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Abstract

In the geometries of strati�ed groups, we provide di�erentiability theorems for both

functions of bounded variation and Sobolev functions. Proofs are based on a systematic

application of Sobolev-Poincar�e inequalitiy and the so-called representation formula.
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Introduction

Aim of the present paper is to introduce a simple and uni�ed approach to higher order di�e-
rentiability of both Sobolev and BV functions on strati�ed groups. These groups represent a
large family of di�erent geometries, which also include Euclidean spaces, [17]. For instance, the
Heisenberg group is a well known example of noncommutative strati�ed group, [41].

The classical notions of Sobolev functions and of functions with bounded variation extend
to the general context of strati�ed groups as follows. We consider left invariant vector �elds
X1; : : : ; Xm and we say that a locally summable function u on an open subset 
 of a strati�ed
group G has H-bounded variation if its distributional derivative Xju is a �nite Radon measure
for every j = 1; : : : ;m. If all distributional derivatives Xj1 � � �Xjpu are measures for every
p � k and js 2 f1; 2; : : : ;mg for every s = 1; 2; : : : ; p, then we say that u has H-bounded

k-variation, namely, u 2 BV k
H(
). The H-Sobolev space W k;p

H (
) is de�ned in analogous way,
it is then clear the central role played by the vector �elds Xj . In fact, they span the �rst layer
of the strati�ed algebra and yield the geometry of the group, de�ning the so-called Carnot-
Carath�eodory distance, see Section 1 below.

In order to state our results, we introduce the notion of \Lp di�erentiability of order k". In
the Euclidean context this de�nition goes back to Calder�on and Zygmund [7], [8]. A function
u 2 Lploc(
) is said to be Lp di�erentiable of order k at x 2 
 if there exists a polynomial P[x]

of homogeneous degree less than or equal to k such that

 Z
Bx;r

ju(y)� P[x](y)j
pdy

!1=p

= o(rk) as r ! 0+: (1)

The anisotropy of strati�ed groups requires the notion of homogeneous degree of a polynomial,
which amounts to take into account the \weight" of every coordinate, see Subsection 1.2. The
polynomial P[x] is uniquely de�ned and it is called \Lp di�erential of order k". Note that every
function u, which is Lp di�erentiable of order k at x 2 
 satis�es the equivalent condition

lim
r!0+

Z
Bx;r

�
ju(y)� P[x](y)j

�(x; y)k

�p

dy = 0; (2)

as we show in Lemma 1.16. It is well known that Lp di�erentiability turns out to be the natural
concept to study �ne properties of functions with bounded variation and Sobolev functions in
Euclidean spaces. In this case Lp di�erentiability and approximation theorems for Sobolev
functions can be found for instance in [3], [4], [5], [6], [7], [8], [15], see also [40], [46] and the
references therein.

Previous results on higher order di�erentiability in strati�ed groups can be found in [1].
The importance of higher order di�erentiability stems for instance from the recent interest in
studying second order pointwise di�erentiability of H-convex functions [13], [24], [25], [35], [36].
The present paper can be thought of as a development of [1], where we extend the previous
results adopting a simpler approach which also applies to H-Sobolev functions. Here we do
not use maximal function and Rademacher's theorem. On the contrary, as a byproduct of our
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results and of Lemma 3.1.5 in [16], we also provide another proof of Rademacher's theorem on
strati�ed groups.

Our �rst order di�erentiability theorem is stated as follows. Let u : 
 �! R be a function of
H-bounded variation and let � = Q=(Q� 1), where Q is the Hausdor� dimension of the group.
Then u is a.e. L� di�erentiable and its di�erential corresponds to the density of DHu

a, which
is the absolutely continuous part of the the measure DHu, see Section 1 for precise de�nitions.
The Euclidean version of this result has been �rst proved by Calder�on and Zygmund, [7], see
also the Federer's proof in Theorem 4.5.9(26) of [16]. First order di�erentiability results for
Sobolev functions with 1<p<1 are already known in the general setting of doubling metric
spaces admitting Poincar�e inequality, [2]. Our method for �rst order di�erentiability also applies
to Sobolev functions for any p � 1. The main features of our approach consist in the use of the
Sobolev-Poincar�e inequality (9) and the so-called \representation formula", stated as follows.
There exists a dimensional constant C, such that for every function u in C1(
) and every open
ball Bx;2r compactly contained in 
, the pointwise estimate

ju(x)� uBx;r j � C

Z
Bx;r

jrHu(y)j

�(x; y)Q�1
dy (3)

holds, where � is the Carnot-Carath�eodory distance, see Section 1 for more details. This formula
on strati�ed groups has been proved by Lu, [31], see also [10], [18], [19] and [34].

The core of the present paper pertains to higher order di�erentiability, which hides novel
di�culties, due to the non-commutativity of the vector �elds X1; : : : ; Xm. In fact, the charac-
terization of the di�erential P[x] in (1) using distributional derivatives of u requires a basis of
left invariant di�erential operators on G. By Poincar�e-Birkho�-Witt theorem one can explicitly
construct this basis by iterated compositions of X1; : : : ; Xm, seen as �rst order left invariant
di�erential operators. As a consequence, Proposition 3.1 provides a characterization of P[x].
This proposition plays a crucial role in the argument by induction which connects �rst order
di�erentiability to higher order di�erentiability. We show that every function u 2 BV k

H(
)
is L1 di�erentiable of order k and that in the case k < Q it is L
 di�erentiable of the same
order, where 
 = Q=(Q� k). In Euclidean spaces this result �ts in Theorem 1(i) of [15]. Note
that the Euclidean proof of [15] uses minimizing polynomials, which suitably replace the Taylor
expansion of the function, hence following a completely di�erent approach. In analogous way,
we prove that every function u in W k;p

H (
) is a.e. Lp di�erentiable of order k and that in the
case kp < Q it is a.e. L� di�erentiable, where � = Qp=(Q� kp).

Finally, we give a brief overview of the present paper. Section 1 is devoted to preliminary
notions and basic tools used in the subsequent sections. We prove Lemma 1.16 and we show
the simple argument leading to the key estimates (20) and (21). In Section 2 we prove the sub-
Riemannian version of the well known Calder�on-Zygmund di�erentiability of functions with
bounded variation. As a byproduct of our �rst order di�erentiability results, we give another
proof of the Rademacher theorem on strati�ed groups. In Section 3 we show higher order
di�erentiability of funtions in BV k

H(
) and in W k;p
H (
).
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1 Preliminaries

A strati�ed group is a simply connected nilpotent Lie group G endowed with a graded Lie
algebra G, which is decomposed into a direct sum of subspaces Vj subject to the condition
Vj+1 = [Vj ; V1] for every j 2 N n f0g, and Vj = f0g whenever j is greater than a positive
integer. We denote by � the maximum integer such that V� 6= f0g and we call it the nilpotence
degree or the step of the group. Recall that for arbitrary subspaces V;W � G we have de�ned
[V;W ] =spanf[X;Y ] j X 2 V; Y 2Wg.

The assumption that G is simply connected and nilpotent ensures that the exponential
map exp : G �! G is a di�eomorphism. The grading of G allows us to de�ne dilations on the
group, i.e. maps �t : G �! G with �t(

P�
j=1 vj) =

P�
j=1 t

jvj , where t > 0 and
P�

j=1 vj 2 G
is the unique representation of a vector of G, provided that vj 2 Vj for every j = 1; : : : ; �.
This notion of dilation is motivated by the fact that the composition exp ��t� ln : G �! G is
a group homomorphism, where we have denoted ln = exp�1. We will use the same symbol
to denote dilations which are read on the group. The underlying metric of the group is a left
invariant Riemannian metric g such that the subspaces Vj are orthogonal each other. We will
always refer to these metrics, called graded metrics. The Riemannian volume on G given by a
graded metric will be denoted by vg. It is clear that vg is left invariant, hence it is the Haar
measure of the group. For ease of notation, we will also write vg(A) = jAj, where A � G is a
measurable set and we will use the symbol dx when integration is considered with respect to
the Riemannian volume measure vg. The averaged integral of a summable map u : A �! R is
de�ned as uA =

R
A u = jAj�1

R
A u.

The Carnot-Carath�eodory distance between two points x and x0 is obtained by taking the
in�mum among lengths of absolutely continuous curves a.e. tangent to the horizontal subbundle
and which connect x with x0. Length of connecting curves is computed by a graded metric g,
hence the Carnot-Carath�eodory distance � is left invariant and it has the important scaling
property �(�tx; �tx

0) = t�(x; x0), where x; x0 2 G, see for instance [26]. We denote by Bx;r the
open ball of center x and radius r > 0 with respect to the Carnot-Carath�eodory distance. Balls
of radius r centered at the unit element e of the group will be denoted simply by Br. We will
frequently use the following scaling property

jBx;rj = jB1j r
Q (4)

for every x 2 G and any r > 0. The integer Q is the Hausdor� dimension of G with respect to
the Carnot-Carath�eodory distance and it is strictly greater than the topological dimension q of
the group whenever G is not Abelian. More information on strati�ed groups can be found for
instance in [12], [17] and [41].
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We introduce the horizontal space HpG = fX(p) j X 2 V1g at p 2 G and consider the
disjoint union of all these subspaces with the relevant vector bundle topology. This collection
forms the so-called horizontal subbundle, denoted by HG. Smooth sections of the horizontal
subbundle are called horizontal vector �elds. We assume throughout the paper that 
 is an
open subset of a strati�ed group G. The space of smooth horizontal vector �elds of 
 is denoted
by �(H
) and the one of compactly supported horizontal vector �elds by �c(H
). Note that
a horizontal vector �eld ' can be written as

Pm
j=1 'j Xj , where (X1; X2; : : : ; Xm) is a basis of

the �rst layer V1 � G. The H-divergence of ' is de�ned as
Pm

j=1Xj'j and it is denoted by
divH'. Note that the de�nition of H-divergence does not depend on the choice of the basis of
V1. These notions allow us to introduce functions of bounded variations naturally associated
to the sub-Riemannian structure of the group, see [9], [20] for more information.

De�nition 1.1 (H-BV functions) We say that a function u 2 L1(
) is a function of H-
bounded variation (in short, an H-BV function) if

jDHuj(
) := sup

�Z


u(x) divH'(x) dx

���' 2 �c(H
); j'j � 1

�
<1 ;

We denote by BVH(
) and BVH;loc(
) the space of functions of H-bounded variation and of
locally H-bounded variation, respectively.

By Riesz representation theorem we get the existence of a nonnegative Radon measure jDHuj
and of a Borel section � of H
 such that j�(x)j = 1 for jDHuj-a.e. x 2 
. Moreover for every
� 2 �c(H
) the following integration by parts formula holdsZ



u(x) divH�(x) dx = �

Z


h�; �i d jDHuj : (5)

The vector valued measure � jDHuj is denoted by DHu. The symbols jDHuj
a and jDHuj

s stand
for the absolutely continuous part and the singular part of jDHuj, respectively. We also de�ne
the vector measures Da

Hu = � jDHuj
a and Ds

Hu = � jDHuj
s.

The density of Da
Hu with respect to the Haar measure of the group is denoted by rHu. In

our arguments we will consider rHu as a measurable vector functions with values in Rm. This
is possible whenever we refer to an orthonormal basis (X1; X2; : : : ; Xm) of V1. Note that if u is
of class C1, then rHu = (X1u; : : : ;Xmu).

De�nition 1.2 (H-BVk functions) By induction on k � 2 we say that a measurable map u :

 �! R has H-bounded k-variation (in short, H-BV k) if for any i = 1; : : : ;m the distributional
derivatives Xiu are representable by functions with H-bounded (k � 1)-variation. We denote
by BV k

H(
) the space of all H-BV
k functions.

De�nition 1.3 (H-Sobolev functions) A function u 2 Lp(
) belongs to W k;p
H (
) if for all

js 2 f1; : : : ;mg and s = 1; 2; : : : ; k there exists a function vj1;:::;jk 2 Lp(
) such thatZ


u(y) (Xj1 � � �Xjk�)(y) dy = (�1)k

Z


vj1;:::;jk(y)�(y) dy ; (6)
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for every � 2 C1
c (
), where (X1; : : : ; Xm) is an orthonormal basis of V1. We denote by

W k;p
H;loc(
) the space of measurable functions de�ned on 
, which belong to W k;p

H (
0) for every
open set 
0 compactly contained in 
.

Remark 1.4 We observe that De�nitions 1.2 and 1.3 do not depend on the choice of the
orthonormal basis (X1; : : : ; Xm).

1.1 Poincar�e and Sobolev-Poincar�e inequalities

Important tools for our study are the Poincar�e inequality and the Sobolev-Poincar�e inequality
in strati�ed groups. These inequalities hold for smooth functions in the more general Carnot-
Carath�eodory spaces endowed with a system of H�ormander vector �elds. As pointed out in
[32], the Jerison result [27] includes Poincar�e inequality with respect to the Lp norm for every
p 2 [1;+1[. Another approach to Poincar�e inequality for vector �elds has been recently
developed by Lanconelli and Morbidelli, [29]. In the case of Lie groups a simple proof of
Poincar�e inequality has been achieved by Varopoulos, [44], see also [28] and [39].

Theorem 1.5 (Poincar�e inequality) Let 
 be an open subset of G and let 1 � p <1. Then

there exists a constant C > 0 such that for every u 2 C1(
) and any ball Bx;2r compactly

contained in 
 we haveZ
Bx;r

ju(y)� uBx;r j
p dy � Crp

Z
Bx;r

jrHu(y)j
p dy: (7)

The following Sobolev-Poincar�e inequality has been proved in [18], [31] and [43].

Theorem 1.6 (Sobolev-Poincar�e inequality) Let 
 be an open subset of G and let 1 � p <
Q. Then there exists a constant C > 0 such that for every u 2 C1(
), setting 
 = Qp=(Q�p),
we have  Z

Bx;r

ju(y)� uBx;r j

 dy

!1=


� C r

 Z
Bx;r

jrHu(y)j
p dy

!1=p

: (8)

The smooth approximation of functions of bounded variation is available also in general Carnot-
Carath�eodory spaces, [20], [22], then the previous Sobolev-Poincar�e inequality in the case p = 1
can be extended to H-BV functions.

Theorem 1.7 Let 
 be an open subset of G and let � = Q=(Q � 1). Then there exists a

constant C > 0 such that for every u 2 BVH;loc(
) and any ball Bx;2r compactly contained in


 we have  Z
Bx;r

ju(z)� uBx;r j
� dz

!1=�

� C r
jDHuj(Bx;r)

jBx;rj
: (9)

Note that as a consequence of (9) we have the following Poincar�e inequality for H-BV functionsZ
Bx;r

ju(z)� uBx;r j dz � C r jDHuj(Bx;r): (10)
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1.2 Approximate regularity and L
p di�erentiability of order k

In this subsection we introduce several notions of weak regularity for measurable functions in
strati�ed groups. We begin recalling the notion of approximate continuity.

De�nition 1.8 (Approximate continuity) We say that u 2 L1
loc(
;R

m) has an approxi-

mate limit � 2 Rm at x 2 
 if

lim
r!0+

Z
Bx;r

ju(y)� �j dy = 0 :

In the case � = u(x) we say that x is an approximate continuity point and we denote by Au the
subset of all approximate continuity points.

Remark 1.9 Notice that the approximate limit is uniquely de�ned and it does not depend on
the representative element of u. In the next proposition we recall p-approximate continuity of
functions in Lp(
) using the doubling property of G. As a consequence of this result for p = 1
we have that j
 nAuj = 0.

Proposition 1.10 Let u 2 Lploc(
;R
m) and let 1 � p <1. Then for a.e. x 2 
 we haveZ

Bx;r

ju(y)� u(x)jp dy = 0 (11)

Proof. Strati�ed groups endowed with their left invariant volume measure are in particular
doubling spaces. Therefore Theorem 2.9.8 of [16] is available and it implies that for a.e. x 2 

and for every q 2 Qm there exists the limit

lim
r!0+

Z
Bx;r

ju(y)� qjp dy = ju(x)� qjp;

then we get

lim sup
r!0+

 Z
Bx;r

ju(y)� u(x)jp

!1=p

� 2 ju(x)� qj ! 0 as q ! u(x);

this completes the proof. 2

De�nition 1.11 We de�ne nj = dimVj for any j = 1; : : : ; �, m0 = 0 and mi =
Pi

j=1 nj for
any i = 1; : : : ; �. We say that (W1; : : : ;Wq) of G is an adapted basis, if

(Wmj�1+1; : : : ;Wmj
) (12)

is a basis of Vj for any j = 1; : : : ; �.
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In order to tackle the higher order approximate di�erentiability of H-BV k functions we will
recall some well known facts about polynomials on strati�ed groups. We will refer to Chapter
1.C of [17]. A function P : G �! R is a polynomial on G if the composition P � exp is a
polynomial on G. Let us �x adapted basis (W1; : : : ;Wq) and its dual basis of 1-forms (�1; : : : ; �q).
Then every polynomial P : G �! R can be represented as follows

P =
X
�

c� x
�; (13)

where we have �xed a coordinate system (x1; : : : ; xq) on G given by xi = �i� exp
�1, where

i = 1; : : : ; q and for every � 2 Nq we have de�ned x� = x�11 � � �x
�q
q and only a �nite number of

coe�cients c� 2 R do not vanish.
The degree di of Wi is well de�ned by relation Wi 2 Vdi . Then we de�ne the homogeneous

degree of a polynomial P : G �! R with expression (13) as

h-deg(P ) = maxfd(�) j c� 6= 0g ;

where d(�) =
Pq

k=1 dk�k. The space of polynomials of homogeneous degree less than or equal
to k will be denoted by PH;k(G).

Next, we extend the de�nition of Lp di�erentiability of order k to strati�ed groups. This notion
is due to Calder�on and Zygmund, see [7] and [8].

De�nition 1.12 (Lp di�erentiability of order k) A function u 2 L1
loc(
) is said to be Lp

di�erentiable of order k at x 2 
 if there exists a polynomial T[x] 2 PH;k(G) such that,

 Z
Bx;r

ju(y)� T[x](y)j
p dy

!1=p

= o(rk) as r ! 0+: (14)

Remark 1.13 The Lp di�erential of order k is always uniquely de�ned. In fact, a function f
which is Lp di�erentiable of order k at x is also L1-di�erentiable in that

Z
Bx;r

ju(y)� T[x](y)j dy �

 Z
Bx;r

ju(y)� T[x](y)j
p dy

!1=p

;

where 1 � p < 1. Then Lemma 1.14 implies uniqueness. Similarly, one can check that more
generally Lp di�erentiability of order k implies Lr di�erentiability of order k at the same point
for all 1 � r � p.

Lemma 1.14 Let P 2 PH;k(G) be such that

lim
r!0+

Z
Bx;r

jP (y)j

rk
dy = 0:

Then P is the null polynomial.
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Proof. By a left translation at the unit element of the group we can assume that x = e. We �x
a coordinate system (x1; : : : ; xq) on G, hence we can write P (y) =

P
d(�)�k c�y

�. Suppose by
contradiction that P is not vanishing. Then it is well de�ned the integer p = min fd(�) j c� 6= 0g
and P1(y) =

P
d(�)=p c�y

�. By the homogeneity of P1 it follows that

P (�ry) = rp
�
P1(y) +

X
d(�)>p

c� r
d(�)�p y�

�
:

De�ning Qr(y) =
P

d(�)>p c� r
d(�)�p y�, we note that

sup
y2B1

jQr(y)j �! 0 as r ! 0+:

By a change of variable we haveZ
Br

jP (y)j

rk
dy =

Z
B1

jP (�ry)j

rk
dy �! 0 as r ! 0+: (15)

Then for a su�ciently small r 2]0; 1[ we obtain thatZ
B1

jP (�ry)j

rk
dy � rp�k

�Z
B1

jP1(y)j dy �

Z
B1

jQr(y)j dy

�
�

1

2

Z
B1

jP1(y)j dy

Observing that P1 is a nonvanishing polynomial the previous inequality and limit (15) lead us
to a contradiction, then P = 0. 2

Remark 1.15 The next lemma proves that condition (14) is equivalent to the following limit

lim
r!0+

Z
Bx;r

�
ju(y)� T[x](y)j

�(x; y)k

�p

dy = 0: (16)

Lemma 1.16 Let g 2 L1
loc(
) such that g � 0 a.e. in 
 and let � > 0. Then the conditionR

Bx;r
g = o(r�) as r ! 0+ implies that

lim
r!0+

Z
Bx;r

g(y)

�(x; y)�
dy = 0: (17)

Proof. Let x 2 
 and let r > 0 be su�ciently small. We de�ne rk = r2�k for every integer
k � 0. Then we haveZ

Bx;r

g(y)

�(x; y)�
dy �

2�

jBx;rj

1X
k=0

1

r�k

Z
Bx;rk

g(y) dy = 2�
1X
k=0

2�kQ

r�k

Z
Bx;rk

g(y) dy

�
2�

1� 2�Q
sup

0<s�r
s��
Z
Bx;s

g(y) dy �! 0

as r ! 0+. 2
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1.3 Representation formula

Another important tool is the \representation formula" stated in the next theorem. This
formula will lead us to the pointwise estimates (20) and (21) that play a key role in our method
to obtain di�erentiability results. In the next theorem we state the representation formula for
H-BV functions. Its proof can be easily obtained for instance following the method in [19].
Short proofs of representation formula can be also found in [9] and [34]. In particular, we
mention the sharp result of [34], where, in a more general metric setting, the integral in the
representation formula is considered on the ball with optimal radius.

Theorem 1.17 (Representation formula) Let 
 � G be an open subset. Then there exists

a constant C > 0 such that for every ball Bx;2r compactly contained in 
 we have

ju(x)� uBx;r j � C

Z
Bx;r

1

�(x; z)Q�1
djDHuj(z): (18)

for every u 2 BVH;loc(Bx;r) whenever x 2 Bx;r \Au.

We can rewrite (18) using Fubini's theorem as follows. For every � > 1 we haveZ
Bx;r

1

�(x; z)��1
djDHuj(z) = (�� 1)

Z
Bx;r

�Z 1

�(x;z)

1

t�
dt

�
djDHuj(z)

= (��1)

Z +1

0

jDHuj(Bx;r \Bx;t)

t�
dt = (��1)

Z r

0

jDHuj(Bx;t)

t�
dt+

jDHuj(Bx;r)

r��1
;

that implies by a change of variableZ
Bx;r

1

�(x; z)��1
djDHuj(z) =

(�� 1)

r��1

Z 1

0

jDHuj(Bx;tr)

t�
dt+

jDHuj(Bx;r)

r��1
: (19)

Representation formula along with (19) yield the following theorem.

Theorem 1.18 Let 
 � G be a bounded open set. Then there exists a constant C > 0 such

that for every ball Bx;2r compactly contained in 
 we have

ju(x)� uBx;r j � C r

�Z 1

0

jDHuj(Bx;tr)

(tr)Q
dt+

jDHuj(Bx;r)

rQ

�
; (20)

for every u 2 BVH;loc(
) whenever x 2 Bx;r \Au.

As an immediate consequence of the previous result we have the following corollary.

Corollary 1.19 Let 
 � G be a bounded open set and let 1 � p < 1. Then there exists a

constant C > 0 such that for every ball Bx;2r compactly contained in 
 we have

ju(x)� uBx;r j � C r

�Z 1

0

 Z
Bx;tr

jrHu(y)j
p

!1=p

dt+

 Z
Bx;r

jrHu(y)j
p

!1=p�
: (21)

for every u 2W 1;p
H;loc(
) whenever x 2 Bx;r \Au.
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2 First order di�erentiability

We begin this section with some preliminary lemmas that will be used in the sequel. Throughout
the paper we will use the notation v� to indicate the map x �! hv; lnxi where x 2 G and v 2 V1.
Note that v�(�rx) = rv�(x) and v� : G �! R is a group homomorphism.

Lemma 2.1 Let � be a nonnegative Radon measure on 
 such that there exists a subset N � 

of Haar measure zero and �(
nN) = 0. Then for a.e. x 2 
 we have limr!0+ �(Bx;r)r

�Q = 0.

Proof. By contradiction, if we had a measurable subset A � 
, with jAj > 0 such that

lim sup
r!0+

�(Bx;r)

rQ
> 0 ;

for every x 2 A, then we would get a measurable subset A0 � A nN with positive measure and
� > 0 such that jDs

Huj(A
0) � ��(A0) > 0. This standard fact can be checked for instance by

Theorem 2.10.17 and Theorem 2.10.18 of [16]. Then inequalities

0 < �(A0) � �(
 nN)

lead us to a contradiction. 2

Lemma 2.2 Let u 2 BVH;loc(
). Then for a.e. x 2 ArHu and every c 2 R the following limit

holds

lim
r!0+

jDH(u�rHu(x)
� � c)j(Bx;r)

rQ
= 0:

Proof. Using both de�nitions of absolutely continuous part and singular part of jDHuj one
can check without di�culty that

jDH (u�rHu(x)
� � c) j = jrHu�rHu(x)j vg + jDHuj

s: (22)

Let us �rst check that for a.e. x 2 
 we have

lim
r!0+

jDHuj
s(Bx;r)

rQ
= 0 : (23)

Radon-Nikod�ym theorem gives us a measurable subset N � 
 such that

jN j = 0 and jDHuj
s(N c) = 0:

Then by Lemma 2.1 the limit (23) holds a.e. in 
. As a consequence, the assumption that x is
an approximate continuity point of rHu concludes the proof. 2

The next theorem has been proved by Calder�on and Zygmund for functions of bounded variation
in Euclidean spaces, [7], see also [16].

Theorem 2.3 (Calder�on-Zygmund) Let u 2 BVH;loc(
) and let � = Q=(Q � 1). Then u
is L� di�erentiable of order 1 at a.e. x 2 
 and the di�erential is representable as rHu(x)

�,

where rHu is the density of Da
Hu.
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Proof. Due to Lemma 2.2, for a.e. x 2 Au \ArHu we have

lim
r!0+

jDHvj(Bx;r)

rQ
= 0; (24)

where we have de�ned v(y) = u(y) � rHu(x)
�(x�1y) � u(x) and x 2 Av with v(x) = 0. By

triangle inequality we have

 Z
Bx;r

jv(y)j� dy

!1=�

�

 Z
Bx;r

jv(y)� vBx;r j
� dy

!1=�

+ jvBx;r j:

The Sobolev-Poincar�e inequality (9) and the estimate (20) give a constant C1 such that

 Z
Bx;r

jv(y)j� dy

!1=�

� C1 r

�Z 1

0

jDHvj(Bx;tr)

(tr)Q
dt+

jDHvj(Bx;r)

rQ

�
= o(r) (25)

where the last equality follows from condition (24). 2

The approach used in the previous theorem can be applied to Lp di�erentiability of Sobolev
functions, obtaining the following known results, see [2].

Theorem 2.4 Let u 2W 1;p
H;loc(
) with 1 � p < Q. Then u has an L
 di�erential of order 1 at

a.e. x 2 
 and the di�erential is representable as rHu(x)
�, where rHu is the density of Da

Hu
and 
 = Qp=(Q� p).

Theorem 2.5 Let u 2 W 1;p
H;loc(
), with 1 � p < 1. Then u has an Lp di�erential of order 1

at a.e. x 2 
 and the di�erential is representable as rHu(x)
�, where rHu is the density of

Da
Hu.

2.1 Another proof of Rademacher's theorem

As a consequence of a.e. L1 di�erentiability of H-BV functions we obtain another proof of the
Rademacher theorem for real-valued Lipschitz maps on strati�ed groups. This result for group-
valued maps is much more demanding and it is due to Pansu [38]. In the case of real-valued
Lipschitz maps on Carnot-Carath�eodory spaces, this theorem has been proved by Monti and
Serra Cassano, [37], using a Morrey-type estimate in Carnot-Carath�eodory spaces due to Lu,
[33]. In the general case of doubling metric spaces admitting Poincar�e inequality, another proof
of Rademacher's theorem is given in [2] for functions belonging to W 1;p

H (
), where p is greater
than the homogeneous dimension of the metric space. In strati�ed groups, a di�erent proof of
this theorem is given in [14].

Here we present a di�erent approach which follows Lemma 3.1.5 of [16]. After this lemma,
Rademacher theorem follows by a.e. approximate di�erentiability. Our proof extends this
lemma to strati�ed groups and uses the a.e. L1 di�erentiability of functions of H-bounded
variation, proved in Theorem 2.3.

12



Theorem 2.6 (Rademacher) Let u : 
 �! R be a Lipschitz map. Then for a.e. x 2 
 there

exists a unique vector rHu(x) 2 V1 such that

lim
y!x

��u(y)� u(x)�rHu(x)
�(x�1y)

��
�(x; y)

= 0:

Proof. It is not di�cult to check that u has distributional derivative Xju in L1(
) for every
j = 1; : : : ;m, see the papers [21] and [23] for more information. In particular u 2 BVH(
) and
Theorem 2.3 largely ensures that u is L1 di�erentiable at a.e. x 2 
. Let us pick x 2 
 at
which u is L1 di�erentiable with di�erential rHu(x)

�. By Lemma 1.16 with � = 1 we obtain
the limit

lim
r!0+

Z
Bx;r

ju(y)� u(x)�rHu(x)
�(x�1y)j

�(x; y)
dy = 0:

In particular u is approximately di�erentiable at x in the Federer sense, [16], namely, for every
" > 0 the set

E" =
n
y 2 
 j ju(y)� u(x)�rHu(x)

�(x�1y)j � " �(x; y)
o

has the property jE" \ Bx;rj jBx;rj
�1 �! 1 as r ! 0+: Then x is a density point of E" hence

the doubling property gives that dist(y;E") = o (�(y; x)) as �(y; x)! 0+. Fix r0 > 0 such that
dist(y;E") � " �(y; x) for every �(y; x) � r0. We choose y 2 Bx;r0 , assuming that Bx;r0 � 
. If
y =2 E"\Bx;r0 � 
, then dist(y;E") > 0 and there exists a 2 E" such that �(y; a) < 2 dist(y;E").
We denote by L the Lipschitz constant of u. We have

ju(y)� u(x)�rHu(x)
�(x�1y)j � jrHu(x)

�(a�1y)j+ ju(a)� u(x)�rHu(x)
�(x�1a)j

+ju(y)� u(a)j � krHu(x)
�k 2"�(y; x) + " �(y; x) + 2L" �(y; x):

In the case y 2 E"\Bx;r0 , by de�nition of E", we have ju(y)�u(x)�rHu(x)
�(x�1y)j � "�(y; x).

The arbitrary choice of " concludes the proof. 2

3 Higher order di�erentiability

In the �rst part of this section we review some basic facts about left invariant di�erential
operators on groups. In particular we recall the important Poincar�e-Birkho�-Witt theorem,
which will be of great importance to our di�erentiability results of higher order.

As in Rn for every k 2 N n f0g there is a natural correspondence between di�erential
operators @�x with j�j =

Pn
j=1 �j � k and polynomials of degree less than or equal to k. The

same analogy holds for strati�ed groups. For convenience of notation, we will identify the
Lie algebra G of left invariant vector �elds with the isomorphic vector space of �rst order left
invariant di�erential operators. Let (W1;W2; : : :Wq) be a graded basis of G, regarded as a
basis of �rst order left invariant di�erential operators. Recall that a homogeneous left invariant
di�erential operator Z has degree d if ��rZ = rdZ, namely,

��rZ(') = Z('��r) = d'(�rZ) = rdd'(Z) = rdZ'

13



for every r > 0 and ' 2 C1(G). By this de�nition one easily checks that the left invariant
vector �eldWi of degree di has also homogeneous degree di as left invariant di�erential operator.
With this notion we can de�ne the homogeneous degree of a left invariant di�erential operator.
We consider a left invariant di�erential operator

Z =
X
�

c�W
�;

where only a �nite number of coe�cients c� 2 R do not vanish and W� is de�ned by the
following ordered terms

W� =W�1
1 � � � � � �W

�q
q ;

for every � = (�1; : : : ; �q) 2 N
q. We de�ne the homogeneous degree of Z as

h-deg(Z) = maxfd(�) j c� 6= 0g ;

where d(�) =
Pq

k=1 dk�k: The �nite dimensional space of left invariant di�erential operators of
homogeneous degree less than or equal to k will be denoted by Ak(G). The Poincar�e-Birkho�-
Witt theorem states that the set of di�erential operators�

W�1
1 � � � � � �W

�q
q j (�1; : : : ; �q) 2 N

q
	

is a basis of the algebra of left invariant di�erential operators on G, see p.21 of [17]. The
next proposition states a precise relation between polynomials and left invariant di�erential
operators on groups, see Proposition 1.30 of [17].

Proposition 3.1 There exists an isomorphism L : PH;k(G) �! Ak(G), given by

L(P ) =
X

d(�)�k

(W�P )(0) W�:

De�nition 3.2 (Mixed derivatives) Let u 2 BV k
H(
) and let Y1; : : : ; Yp 2 G be �rst order

left invariant di�erential operators such that
Pp

j=1 h-deg(Yj) � k. We de�ne the Radon measure
DY1���Ypu as followsZ



� dDY1���Ypu = (�1)p

Z


u(x) (Yp � � �Y1�)(x) dx 8� 2 C1

c (
): (26)

with respect to the Haar measure is denoted by W�u.

Some remarks here are in order. By the fact that the 
ow associated to Y 2 G preserves the
measure, we have that div(Y ) = 0, hence by classical divergence theorem relation (26) holds
for smooth functions u with DY1���Ypu = (Y1 � � �Ypu) vg.

Note also that existence of distributional derivative DY1���Ypu as measure follows by the Lie
bracket generating condition on horizontal vector �elds (X1; : : : ; Xm) that are now regarded as
di�erential operators. It su�ces to observe that every left invariant di�erential operator Z with
h-deg(Z) = k can be written as a linear combination of iterated commutators of (X1; : : : ; Xm)
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up to k times. Then one uses the de�nition of H-BV k function, which exactly requires that
every iterated distributional derivative Xj1 � � �Xjku is a measure, where 1 � j1; : : : ; jk � m.

By Radon-Nikod�ym theorem we have DY1;:::;Ypu =
�
DY1;:::;Ypu

�a
+
�
DY1;:::;Ypu

�s
, where the

terms of the sum are the absolutely continuous part and the singular part of DY1���Ypu, respec-
tively. The density of

�
DY1���Ypu

�a
will be denoted simply by Y1 � � �Ypu. Recall that for every

i = 1; : : : ;m the di�erential operators Wi 2 G have homogeneous degree equal to one. We will
denoted these operators by Xi, where i = 1; : : : ;m.

Due to the Poincar�e-Birkho�-Witt theorem for every j1; : : : ; jp 2 f1; 2; : : : ;mg, there exist
coe�cients fc

�1;:::;�q
j1;:::;jp

g such that

Xj1 � � �Xjp =
X

d(�)�p

c
�1;:::;�q
j1;:::;jp

W�1
1 � � �W

�q
q ; (27)

where � = (�1; : : : ; �q) and Xjs is a horizontal di�erential operator for every s = 1; : : : ; p,
namely, it has homogeneous degree equal to one. By a direct computation, it is not di�cult to
see that De�nition 3.2 and the linearity of (27) give the relation

DXj1
���Xjp

u = (�1)p
X

d(�)�p

(�1)j�jc
�1;:::;�q
jp;:::;j1

DW
�1
1

���W
�q
q
u (28)

for every u 2 BV k
H(
) and p � k.

3.1 Di�erentiability of H-BV k functions

Here we show the higher order approximate di�erentiability of H-BV k functions. We start
with a preliminary lemma.

Lemma 3.3 Let u 2 BV k
H;loc(
). Then for a.e. x 2

T
d(�)�k AW�u there exists a unique

polynomial P[x] 2 PH;k(G) such that W�P[x](x) =W�u(x) and

lim
r!0+

jDW�(u� P[x])j(Bx;r)r
�Q = 0;

for every d(�) � k.

Proof. By Proposition 3.1 for every x 2
T
d(�)�k AW�u we have a unique polynomial P[x] 2

PH;k(G) such that W�P[x](x) =W�u(x) for every d(�) � k. By the regularity of P[x] we have
the following decomposition

jDW�(u� P[x])j = jW�u�W�P[x]j vg + jDW�ujs:

Then Lemma 2.1 concludes the proof. 2

Theorem 3.4 Let u 2 BV k
H;loc(
) with 1 � k < Q and let 
 = Q=(Q� k). Then u is a.e. L


di�erentiable of order k.
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Proof. By Lemma 3.3 for a.e. x 2
T
d(�)�k AW�u we have a unique polynomial P[x] 2 PH;k(G)

such that W�P[x](x) =W�u(x) and

lim
r!0+

jDW�(u� P[x])j(Bx;r)r
�Q = 0

for every d(�) � k. By induction on k, suppose that our claim is satis�ed for k�1 � 1 and that
u 2 L�loc(
), where � = Q=(Q� k + 1). Theorem 2.3 shows that our claim holds for k � 1 = 1.
For every j = 1; : : : ;m the functions Xju and u are H-BV k�1, then the induction hypothesis
implies that u;Xju 2 L�loc(
) and that there exists a unique polynomial Rj 2 PH;k�1(G) such
that  Z

Bx;r

jXju(y)�Rj(y)j
� dy

!1=�

= o(rk�1) as r ! 0+; (29)

and satisfying the condition W �Xju(x) = W �Rj(x) for every d(�) � k � 1. By Poincar�e-
Birkho�-Witt theorem we have a �nite number of coe�cients fc��;jg such that

W �Xju(x) =
X

d(�)�k

c��;jW
�u(x) =

X
d(�)�k

c��;jW
�P[x](x) =W �XjP[x](x) ; (30)

then W �Rj(x) = W �XjP[x](x) for every d(�) � k � 1. By virtue of Proposition 3.1 and
observing that XjP[x] 2 PH;k�1(G) we have Rj = XjP[x] for every j = 1; : : : ;m. Then every
j = 1; : : : ;m we have Xj

�
u� P[x]

�
= Xju � Rj . As a result, de�ning v = u � P[x] and using

condition (29) for every j = 1; : : : ;m we achieve

 Z
Bx;r

jXjv(y)j
� dy

!1=�

= o(rk�1): (31)

The condition k < Q implies the inequality � = Q (Q�k+1)�1 < Q, hence the Sobolev-Poincar�e
inequality (8) yields

 Z
Bx;r

jv(y)� vBx;r j

 dy

!1=


� C r

 Z
Bx;r

jrHv(y)j
� dy

!1=�

;

where 
 = Q�=(Q� �) = Q=(Q� k). From condition (31) for every j = 1; : : : ;m we obtain

 Z
Bx;r

jv(y)� vBx;r j

 dy

!1=


= o(rk): (32)

Notice that v 2W 1;�
H;loc(
), then we can apply (21) getting the inequality

jvBx;r j � C r

�Z 1

0

 Z
Bx;tr

jrHv(y)j
�

!1=�

dt+

 Z
Bx;r

jrHu(y)j
�

!1=� �
; (33)
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hence condition (31) gives jvBx;r j = o(rk) as r ! 0+. Finally, by triangle inequality we have

 Z
Bx;r

jv(y)j
 dy

!1=


�

 Z
Bx;r

jv(y)� vBx;r j

 dy

!1=


+ jvBx;r j = o(rk);

thereby �nishing the proof. 2

The previous proof by induction works for H-BV k with arbitrary k, provided that the use of (8)
and (21) is replaced by that of (10) and (20), respectively. As a result, we obtain the following
theorem.

Theorem 3.5 Every u belonging to BV k
H;loc(
) is a.e. L

1 di�erentiable of order k.

3.2 Di�erentiability of H-Sobolev functions

We �rst observe that W k;p
H;loc(
) � BV k

H;loc(
), then all previous considerations for H-BV k

functions hold for H-Sobolev functions of the same order. We have in addition that DW�u =
(W�u) vg, where W

�u 2 Lp(
) for every d(�) � k.

Lemma 3.6 Let u 2 W k;p
H;loc(
). Then for a.e. x 2

T
d(�)�k AW�u there exists a unique

polynomial P[x] 2 PH;k(G) such that W�P[x](x) =W�u(x) and

lim
r!0+

Z
Bx;r

jW�u(y)�W�P[x](y)j
p dy = 0;

for every d(�) � k.

Proof. By Proposition 1.10 and Proposition 3.1 for a.e. x 2 
 we have a unique polynomial
P[x] 2 PH;k(G) such that W�P[x](x) =W�u(x) for every d(�) � k, where the number W�u(x)
satis�es the property

lim
r!0+

Z
Bx;r

jW�u(y)�W�P[x](x)j
p dy = 0;

for every d(�) � k. Then the continuity of W�P[x] leads us to the conclusion. 2

Theorem 3.7 Let u 2 W k;p
H;loc(
) with 1 � kp < Q and let 
 = Qp=(Q � kp). Then u is a.e.

L
 di�erentiable of order k.

Proof. By Lemma 3.6 for a.e. x 2 
 we have a unique polynomial P[x] 2 PH;k(G) such that
W�P[x](x) =W�u(x) and

lim
r!0+

Z
Bx;r

jW�u(y)�W�P[x](y)j
p dy = 0;

for every d(�) � k. By induction on k, suppose that our claim is satis�ed for k�1 � 1 and that
u 2 L�loc(
), where � = Qp (Q� (k � 1)p)�1. Theorem 2.4 and Sobolev-Poincar�e inequality (8)
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ensure that our claim holds for k� 1 = 1. We have u;Xju 2W k�1;p
H (
) for every j = 1; : : : ;m.

By the induction hypothesis, u;Xju 2 L�loc(
) and for every j = 1; : : : ;m there exists a unique
polynomial Rj 2 PH;k�1(G) such that Z

Bx;r

jXju(y)�Rj(y)j
� dy

!1=�

= o(rk�1); (34)

which satis�es the condition W �Xju(x) = W �Rj(x) for every d(�) � k � 1. By Poincar�e-
Birkho�-Witt theorem we have a �nite number of coe�cients fc��;jg such that

W �Xju(x) =
X

d(�)�k

c��;jW
�u(x) =

X
d(�)�k

c��;jW
�P[x] =W �XjP[x](x) ;

thenW �Rj(x) =W �XjP[x](x) for every d(�) � k�1. In view of Proposition 3.1 and observing
thatXjP[x] 2 PH;k�1(G) we haveRj = XjP[x] for every j = 1; : : : ;m. Then, de�ning v = u�P[x]

we obtain Xjv = Xju�Rj for every j = 1; : : : ;m. Thus, relation (34) yields Z
Bx;r

jXjv(y)j
� dy

!1=�

= o(rk�1):

Then we arrive at the condition Z
Bx;r

jrHv(y)j
� dy

!1=�

= o(rk�1): (35)

Recall that by induction hypothesis v 2 W 1;�
H (
), furthermore the condition kp < Q gives

� < Q, therefore we can apply Sobolev-Poincar�e inequality (8), getting Z
Bx;r

jv(y)j
 dy

!1=


� C r

 Z
Bx;r

jrHv(y)j
� dy

!1=�

+ jvBx;r j;

where 
 = Q�=(Q� �) = Qp=(Q� kp). Moreover, by virtue of (21) we have the estimate

jvBx;r j � C r

�Z 1

0

 Z
Bx;tr

jrHu(y)j
�

!1=�

dt+

 Z
Bx;r

jrHu(y)j
�

!1=� �

Then there exists a constant C1 such that Z
Bx;r

jv(y)j
 dy

!1=


� C1 r

�Z 1

0

 Z
Bx;tr

jrHu(y)j
�

!1=�

dt+

 Z
Bx;r

jrHu(y)j
�

!1=� �
:

Finally, relation (35) and the previous inequality conclude the proof. 2

Replacing in the previous proof the Sobolev-Poincar�e inequality (8) with the Poincar�e inequality
(7) and Theorem 2.4 with Theorem 2.5, we obtain the following theorem.

Theorem 3.8 Every function u belonging to W k;p
H;loc(
) is a.e. L

p di�erentiable of order k.
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