case of regular functions,
see also [9] and [23].

Proposition 5.1 Everyu € C?(Q) is H-convex if and only if V3 u(z) > 0 for every x € Q.

PROOF. By Proposition 3.9 H-convexity is characterized by convexity of ¢ — u(zd;h) for
every x € () and every h € Vi. Defining h = exp (Z;”:l h; X j) € V; and using formula
(23) we get

2

x0sh)|,_ = (V4u(zd h)h, k) > 0. (60)

|t=7’

ae !
where h = (hq,...,hy) € R™. Formula (60) proves our claim. O

Definition 5.2 (Convolution) Let u,v € L] (G) where v has compact support. The
convolution of u and v is defined by

wro(e) = [ alw) oly'a)dy (61)
G
Under assumptions of Definition 5.2 the convolution u*wv is a well defined locally summable

function. Note that this convolution does not commute, see [14] for more information.

Definition 5.3 (Distributional horizontal Hessian) Let T € D(f2)’ be a distribution.
The horizontal Hessian of T is the symmetric matrix of distributions defined as follows

(DLT, ) = (T, Vizp) (62)

for every p € C°(£2). We say that the horizontal Hessian of 7' is nonnegative and write
D% T > 0 if for every ¢ € C°(£2) such that ¢ > 0 the matrix (T, V%) is nonnegative.

As observed in [9] and [23], the distributional horizontal Hessian of a locally summable
H-convex function is a positive semidefinite matrix of Radon measures. For the reader’s
convenience, in Proposition 5.5 we briefly recall this fact.

Lemma 5.4 Let T € D()' be a distribution with D4T > 0. Then D%T is a matriz of
Radon measures.
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PROOF. By hypothesis, writing any X € V; as E;”Zl ¢;X; where (X1,...,X,,) is a basis
of Vi, we have X?T = Z?szl &€ (Xi X+ X, X;)T > 0, then X2T is a Radon measure, see
Theorem 2.1.7 of [20] and Theorem 1.54 of [2], hence also

XiX,;T + X; X;T = (Xi + X;)’T — X;T — X;T
is a measure for every 4,5 =1,...,m. O

Proposition 5.5 Let u: @ — R be a locally summable H-convex function. Then D% is
a matriz of Radon measures and D%{u > 0.

PROOF. Let us choose 9 € C¢°(B;) such that 9 > 0 and fBl ¥ = 1. For every y € G we

define 9. (y) = 5_Q19(51/6y), where € > 0. Let ¢ € C2°(f2) be a nonnegative function and
let Q' € Q be an open subset containing supp . We can find x > 0 such that

max p(y 1z, z) < dist(Q', Q°) (63)
ey

whenever p(y) < k. Then the convolution

ue(z) = de % u(z) = /Q 9 (y) uly ) dy

is smooth, H-convex and well defined in Q' for every ¢ < x. The function u. is convex
along horizontal lines, according to Proposition 3.9 and Remark 3.10. Thus, we can apply
Proposition 5.1, that gives V%,uE > 0 and integrating by parts we achieve

/IUSV%}tp:/(}u5V%[<p:/(6<pV%[u520 (64)

1
loc

for every € < k. The convergence of u. to u in L; () and Lemma 5.4 conclude the proof.

O

Theorem 5.6 Let G be a 2 step stratified group. Then there exists a nonnegative function
¥ € CX(By) such that fBl ¥ =1 and

(VEI () = (VEI) (") for every y € G. (65)

PROOF. Recall from (18) the form of the horizontal vector field X; for every j =1,...,m
with respect to a system of graded coordinates F': R? — G

q
X] :al’j + Z ajsaxs. (66)

s=m+1
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For ease of notation we will simply write X; instead of X'j. The fact that G is of step 2
implies that a;s has homogeneous degree equal to one for every j = 1,...,m and every
s=m++1,...,q. Let us consider the second order operator

q q
XiXj = 00,00, + > (00,045 Ou, + ajs 0, 05,) + Y it O, Os,
s=m-+1 l=m-+1

q
+ Z (ail 8xlajs ams + a1 ajs aa:[aa:s)
l,s=m+1

for every 7,7 = 1,...,m. Now we choose two smooth even functions with compact support
01 : R™ — [0, 4+00[ and 6y : RT"™ — [0, +o00[ such that, defining 8(&,n) = 01(€) + 02(n)
with € = (71,...,2m) and § = (Tm41,...,74), the support of 6 is contained in F~1(B)
and 9 =600 F~1:G — [0, +oo] satisfies [, 9 = 1. We clearly have 0,,0,,0 = 0 for every
Il=m+1,...,q and every j = 1,...,m. In addition, the polynomial a;; cannot contain
the variable z; for every [ = m + 1,...,¢ in that it has homogeneous degree equal to one,
then 0y,a;s also vanishes. It follows that

q q
XiXj0 = 05,000 + > Onajs 0,0+ > aq ajs O Oy, 0.
s=m-+1 l,s=m+1
The fact that ¢ is even easily implies that (0y,0z,0)(7) = (0;0z,0)(—z). The homogeneous
polynomial ajs has homogeneous degree equal to one, then it has the form ;" cpzy.
Thus, the products a;a;, are even functions and we obtain

q q
Z ai () ajs(x) (awlazso)(I) = Z ajl(—x) ajs(_x) (81’181’30)(_‘7;)
l,s=m+1 l,s=m+1
The factors 9,;a;s are constants then 9;,a;s 0,0 is an odd function for every j =1,...,m

and every s = m+1,...,q. At this point the symmetrization of X;X; will help us. Consider

X, X0+ X; X0 9. (Op,ais + Oy a;s) a
I = 0,,0,,0 + P : L0 0,04+ Y i ags 000, 0.
s=m+1 l,s=m-+1
We aim to show that 0, a5 +0;;a;s = 0 for every 4,5 = 1,...,m and every s =m+1,...,q.
Onuce this is obtained we immediately achieve
(VH0)(z) = (VH)(—2) (67)

for every x € R%. In the case of 2 step groups the Baker-Campbell-Hausdorff formula (15)
gives a rather manageable expression of the group operation. We have

exp (i kak:> exp (i lel) = exp (i(«?ﬂk + ) Xk + % > @y —yrw) X, Xl])
k=1 I=1

k=1 1<k<I<m
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clearly [X}, X;] € V5 then
q

[leXl]: Z CZZXS
s=m+1

for some coefficients cj;. Let {Ps(z,y)}s=1,. 4 be the family of homogeneous polynomials
satisfying (16). Then the previous relations yield

Py(z,y) = 25+ ys + Z cry (Tkyr — Yr1)

1<k<l<m
where s =m + 1,...,¢q. Differentiating with respect to z; and y; we get
c; i i<y
02,0y, Ps = Y ¢y (Oindj — 0jpby) = 0 if i=j |,
1<k<I<m —ci if 1>

7t

then we have proved that
Oz;ajs = Oy, 0y, Py = — 0y, 0y, Ps = —0y; a5

for every 4,7 = 1,...,m and every s = m + 1,...,q. As a consequence, formula (67)
holds. In order to show rigorously that (67) implies (65) we return to notation of (66).
This permits us to stress that the vector field X ;j is represented with respect to graded
coordinates. Then we write X; = F.X ; to indicate the corresponding vector field on G.
We have

Xj9=X;00F ') =F.X;(00F ") = X,0,

hence applying X; to X ;9 and using the previous relations we get
(X; X;9)(F(z)) = X;X;0(z) for every x € RY.
Finally, in view of (67) we conclude that
VHI(F(x) = V40(x) = V40(~) = Vi (F(—2) = Vi(F(z) ),
hence ending the proof. O

Theorem 5.7 (Dudley-Reshetnyak) Let G be a stratified group of step 2 and let T €
D(Q)' be a locally finite measure. Then T is defined by a locally Lipschitz H-convex function
if and only if D%4T > 0.

PROOF. In view of Proposition 5.5 we have to prove that the condition D%{T > 0 implies
the existence of a locally Lipschitz H-convex function u : © — R such that (T, ¢) = [, uep
for every ¢ € C°(Q2). The crucial part of the proof is to find a suitable ¥ € C2°(B;) with
9 >0 and fBl ¥ = 1 such that

(V49)(y) = (V49)(y~ ) for every y € G. (68)
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Theorem 5.6 shows that a function 9 satisfying (68) is available in 2 step groups. Then we
define 9. (y) = E_Qﬁ(él/gy) and consider the convolution

te(z) = T 0, = /Q 9. (y~ ') du(y).

where 4 is a signed and locally finite Radon measure in  and dist(z, Q¢) > . The left
invariance of the second order operator V% gives V2, [J-(y~'z)|] = (V}9.) (y '), where
the symbol V7, specifies that V% differentiates with respect to the variable z. As a
consequence, we have

Vile) = [ (Vi02) (v ') du(y).
Q

in view of the key property (68) we obtain

V2u.(z) = /Q (V30.) (') dpu(y) = /Q V2, [0-(a~')] du(y) > 0

where the last inequality follows by hypothesis. By Proposition 5.1, the smooth function
ue is H-convex. Counsider an arbitrary compact set K C §2 and choose Ay > 0 such that
Ky, ={y € G| dist(y, K) < Ao} C Q. For every 0 < ¢ < A\g we have

/Klue(w)ldxﬁ /Q </K Iﬁs(yll’)ldw) dlpl(y) < |ul(Kxp) < oo, (69)

where || is the total variation of u, see [2]. Let us fix an infinitesimal sequence (g;) €]0, Ao[.
The H-convexity of u.; for every j € N allows us to apply estimates (71) to u., restricted
to any compact ball of Q with suitably small radius. The inequality (69), with K replaced
by a compact ball, along with (71) and (72), yields a uniform bound on the L* norm
and on the Lipschitz constant of u., restricted to the fixed compact ball. By a standard
argument, using Ascoli-Arzelad theorem we get a subsequence u; = u., which uniformly
converges to a continuous function u : @ — R on compact sets of 2. The condition (24)
is preserved in the limit and implies the H-convexity of w, hence w is a locally Lipschitz
H-convex function. In view of the LlloC convergence of u; to u and of the convergence of
y — [qe(x) 19%_ (y~'z) dz to ¢ uniformly on compact sets of Q, we achieve

[w@ets= [ ([ 007 9dw) oto)ds
=/Q(/Qso($)ﬂskj(ylw)dw) dp(y) — (T ) as j— oo,

hence we have shown that

(T, ) = /Q () dply) = /Q u(y) o(y) dy

for every p € C°(€). This ends the proof. O
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6 Aleksandrov-Busemann-Feller theorem

In this section we deal with the existence of pointwise second derivatives of H-convex
functions. In the rest of the section, €2 will be assumed to be open and H-convex.

Definition 6.1 (H-BV? function) Let v € L'() and let (Xi,...,m) be a basis of V3.
We say that u has H-bounded second variation (in symbols H-BV?) and write u € BVA ()
if the distributional derivatives X;u, X;X;u are finite Radon measures for every 7,5 =
1,...,m. If u € L},.(Q) and X;u, X;X,u are Radon measures we say that u has locally
H-bounded second variation (in symbols locally H-BV?) and write u € BVEHOC(Q).

The following result corresponds to Theorem 3.9 of [1].

Theorem 6.2 (L!-differentiability) Let u € BVleOC(Q). Then for a.e. x € Q there
exists a polynomial Py € Py 2(G) such that

i 5 )~ Pl dy =0 (70)

The next result has been proved in [9], [23] and [21].

Theorem 6.3 (L*-estimates) Letu: Q) — R be a continuous H-convez function. Then
for every £ € Q there exists a radius R > 0 with D¢ g C 2 and a constant C > 0 depending
on & such that for every r < R/15 the following estimates hold

C

sup |u(y)| < C lu(y)ldy — and  [[Vaullpes,,) < / uly)|dy.  (71)
yEBg,r B§,5r r B§,15T

Lemma 6.4 Let v :  — R be a locally Lipschitz function. Then Vyu € LS (Q)™ and

for every closed ball Dy 3, C ) and every z,y € Dy s we have

[v(2) =v()| < VavllLe(D, 5) P(2,Y)- (72)

The validity of this lemma follows by both Theorem 1.3 and Theorem 2.7 of [15], which
hold in the more general Carnot-Carathéodory spaces. For the reader’s convenience we
sketch its proof in the simpler case of stratified groups. Let us fix a basis (X1,..., X;,) of
the first layer Vi C G. The local Lipschitz condition and the a.e. horizontal differentiability
of v ensure that Xjv exists in the distributional sense for every j =1,...,m

/v(y) Xjp(y)dy = —/ o(y) Xjv(y) dy
Q Q

where ¢ € C°(Q2) and X v € L2 (). To see this, it suffices to observe that

loc

Y v(y exp hifj) —v(y)
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is uniformly bounded with respect to h €] —¢,e[\{0} and converges to X;v(y) for a.e. y,
see for instance Theorem 3.2 of [26]. Then we use the weak compactness of a bounded
family of functions in LP(K;) for some fixed p > 1 and all compact sets K; C Q such that
U2, Ki = Q. Let v : [0,T] — R be a subunit curve joining z with y, with z,y € Dy,
i.e. an absolutely continuous function + such that /() = Z;n:l a;(t) X;(v(¢)), with a; €
L*(0,T) and Z;”Zl aj(t)? <1 for a.e. t € (0,7). By definition of Carnot-Carathéodory
distance p(z,y) we can find a subunit curve y with 7' < p(z,y)+h, then p(z,v(t)) <t <T <
p(z,y) +h and y([0,T]) C B, y(z,)+h, Where h > 0 is arbitrarily small. As a consequence,
by convolution with a family of smooth kernels ¢. we readily obtain |ve(2) — v:(y)| <
IV rvellee (B, (. yen) (P(2,9) + ) where ve = v * ¢e. Taking the limit as h — 0% we obtain

p(2,9y)- (73)

The continuity of v ensures that v, uniformly converges to v on compact sets of €2, then
taking the limit in (73) as ¢ — 0" we have

[ve(2) —ve(y)| < [Vmvells. ., P(2,Y) < [[VHV||LoB

zap(z,y))

[0(2) —v@W)| < Va1 (5 p(z,y) < IVaO|| oo (D, 50) (25 9)-

z,p(z,y))

Theorem 6.5 (Aleksandrov-Busemann-Feller) Let (X1,...,X,,) be a basis of V} and
let u : Q@ — R be a measurable H-convex continuous function such that its distributional

derivative X;X;u is a Radon measure for every i,j = 1,...,m. Then for a.e. x € ) there
exists a unique polynomial P, € P 2(G) such that the following limit holds
u(y) — P
lim lu(y) = P W)l _ 0. (74)

y—=z  p(z,y)?

PROOF. From results of [31] the function u is locally bounded above, then Theorem 3.18

implies that u is locally Lipschitz continuous. As a result, Lemma 6.4 implies that Vgu €
Lge (Q)™. Thus, by hypothesis we have that u € BVEI’ZOC(Q). In view of Theorem 6.2 for

loc

a.e. = € ) there exists Pl;) € P 2(G) such that

i u() — Pfo)] dy =0, (75)

Let us fix € Q satisfying this condition and define the map v(y) = u(y) — Py(y)-
We can write the polynomial P as the sum of L € Py1(G) and R € Py 2(G) such
that R(z) = 0 and X;R(z) = 0 for every j = 1,2,...,m. Notice that L has the form
L&) = ¢+ ZTZI a; &, where c,a; € R and &; is a coordinate of homogeneous degree
equal to one for every 57 = 1,2,...,m. It follows that both L and —L are H-convex and
that the sum w = u — L is H-convex. Let us write v = w — R and notice that conditions
X;R € Py,1(G) and X;R(z) = 0 for every j = 1,2,...,m give us a constant C; > 0 such
that for every » > 0 we have the estimate

sup |VgR| < Cyr and sup |R| < Cy r2. (76)

z,r Bz,r
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In view of the gradient estimate (71) applied to the H-convex function w we obtain a
number rg > 0 and a constant C' > 0 such that the inequality

IV arollims, ) < Orlf ()| dy + sup [V )

Ba:,lfn‘ T,

holds for every 0 < r < rg, where By 15-, C 2. From the previous inequality, we infer that

xz,r

Wil <O o@ldy+ s (Vukl+ 0 RG]y
Bz,15r Ba:,15r
Due to the estimates (76), the previous inequality yields
Va8, < 07“1/3 lw(y)ldy +(1+C)Cyr. (77)
x,157r

Now we arbitrarily fix € €]0,1/2[ and 7 €]0,e%[. The limit (75) and the definition of v give
the estimate

Hy € By

lv(y)| > 67’2}‘ < (e 7‘2)_1/ lv(y)| dy = el o(rQ) as r—0t.
Bz,r
Then we can fix vy < ry depending on € and 7 such that

Hy € By

o)l = er?}| < 7B,

(78)

for every 0 < r <. We choose y € B, /o and note that B, 1176, C By, then there exists
zr € By 11/q, such that |v(zr)| < er? for every r < ri. In fact, if this were not true we
would have

o)| > er?)

that contradicts the inequality (78). We have proved that for every r < r; the inequality

Byﬂ'l/Qr C {y 6 Bl‘ﬂ“

()] < er® +[v(zr) = v(y)l (79)

holds for every y € B, /> and for some z, € B, .1/q, depending on 7 and y. In view of (75)
and (77) there exists ro < r1/3 such that [|[Vyov||pe(p,,.) < Cr+3(1+ C)Cir = Cyr for
every r < rg. Thus, from Lemma 6.4 and inequality (79) we conclude for every y € B, /o
the final estimates

lv(y)] < er? + Cy rp(zr,y) < er2 + Oy 792 < ¢ (1+Cy) r? (80)

where in the last inequality we have used our initial choice 7%/9 < ¢ and C5 is a geometrical
constant. This ends the proof. O
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Proposition 6.6 Let u : Q@ — R be a locally summable H-convex function. Then there
exists a locally Lipschitz H-convex function v : & — R such that v(z) = u(x) for a.e.
x € €.

ProOF. We fix 9 € C(B;) such that 4 > 0 and fBlﬁ = 1 and we define ¥.(y) =

e~Q9(5, /ey) for every y € G. For every couple of relatively compact sets ' € Q" € Q we
can find £ > 0 such that max_ g p(y 'z, z) < dist(€, (2”)¢) whenever p(y) < k. Then
the convolution

e () = Ve * ulz) = /Q 9 (y) u(y =) dy

is well defined, smooth and H-convex on €' for every £ < & in that y 'z € Q" C Q for
every z € Q' and every y € B,. For every Bg 15, C (¥ we also have the uniform estimate

/ e ()] d < / lu(y)|dy = Cy < oo (81)
Bg 15r Qo

for every ¢ < k. The H-convexity of u. allows us to apply estimates (71), obtaining

CCy
) S
| Be 15|

C C
sup ue(y)] < =

(82)
yEBe, | Be sr|

and IV rue|| Lo (B,

whenever, Be s, C . Then by standard arguments, using (72) and the Ascoli-Arzeld
compactness theorem, we can find a sequence u.; converging on compact subsets of {2
to a locally Lipschitz continuous H-convex function v : £ — R. In fact, the pointwise
convergence preserves the H-convexity and the Lipschitz property on compact subsets, then
the proof is finished. O

Remark 6.7 Note that in Proposition 6.6 we are referring to an individual function
and not to the equivalence class of functions which differ from u on a set of measure zero.
Then it makes sense to assume that u satisfies the pointwise notion of Definition 3.4 for a.e.
point. Proposition 6.6 implies the validity of Theorem 6.5 for locally summable H-convex
functions, after a suitable redefinition on a set of measure zero.

From results of [16], [10] and [31], Theorem 6.5 holds for H-convex functions on two step
stratified groups, with no additional assumptions on the function.
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