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Abstract. We study uniform measures in the first Heisenberg group H equipped with the
Korányi metric dH . We prove that 1-uniform measures are proportional to the spherical
1-Hausdorff measure restricted to an affine horizontal line, while 2-uniform measures are
proportional to spherical 2-Hausdorff measure restricted to an affine vertical line. We
also show that each 3-uniform measure which is supported on a vertically ruled surface is
proportional to the restriction of spherical 3-Hausdorff measure to an affine vertical plane,
and that no quadratic x3-graph can be the support of a 3-uniform measure. According to a
result of Merlo, every 3-uniform measure is supported on a quadratic variety; in conjunction
with our results, this shows that all 3-uniform measures are proportional to spherical 3-
Hausdorff measure restricted to an affine vertical plane. We establish our conclusions by
deriving asymptotic formulas for the measures of small extrinsic balls in (H, dH) intersected
with smooth submanifolds. The coefficients in our power series expansions involve intrinsic
notions of curvature associated to smooth curves and surfaces in H.

1. Introduction

Let (X, d) be a metric space. A Borel measure ν on X is said to be s-uniform, where
s ≥ 0, if there exists a constant c so that

(1.1) ν(B(x, r)) = crs

for all x ∈ X and all r > 0.
Uniform measures feature prominently in the proof of Preiss’ celebrated Density Theorem

[28] since they occur as tangent measures at points where the s-density exists. The clas-
sification of uniform measures in Euclidean space is a challenging problem which remains
largely open. Marstrand’s theorem [22] guarantees that s-uniform measures can exist in Rn
only for integer values of s. Flat measures are the canonical examples of uniform measures.
Recall that a measure ν in Rn is said to be m-flat, where m is an integer between 1 and

n, if ν = cHm V for some m-dimensional affine subspace V of Rn and some c > 0. All
1- and 2-uniform measures are flat. However—and this fact is largely responsible for the
complexity in the proof of Preiss’ Density Theorem—there are non-flat uniform measures.

The first example is due to Kowalski and Preiss [14], who showed that the measure H3 Σ
is a 3-flat measure in R4, where

Σ = {(x1, x2, x3, x4) ∈ R4 : x2
1 = x2

2 + x2
3 + x2

4}
is the light cone. In fact, Kowalski and Preiss have completely classified (n − 1)-uniform
measures in Rn for all values of n: every such measure is either (n−1)-flat or is proportional

to Hn−1 M , where M is an (n− 1)-dimensional algebraic variety in Rn which is isometric
to Σ × Rn−4. A complete classification of m-uniform measures in Rn when 3 ≤ m <
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n − 1 remains unknown, although recent work of Nimer [25], [27], [26] has improved our
understanding and provided new examples. Kirchheim and Preiss [13] proved that the
support of a uniform measure in Rn is an analytic variety, and Tolsa [30] showed that
such supports satisfy the David–Semmes ‘weak constant density’ condition and hence are
uniformly rectifiable.

In this paper, motivated by our desire to understand the relationship between densities
and rectifiability in sub-Riemannian settings, we initiate a study of uniform measures in
stratified groups. As a point of departure we consider the first Heisenberg group H. We
recall that H can be identified with R3, equipped with the nonabelian group law

(1.2) (x1, x2, x3) ∗ (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 − 2x1y2 + 2x2y1).

We will denote points of H with the notation x = (x1, x2, x3). We denote by π : H → R2

the projection π(x1, x2, x3) = (x1, x2). We will exploit the special symmetries of H via the

rotations R̃ : H→ H defined by the matrix

(1.3)

(
R1 R2 0
0 0 1

)
,

where R1, R2 ∈ R2 are orthogonal vectors and −R2 = JR1, with J as in (2.8).
Since the notion of uniform measure depends strongly on the choice of metric, we fix a

specific metric on the Heisenberg group. We work throughout this paper with the Korányi
metric

(1.4) dH(x, y) = ||x−1 ∗ y||H , ||(x1, x2, x3)||4H := (x2
1 + x2

2)2 + x2
3.

One can verify that each matrix R̃ as in (1.3) is an isometry with respect to the distance dH
of (1.4) and is also a Lie group homomorphism with respect to the group operation (1.2).

Our choice of this metric stems from three facts. First, Marstrand’s density theorem
holds for the metric space (H, dH) [6]; this fact ensures that supports of uniform measures
in (H, dH) are highly regular. Second, the rotational symmetry of the Korányi metric about
the x3-axis simplifies the area formula for submanifolds in the Heisenberg group [21, 18, 17].
Finally, the explicit nature of this metric allows us to compute explicitly the coefficients of
terms arising in local power series expansions of the volumes of small extrinsic balls along
submanifolds. Such computations are crucial for us to obtain explicit differential equations
governing the supports of uniform measures.

We now introduce the main results of the paper. Let µ be an s-uniform measure on
(H, dH). It follows from the main results of [6] that s = m is an integer and the support
of µ is a real analytic variety whose top dimensional stratum has topological dimension m
and Hausdorff dimension m. (See (2.13) for more information about the stratification of
analytic varieties.) Here the pair (m,m) can be any of the following:

(1.5) (0, 0), (1, 1), (1, 2), (2, 3), (3, 4).

Observe that these various cases are distinguished by the value of the sub-Riemannian
Hausdorff dimension m. The cases m = 0 and m = 4 being trivial, we restrict our attention
to the cases m ∈ {1, 2, 3}. In view of the results of Kowalski and Preiss, it is natural to ask
the following question.

Question 1.1. Let µ be an m-uniform measure on H. Must µ be proportional to Sm G,
where G is a left coset of a homogeneous subgroup of H?
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A homogeneous subgroup of H is a Lie subgroup which is invariant under the action of
the dilation semigroup. We will use the modifier affine to refer to a left coset of such a
subgroup. Question 1.1 asks whether the supports of uniform measures in H are flat, i.e., no
exotic examples such as the Kowalski–Preiss light cone exist. Observe that there do exist
uniform measures with non-flat support in Heisenberg groups of sufficiently high dimension,
see [6, Proposition 4.1].

It is easy to observe that any homogeneous subgroup of the Heisenberg group either
contains the vertical direction or does not. In the former case it is called a vertical subgroup
and in the latter case it is called a horizontal subgroup, see for instance [23, 19] or [6] for
details. In view of this classification, Question 1.1 can be restated as follows.

Question 1.2. Let µ be a m-uniform measure on H.

(1) If m = 1, must µ be proportional to S1 L for some affine horizontal line L?

(2) If m = 2, must µ be proportional to S2 V for some affine vertical line V ?

(3) If m = 3, must µ be proportional to S3 W for some affine vertical plane W?

Our first two results answer parts (1) and (2) of this question in the affirmative.

Theorem 1.3. Let µ be a 1-uniform measure on H. Then µ is proportional to S1 L where
L is an affine horizontal line.

Theorem 1.4. Let µ be a 2-uniform measure on H. Then µ is proportional to S2 V ,
where V is an affine vertical line.

In connection with part (3) of Question 1.2, we prove the following results.

Theorem 1.5. Let µ be a 3-uniform measure on H. Then sptµ is a two-dimensional real
analytic variety. If sptµ is a vertically ruled real analytic surface, then µ is proportional to

S3 W , where W is an affine vertical plane.

Theorem 1.6. No quadratic x3-graph can be the support of a 3-uniform measure.

By a quadratic x3-graph we mean a 2-dimensional graph of a quadratic form in the
variables x1 and x2. The fact that the x3 variable has degree two shows that the family of
such quadratic surfaces is invariant by the dilations of the Heisenberg group.

After the present paper appeared on the arXiv, Merlo [24] showed that 1-codimensional
uniform measures in any Heisenberg group Hn are supported on quadratic varieties. As
explained in [24, Section 8], joining this result with both Theorems 1.5 and Theorem 1.6
immediately leads us to the complete classification of uniform measures in the first Heisen-
berg group. For the sake of completeness, we record the following conclusion, which has
been stated as Theorem 8.4(iii) in [24].

Corollary 1.7. Let µ be a 3-uniform measure on H. Then µ is proportional to S3 W ,
where W is an affine vertical plane.

Comments on the method of proof. Following the method developed by Kowalski and
Preiss, we derive Theorems 1.3, 1.4 and 1.5 from local power series expressions for the
spherical Hausdorff measure of an extrinsic ball of (H, dH) intersected with a smooth sub-
manifold. Such formulas, which appear in Propositions 3.1, 4.1 and Theorem 5.1, are of
independent interest. In [5], the first and the second author use (5.1) to study potential



4 VASILIS CHOUSIONIS, VALENTINO MAGNANI, AND JEREMY T. TYSON

definitions of uniform rectifiability in the Heisenberg group. These local power series expres-
sions would also be useful in studying the more general problem of characterizing locally
uniform measures, i.e., measures for which the uniformity condition (1.1) holds at each
point of the support for balls of sufficiently small radii.

In the proof of Theorem 1.5 we use an important tool of independent interest, that is the
following geometric PDE

(1.6) H2
0 +

3

2
P2

0 + 4~e1(P0) = 0,

that is satisfied at all noncharacteristic points of any real analytic surface without boundary
contained in the support of a 3-uniform measure in H. Here H0(x) denotes the horizontal
mean curvature, P0(x) denotes the Arcozzi–Ferrari imaginary curvature (curvature of the
metric normal), and (~e1)x denotes the characteristic vector at a noncharacteristic point x
in a surface Σ. We refer to (2.6), (2.7) and (2.5) for definitions of these quantities.

In Euclidean space the support of a uniform measure can be given by a nonflat quadratic
surface, such as the light cone in R4 that has been previously mentioned. Theorems 1.3 and
1.4 and Corollary 1.7 show that no such nonflat examples occur in H. Theorem 1.6 follows
analyzing the PDE in (1.6) in the setting of quadratic x3-graphs.

To conclude this introduction, we outline the proofs of our main theorems (Theorem 1.3,
1.4 and 1.5). Our sketch of the proof of Theorem 1.5 will illustrate the role of (1.6).

To prove Theorem 1.3, we write the support M of µ as a stratified analytic 1-variety:

M = M(0) ∪M(1).

The area formula (2.11) joined with Theorem 2.3 immediately show that each curve con-
tained in the 1-dimensional stratum M(1) is fully horizontal. We prove that every such curve
has vanishing horizontal curvature, and hence is a horizontal line. It remains to show that
there is no 0-dimensional stratum. We rule out endpoints and junction points of degree at
least three by volume considerations, and we rule out corners (junction points of degree two)
by a geometric argument. Eventually, we conclude that M(0) = ∅ and M(1) = M = sptµ is
a single affine horizontal line.

To prove Theorem 1.4, we again write the support M of µ as a stratified analytic 1-variety:

M = M(0) ∪M(1).

By a blow-up argument, similar to that of [16], we show that each curve contained in the
1-dimensional stratum M(1) is fully nonhorizontal. If Σ : I → H is such a curve, and γ is the

projection of Σ to R2, then either Σ is contained within a vertical line, or σ := | ddsγ| > 0 on
a dense open set J ⊂ I. In the latter case we derive several differential equations satisfied
by the speed and curvature of γ. Specifically, we show that the speed σ and curvature of
γ are proportional, and that σ satisfies several additional nonlinear ordinary differential
equations. We show that there are no nonzero solutions to this ODE system. Hence the
second case cannot occur, and so Σ must be entirely contained within a vertical line. Since
the support of µ must be connected, we conclude that M(0) = ∅ and M(1) = M = sptµ is a
single affine vertical line.

Finally, we discuss the proof of Theorem 1.5. Our assumption is that the support M of µ
is a real analytic, noncharacteristic, vertically ruled surface. In this situation the geometric
PDE (1.6) reduces to H0 = 0. By the Bernstein theorem for the Heisenberg group, M must
be contained in a vertical plane. Volume considerations ensure that there are no boundary
edges, hence M is a single affine vertical plane.
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2. Background

2.1. Hausdorff measures and spherical Hausdorff measures. We recall that the
Hausdorff s-measure of a set A in a metric space (X, d) is defined to be

Hs(A) = lim
δ→0

inf

{ ∞∑
i=1

(diamEi)
s : A ⊂

∞⋃
i=1

Ei, diamEi < δ

}
,

while the spherical Hausdorff measure Ss(A) of A is defined by the same formula, but with
the additional assumption that the sets Ei are restricted to be balls B(xi, ri) of (X, d). It
is well known that Hs and Ss are comparable on any metric space:

(2.1) Hs(A) ≤ Ss(A) ≤ 2sHs(A) ∀A ⊂ X,
and that there exist sets (even subsets of Euclidean space) for which these two measures
differ. In the Euclidean setting, Hm and Sm coincide for m-rectifiable sets. A corresponding
result is not yet known in the sub-Riemannian setting. See [29, Remark 4.41] for the latest
information on this question. For the purposes of the area formula on submanifolds discussed
in the following subsection, we focus attention to the spherical Hausdorff measure. Note
that (2.1) ensures that the notion of Hausdorff dimension is the same when defined by either
the class of Hausdorff measures or spherical Hausdorff measures:

dimA = inf{s ≥ 0 : Hs(A) = 0} = inf{s ≥ 0 : Ss(A) = 0}.
We remark that we denote by dimA the Hausdorff dimension of a set A in any metric space.
Our primary interest will be in subsets of the first Heisenberg group H endowed with the
Korányi metric.

2.2. Sub-Riemannian differential geometry of curves and surfaces in H. We con-
sider the left-invariant vector fields X1, X2, X3 in H, which agree with the standard unit
vectors e1, e2, e3 at o = (0, 0, 0). Denoting x = (x1, x2, x3) we have

(2.2) X1(x) = e1 + 2x2e3, X2(x) = e2 − 2x1e3 and X3(x) = e3.

As first-order differential operators, these vector fields act as follows:

(X1)x = ∂1 + 2x2∂3, (X2)x = ∂2 − 2x1∂3 and (X3)x = ∂3.

We observe that [X1, X2] = −4X3, thus the horizontal distribution HH, whose fiber at
x ∈ H is HxH = span{X1(x), X2(x)}, is completely nonintegrable. We also refer to HxH as
the horizontal tangent space at x. The horizontal distribution can also be defined fiberwise
as the kernel of the defining contact 1-form

(2.3) ϑ = dx3 + 2x1 dx2 − 2x2 dx1 .

The length of a horizontal tangent vector v ∈ HxH is defined to be |v|x :=
√
c2

1 + c2
2, where

v = c1(X1)x + c2(X2)x. For a function f : H → R, we denote by ∇0f = X1fX1 + X2fX2

the horizontal gradient of f and by |∇0f | =
√

(X1f)2 + (X2f)2 its norm.
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We denote by J : HH → HH the fiberwise linear operator defined in the horizontal
distribution by the rule J (X1) = X2 and J (X2) = −X1.

Curves. A point x = Σ(s) on a C1 curve Σ in H is horizontal if ϑ(Σ̇(s)) = 0, i.e., if Σ̇(s) is a
horizontal tangent vector at x. We say that Σ is horizontal if every point on Σ is horizontal.
The Carnot–Carathéodory length of a horizontal curve Σ : I → H is defined to be

lengthcc(Σ) =

∫
I
|Σ̇(s)|Σ(s) ds,

where |v|x denotes the horizontal length of a horizontal tangent vector v at x ∈ H. Every

horizontal curve can be reparameterized by arc length, in which case |Σ̇(s)|Σ(s) = 1 for all
s. Observe that if Σ is a horizontal curve in H parameterized by arc length, then γ = π ◦Σ
is a curve in R2 parameterized by arc length: |γ̇(s)| = 1 for all s.

A C1 curve Σ in H is fully nonhorizontal if ϑ(Σ̇(s)) 6= 0 for all s. A fully nonhorizontal
curve Σ is said to be parameterized by homogeneous arclength if

ϑ(Σ̇(s)) = 1

for all s. This terminology is justified by the area-type formula

S2(Σ) =

∫
I
|ϑ(Σ̇(s))|ds,

that is a special case of (2.11). The formula for S2(Σ) also shows that any fully nonhorizontal
curve can always be reparameterized by homogeneous arclength.

Surfaces. A point x on a smooth surface Σ in H is said to be noncharacteristic if TxΣ 6=
HxH. The set of all characteristic points of Σ is the characteristic set, denoted C(Σ). A
surface is fully noncharacteristic if C(Σ) = ∅.

Let x be a noncharacteristic point on a smooth surface Σ. A horizontal normal to Σ at
x is the projection of a Riemannian normal into the horizontal plane at x. If Σ is given
(locally at x) as a level set of a smooth function u, then

(2.4) ~n0(x) = ∇0u(x)/|∇0u(x)| = |∇0u(x)|−1(X1uX1 +X2uX2)

is a choice of horizontal normal. Relative to a choice of horizontal normal, we introduce the
characteristic vector field ~e1 = J (~n0), defined at noncharacteristic points of a surface
Σ. In the level set formulation,

(2.5) ~e1(x) = |∇0u(x)|−1(X1uX2 −X2uX1) .

There exists a unique unit-speed horizontal curve cx : (−ε, ε) → Σ, passing through x,
whose velocity vector ċx(0) ∈ HxH ∩ TxΣ =: HTxΣ agrees with the characteristic vector
field ~e1 at x. The noncharacteristic portion Σ \ C(Σ) is foliated by such curves; this is the
so-called Legendrian foliation.

The horizontal mean curvature of Σ at x, denoted H0(x), is the planar curvature of the
projection of the Legendrian curve cx into the first two coordinates. In other words,

H0(x) := kπ◦cx(0).

where kγ denotes the planar curvature of γ. We also call H0(x) the horizontal curvature of
the space curve cx at the point x. In the case when Σ is a level set of a function u,

(2.6) H0 = X1

(
X1u

|∇0u|

)
+X2

(
X2u

|∇0u|

)
.
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See [4, §4.3] for further information.
Next we recall the concepts of metric normal and imaginary curvature introduced by

Arcozzi and Ferrari [1], [2]. The metric normal at a noncharacteristic point x ∈ Σ, denoted
NxΣ, is the set of points y ∈ H such that distcc(y,Σ) = dcc(y, x). Here dcc denotes the
Carnot-Carathéodory (C–C) metric. According to [1, Theorem 1.2], NxΣ consists of a
nontrivial arc contained in a CC geodesic passing through x, whose tangent vector at x is
the horizontal unit normal ~n0 to Σ. The imaginary curvature of Σ at x, denoted P0(x), is
the horizontal curvature of NxΣ at x. In other words, P0(x) is the signed curvature of the
planar projection of NxΣ. In the level set formalism,

(2.7) P0 =
4X3u

|∇0u|
.

Observe that P0 vanishes on an open subset U of Σ if and only if U is vertically ruled;
in the level set formalism this means that the defining function u depends only on x1 and
x2. The terminology ‘imaginary curvature’ comes from [2], where the same authors use the
horizontal mean and imaginary curvatures to study the horizontal Hessian of the Carnot–
Carathéodory distance function δΣ,cc(x) = distcc(x,Σ). According to [2, Theorem 1.1], the
horizontal Hessian of δΣ,cc at x is given by

~n0(x)⊗ ~n0(x) · (H0(x) I + P0(x) J),

where

(2.8) I =

(
1 0
0 1

)
and J =

(
0 1
−1 0

)
denote the 2× 2 identity and standard symplectic matrices. For this reason the authors of
[2] also term H0(x) the real curvature of Σ at x.

Note that the mean and imaginary curvatures, as well as the characteristic vector field,
depend up to sign on a choice of normal to the surface, or equivalently, on a choice of the
defining function u. However, H2

0, P2
0 and ~e1(P0) are all independent of such choice. The

left hand side of the PDE (1.6) is therefore intrinsic to the surface.

2.3. Area formula for submanifolds of the Heisenberg group. Propositions 3.1, 4.1
and Theorem 5.1 derive from an area formula expressing the natural sub-Riemannian volume
locally on a smooth submanifold of (H, dH) in terms of a parameterization.

The topological dimensionm and the sub-Riemannian Hausdorff dimensionm of a smooth
submanifold Σ in any stratified group are related by a formula of Gromov, [11, 0.6.B]. This
formula has an algebraic formulation in terms of the degree of points, that also leads to the
computation of the appropriate spherical measure; see [21] and [20].

In the first Heisenberg group, the degree dΣ(x) a point x of a C1 submanifold Σ has the
following expression:

(2.9) dΣ(x) =


1 if dim Σ = 1 and TxΣ ⊂ HxH
2 if dim Σ = 1 and TxΣ 6⊂ HxH
2 if dim Σ = 2 and TxΣ = HxH
3 if dim Σ = 2 and TxΣ 6⊂ HxH

.

The algebraic definition of degree in any stratified group can be found in [21]. Gromov’s
formula for the Hausdorff dimension of a submanifold Σ is

max
x∈Σ

dΣ(x).
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In view of the Frobenius theorem, any 2-dimensional smooth submanifold of H cannot
contain only points of degree two, and hence the previous formulae show that all possible
pairs (m,m) are given by the list in (1.5). For instance a smooth curve Σ has Hausdorff
dimension m = 1 if and only if Σ is everywhere horizontal and every smooth surface Σ in
(H, dH) has Hausdorff dimension m equal to 3.

The degree of (2.9) is precisely defined in formula (2.4) of [21] and it is based on the notion
of degree for vectors of Lie(H). Starting from the basis (2.2), we set deg(X1) = deg(X2) = 1
and deg(X3) = 2, so that for 2-vectors we have

deg(Xi ∧Xj) = degXi + degXj

with i 6= j and i, j = 1, 2, 3. This notion can be extended to all k-vectors of Λk(Lie(G)),
where G is a stratified group, see [21, Definition 2.1]. For any k-vector

τ =
∑
I

τIXI(x) ∈ Λk(TxΣ)

associated to a k-dimensional C1 smooth submanifold Σ ⊂ G, x ∈ Σ, dimG = q, τI ∈ R,
and I = (i1, . . . , ik) varying among all choices 1 ≤ i1 < · · · < ik ≤ q, we may define the
projection

(2.10) (τ)(d) =
∑

degXI=d

τIXI(x),

where XI = Xi1 ∧ · · · ∧ Xik and degXI = degXi1 + · · · + degXik . Taking into account
these definitions, we state the following result, that is a consequence of [21], of formula (3)
of [18], and of [17, Proposition 4.5].

Theorem 2.1 (Area formula on submanifolds of (H, dH)). Let Σ be a C1,1 submanifold of
topological dimension m ∈ {1, 2} and Hausdorff dimension m ∈ {1, 2, 3} in (H, dH). Let
Ω ⊂ Σ be a domain, parameterized by a mapping Φ : U ⊂ Rm → H. Then there exists a
geometric constant βd, depending on dH and (m,m), such that

(2.11) Sm(Ω) = βd

∫
U
|(∂x1Φ ∧ ∂x2Φ ∧ · · · ∧ ∂xmΦ)(m)| dx,

where (·)(m) is defined as in (2.10) and it denotes the projection of m-vectors onto m-vectors
of degree m.

Such area formula holds in much greater generality than what we state here, as for
higher dimensional Heisenberg groups and general stratified groups equipped with a variety
of different homogeneous distances. Recently, a general approach to area formulas has been
established in [20], also proving these formulas for new classes of submanifolds of class C1.

For simplicity, we henceforth assume that the constant βd in Theorem 2.1 equals one.
This can be achieved by rescaling the spherical Hausdorff measure Sm, if necessary. Clearly
such rescaling has no effect on the arguments in this paper.

Lemma 2.2. Let Σ be a C1,1 submanifold of topological dimension m ∈ {1, 2} and Hausdorff
dimension m ∈ {1, 2, 3}. Then for all points x ∈ Σ of degree m, the following limit

(2.12) lim
r→0

Sm(BH(x, r) ∩ Σ)

rm

exists and equals a fixed geometric constant.
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Proof. From (2.11), using the rescaled version of Sm such that βd = 1, we have

Sm(BH(x, r) ∩ Σ)

rm
= r−m

∫
Φ−1(BH(x,r)∩Σ)

|(∂x1Φ ∧ ∂x2Φ ∧ · · · ∧ ∂xmΦ)(m)| dx

=

(
−
∫

Σ∩BH(x,r)
|
(
τmΣ (x)

)
|dµ̃m

)(
µ̃m(Σ ∩BH(x, r))

rm

)
where µ̃m is the m-dimensional surface measure on Σ with respect to a fixed auxiliary
Riemammian metric g̃, τΣ is the unit m-tangent vector with respect to the metric g̃ and
τmΣ = (τΣ)(m) is the homogeneous part of τΣ having degree m. As a result, the continuity of

x→ |τmΣ (x)| and [21, (1.3)] show that the limit (2.12) exists and equals to the m-dimensional
Euclidean surface measure of BH(0, 1) ∩Π for a suitable subspace Π of H.

When m = 1 and m = 1, Π is a one dimensional homogeneous subgroup of H contained in
the x1x2-plane, so by the rotational symmetry of BH(0, 1) about the x3-axis the Euclidean
surface measure of BH(0, 1) ∩ Π does not depend on Π. In this case the value of the limit
(2.12) is equal to 2.

When m = 1 and m = 2, Π is uniquely determined by the one dimensional vertical
subgroup of H. Again, the value of the limit (2.12) is equal to 2.

Finally, when m = 2 and m = 3, Π is some 2-dimensional homogeneous subgroups of H,
corresponding to a vertical plane of H. Also in this case, due to the special symmetry of
BH(0, 1), the Euclidean surface measure of BH(0, 1) ∩ Π does not depend on the choice of
this vertical plane Π. The value of the limit (2.12) in this case is explicitly computed in the
Appendix to this paper, see (6.1).

This concludes the proof. �

Let Σ be an analytic variety. We denote by

(2.13) Σ = Σ(0) ∪ · · · ∪ Σ(m)

the stratification of Σ into a countable union of analytic submanifolds of dimensions between
0 and m. The existence of such a stratification is a celebrated theorem of Lojasiewicz. We
refer the reader to [15, Section 6.3] for further discussion. Apart from trivial cases, the
stratification in (2.13) does not contain submanifolds of full dimension, i.e., m < n.

Theorem 2.3. If µ is an m-uniform measure, then

(2.14) µ = cSm sptµ.

Proof. By [6, Proposition 3.1], the support Σ is an analytic variety with stratification (2.13).
Let us define S0 = Σ \ Σ(m). If m = 2 and m = 3, then S0 is made by countable unions

of points and analytic curves, hence it is H2
E-negligible. By the absolute continuity of S3

with respect to the 2-dimensional Euclidean Hausdorff measure H2
E , see for instance [3], we

get S3(S0) = 0. If m = 1 and either m = 2 or m = 1, then S0 is contained in an at most
countable union of points, therefore S2(S0) = 0. We conclude that in any case Sm(S0) = 0.

The set Σ(m) contains a possibly nonempty subset Σ0,m made of points with degree

less than m, which is Sm-negligible, due to [18, Corollary 1.2]. Lemma 2.2 provides us in
particular an asymptotically doubling property of the measure

φ = Sm Σ′(m)
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with Σ′(m) = Σ(m) \Σ0,m We are then in the position to apply both [9, 2.8.17] and [9, 2.9.7]

to φ, hence differentiating the restriction

µ Σ′(m)

with respect to φ in Σ′(m), we get the equality (2.14) on Σ′(m). The uniform condition

immediately shows that µ and Sm Σ are mutually absolutely continuous, therefore both
S0 and Σ0,m are also µ-negligible. This concludes the proof. �

3. 1-uniform measures and smooth horizontal curves

In this section we analyze 1-uniform measures, and in particular, we prove Theorem 1.3.
The proof of Theorem 1.3 relies on the following power series formula for the volumes of
small Korányi balls along smooth horizontal curves.

Proposition 3.1. Let Σ be a C3 smooth horizontal curve in H, and let x = Σ(0). Set
γ = π ◦ Σ and denote by k = kγ the planar curvature of γ. Then

(3.1) S1(BH(x, r) ∩ Σ) = 2r + a1(x)r3 + o(r3),

where a1(x) is a positive multiple of k(0)2.

We first prove Theorem 1.3 under the assumption that Proposition 3.1 is satisfied.

Proof of Theorem 1.3. Let µ be a 1-uniform measure on H. By [6, Proposition 3.1], M =
sptµ is a real analytic variety. In view of Lojasiewicz’s Structure Theorem for real analytic
varieties, Theorem 2.3 with m = 1 and (2.11), we deduce that M = M(0)∪M(1) is the union
of countably many analytic submanifolds whose dimensions are at most one. Moreover, all
curves contained in M(1) must be fully horizontal.

Due to the 1-uniformity of µ, M(0) cannot contain isolated points. Moreover, we cannot
have points x of M(0) where more than two curves in M(1) meet, since the measures of small
balls centered at x would be too large. The 1-uniformity of µ also prevents curves of M(1)

from terminating at some point x, since the measures of small balls centered at x would be
too small.

Analyticity ensures that whenever x ∈M(1), there exists rx > 0 such that M ∩BH(x, rx)
is a single connected analytic curve Σ. Indeed, if we had an infinite sequence of points of M
not lying in this curve and converging to x, then—since M does not contain isolated points—
we would conclude that x lies in the intersection of at least two horizontal curves. This
gives a contradiction. We are thus in a position to apply Proposition 3.1 at x, concluding
that the curvature of γ = π ◦ Σ at π(x) is equal to zero.

It follows that any horizontal curve in M(1) is an affine horizontal line. We have proved
that M is the union of disjoint affine horizontal line segments (bounded or unbounded), two
of these line segments may meet at a corner, but there are no endpoints of line segments or
junction points of three or more lines.

Lemma 3.2. M cannot contain corners, i.e., M cannot contain two horizontal line seg-
ments meeting transversally at a common endpoint.

Assuming the lemma, we now know that M consists of one or more bi-infinite affine
horizontal lines. However, M cannot contain two such lines: consider a ball centered on one
such line with radius slightly larger than the distance to the closest other line in M . We
conclude that M consists of a single, bi-infinite, affine horizontal line and µ is proportional
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to S1 M . This completes the proof of Theorem 1.3, modulo Lemma 3.2 and Proposition
3.1. �

Proof of Lemma 3.2. Suppose that M = sptµ contains two horizontal line segments meet-
ing at a common endpoint x. Let us denote by γ1, γ2 these two horizontal line segments.
We assume that both γ1 and γ2 are parameterized on half-open intervals, and do not con-
tain x. By analyticity, there exists some small ball B centered at x so that M contains no
points in B apart from γ1 ∪ {x} ∪ γ2. Choose a point y ∈ γ1 with distH(x, y) < 1

100 rad(B).
By assumption µ(BH(y, r) ∩M) = 2r for all r > 0. We will derive a contradiction. We
distinguish two cases according to the relative location of the second line segment γ2.

In the first case, we assume that there exists a radius r0 > 0 so that the closed dH -ball
centered at y with radius r0 meets γ2, but does not contain x. For some sufficiently small
δ > 0, if we set r = r0 + δ, then

BH(y, r) ∩M = E1 ∪ E2,

where E1 is a line segment along γ1 of length 2r and E2 is a line segment along γ2 of positive
length. Then µ(BH(y, r) ∩M) = µ(E1) + µ(E2) > 2r which is a contradiction.

In the second case, we assume that BH(y, r0) ∩ γ2 = ∅, where r0 = dH(x, y). Again, for
some sufficiently small δ > 0 we let r = r0 + δ. Then ∂BH(y, r)∩ γ2 contains a single point,
which we denote by z. Moreover, BH(y, r) ∩M = E1 ∪ E2, where E1 is a line segment on
γ1 of length dH(x, y) + r and E2 is a line segment on γ2 of length dH(x, z). It suffices to
prove that

dH(x, y) + r + dH(x, z) 6= 2r.

Let d1 = dH(x, y) and d2 = dH(x, z); we must show that d1 + d2 6= r = dH(y, z).
Without loss of generality, we may assume that x = o = (0, 0), y = (−d1, 0, 0), and
z = (d2 cos θ, d2 sin θ, 0) for some θ ∈ (0, 2π). We compute

r4 = dH(y, z)4

= ((d1 + d2 cos θ)2 + (d2 sin θ)2)2 + 4d1d2 sin2 θ

= d4
1 + 4d3

1d2 cos θ + 6d2
1d

2
2 + 4d1d

3
2 cos θ + d4

2.

Since θ 6= 0 mod 2π, the latter expression is strictly less than (d1 + d2)4. Hence r < d1 + d2

and the proof of the lemma is complete. �

Proof of Proposition 3.1. To simplify the computations we assume that Σ is parameterized
by the C–C arc length. Thus, if Σ(s) = (x1(s), x2(s), x3(s)) the following ODEs are satisfied:

(3.2) ẋ3 + 2x1ẋ2 − 2x2ẋ1 = 0

and

(3.3) (ẋ1)2 + (ẋ2)2 = 1.

First, we assume that s = 0, Σ(0) = o = (0, 0, 0) and Σ̇(0) = (1, 0, 0). Theorem 2.1 implies
that

(3.4) S1(BH(o, r) ∩ Σ) =

∫
Σ−1(BH(o,r))

|(Σ̇(s))(1)| ds .

Since Σ is parameterized by the C–C arc length, |(Σ̇(s))(1)| = ((ẋ1)2 + (ẋ2)2)1/2 = 1 and so
(3.4) equals

H1(Σ−1(BH(o, r))).
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Let us expand the components of γ = π ◦Σ in power series about s = 0. Since the curve is
C3 we have

x1(s) = s+ 1
2a2s

2 + 1
6a3s

3 + o(s3)

x2(s) = 1
2b2s

2 + 1
6b3s

3 + o(s3) .

The unit speed normalization (3.3) gives 1 + 2a2s + (a2
2 + a3 + b22)s2 + o(s2) = 1 for all s,

whence a2 = 0 and a3 = −b22. We rewrite the equation for x1(s) as follows:

x1(s) = s− 1
6b

2
2s

3 + o(s3) .

Since Σ is horizontal, (3.2) implies that

x3(s) = −1
3b2s

3 + o(s3).

Now s ∈ Σ−1(BH(o, r)) if and only if |Σ(s)|H ≤ r; inserting the power series expansions for
the components of Σ gives

(3.5) s4 − 1
18b

2
2s

6 + o(s6) ≤ r4.

A monotonicity argument (compare Lemma 5.5 for a similar convexity argument in higher
dimensions) ensures the existence of unique positive and negative solutions s+ = s+(r) and
s− = s−(r) to the equation |Σ(s)|H = r; inverting (3.5) yields

(3.6) s+ = r + 1
72b

2
2r

3 + o(r3).

and

(3.7) s− = −r − 1
72b

2
2r

3 + o(r3).

Then

S1(BH(o, r) ∩ Σ) = s+ − s− = 2r + 1
36b

2
2r

3 + o(r3)

and we recall that b2 = ẍ2(0).

To conclude the proof we remove the assumptions Σ(0) = o and Σ̇(0) = (1, 0, 0). Indeed
we may consider left translations and rotations Rθ : H → H about the x3-axis by angle θ.
The matrix of Rθ has the form (1.3), so Rθ is an isometry with respect to dH , along with left
translations. In addition, Rθ is also a Lie group homomorphism, so it sends metric balls into
metric balls. Since this property is also satisfied by left translations, we conclude that both
of these families of mappings preserve the spherical Hausdorff measure. We also observe
that nonhorizontal directions are preserved, since both isometries and left translations are
contact diffeomorphisms.

Let Σ be an arbitrary horizontal curve and let x = Σ(0), where 0 denotes the origin of R.
Define Σ := R−1

θ ◦ `
−1
x ◦ Σ, where `x : H→ H denotes left translation by x and θ is chosen

so that arg(π ◦ `−1
x ◦ Σ)′(0) = θ. Then Σ̇(0) = (1, 0, 0). If we write Σ = (x1, x2, x3) then

ẍ2(0) = ẋ1(0)ẍ2(0)− ẋ2(0)ẍ1(0) = kγ(0)

since γ = π◦Σ is unit speed parameterized. This completes the proof of Proposition 3.1. �
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4. 2-uniform measures and smooth fully nonhorizontal curves

In this section we consider 2-uniform measures. Theorem 1.4 is a consequence of a power
series formula for the spherical 2-Hausdorff measure of small balls centered at nonhorizontal
points on smooth curves. In this case we make use of the first three nonzero terms in the
power series following the leading order term. Specifically, we compute the expansion of
S2(BH(x, r) ∩ Σ) up to the r14 term. This expansion yields multiple differential equations
satisfied by the speed of the planar projection of Σ, which we analyze in order to show that
Σ must be vertical.

In order to simplify the statement of the formula we introduce some notation. We consider
a smooth curve Σ : I → H and we denote by γ = π ◦ Σ the planar projection of Σ. We do
not assume that γ is parameterized by arc length. The standard Euclidean inner product
and symplectic form in R2 are denoted g(~v, ~w) = v1w1 + v2w2 and ω(~v, ~w) = v1w2 − v2w1

respectively. We denote by γ̇ = γ(1), γ̈ = γ(2),
...
γ = γ(3), and so on, and we write

gij = g(γ(i), γ(j)) and ωij = ω(γ(i), γ(j)).

We denote by σ := |γ̇| = g
1/2
11 the speed of γ, and by k = g

−3/2
11 ω12 its planar curvature.

We will consider weighted homogeneous polynomials in the quantities gij and ωij , where
the weight associated to index i is 2i− 1. Thus, for instance, g11 has weight 2 while ω12 has
weight 4.

Proposition 4.1. Let Σ be a C6 smooth nonhorizontal curve in H, parameterized by ho-
mogeneous arclength. Let x = Σ(0) and set γ = π ◦ Σ. Then

(4.1) S2(BH(x, r) ∩ Σ) = 2r2 + b1(x)r6 + b2(x)r10 + b3(x)r14 + o(r14),

where bm(x) is a weighted homogeneous polynomial in the quantities gij(0) and ωij(0) of
total weight 4m.

The coefficients in (4.1) have the following explicit forms:

(4.2) b1(x) = −g2
11 + 2

3ω12

∣∣∣∣
s=0

,

(4.3) b2(x) = 7
4g

4
11 − 7

3g
2
11ω12 + 1

6ω
2
12 − 3

2g
2
12 − 2

3g11g13 + 1
15ω23 + 1

10ω14

∣∣∣∣
s=0

,

and

b3(x) =− 33
16g

6
11 + 33

8 g
4
11ω12 − 11

8 g
2
11ω

2
12 − 11

36ω
3
12 + 63

8 g
2
11g

2
12 − 1

32g
2
22

− 9
4g

2
12ω12 + 3

2g
3
11g13 − 2

5g
2
11ω23 − 5

4g11(ω12g13 + g12ω13)

− 7
90g12g23 − 31

180g22g13 + 1
12(ω2

13 − g2
13) + 11

120ω12ω14 − 1
8g12g14

− 9
40g

2
11ω14 − 1

60g11g15 + 1
504ω34 + 1

280ω25 + 1
504ω16

∣∣∣∣
s=0

.

(4.4)

By analyzing the various differential equations arising by setting the right hand sides of
(4.2), (4.3) and (4.4) equal to zero, we deduce the following consequence.

Proposition 4.2. Let Σ be a fully nonhorizontal real analytic curve which is contained in
the support of a 2-uniform measure in H. Then Σ is contained in a vertical line.

We first establish Theorem 1.4 conditional upon the validity of Propositions 4.1 and 4.2.
Proofs of Propositions 4.1 and 4.2 are deferred to the end of the section. We begin with a
lemma.



14 VASILIS CHOUSIONIS, VALENTINO MAGNANI, AND JEREMY T. TYSON

Lemma 4.3. Any real analytic curve contained in the support of a 2-uniform measure
contains no horizontal points.

Proof. Let Σ : I → H be a real analytic curve contained in the support of a 2-uniform
measure µ. Analyticity implies that there can be no non-isolated horizontal points in Σ.
Assume that 0 ∈ I with Σ(0) = o, that Σ(s) is nonhorizontal for all s 6= 0 in I, and that Σ(0)
is horizontal. We claim that limr→0 r

−2µ(BH(o, r)) 6= 2; recall that this limit is equal to 2
at nonhorizontal points by Lemma 2.2. Since µ is 2-uniform, this leads to a contradiction.

To this end, we compute

(4.5)
µ(BH(0, r))

r2
=

1

r2

∫
Σ−1(BH(0,r))

|ϑ(Σ̇(s))| ds.

To simplify later computations we perform an initial rotation about the vertical axis and
assume that ẋ2(0) = 0, where Σ = (x1, x2, x3). We next make the change of variables
s = rτ , which transforms the right hand side of (4.5) into

1

r

∫
r−1Σ−1(BH(0,r))

|ϑ(Σ̇(rτ))| dτ.

Note that τ ∈ r−1Σ−1(BH(0, r)) if and only if Σ(rτ) ∈ BH(0, r), which in turn occurs if
and only if (

x1(rτ)

r
,
x2(rτ)

r
,
x3(rτ)

r2

)
∈ BH(0, 1).

We conclude that

lim
r→0

µ(BH(0, r))

r2
= lim

r→0

∫
r−1Σ−1(BH(0,r))

1

r
|ϑ(Σ̇(rτ))| dτ,

and since ϑ(Σ̇(0)) = 0 and ϑ(Σ̈(0)) = ẍ3(0), we obtain

lim
r→0

µ(BH(0, r))

r2
= |ϑ(Σ̈(0))|

∫
J0

|τ | dτ = |ẍ3(0)|
∫
J0

|τ | dτ,

where

J0 = {τ : (ẋ1(0)τ, 0, 1
2 ẍ3(0)τ2) ∈ BH(0, 1)}.

Since τ ∈ J0 if and only if (ẋ1(0)4 + 1
4 ẍ3(0)2)τ4 < 1, we conclude that∫

J0

|τ | dτ = 2

∫ (ẋ1(0)4+
1
4 ẍ3(0)2)−1/4

0
τ dτ =

1

(ẋ1(0)4 + 1
4 ẍ3(0)2)1/2

and hence

lim
r→0

µ(BH(0, r))

r2
= 2

√
1
4 ẍ3(0)2

ẋ1(0)4 + 1
4 ẍ3(0)2

< 2.

It follows that if µ is 2-uniform, then sptµ contains no horizontal points. �

Proof of Theorem 1.4. Let µ be a 2-uniform measure on H. As in the proof of Theorem 1.3,
due to [6, Proposition 3.1] M = sptµ is a real analytic variety. Lojasiewicz’s Structure
Theorem, together with Theorem 2.3 where m = 2 and formula (2.11), implies that M =
M(0) ∪M(1) is a union of countably many analytic submanifolds whose dimensions are at
most one. Moreover, the open subset of points with degree two in any such curve is dense.
By the definition of degree, (2.9), the velocity vector is not horizontal at these points.
Lemma 4.3 ensures that any such curve is fully nonhorizontal.
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According to Proposition 4.2, each of the (fully nonhorizontal) curves in M(1) is purely
vertical. By 2-uniformity, there can be no isolated points in M(0). The full support must
therefore consist of nontrivial vertical line segments (possibly infinite at one or both ends).
Endpoints are not allowed (since the measures of small balls at such points would be too
small). Thus sptµ is a union of affine vertical lines. Again using 2-uniformity, we deduce
that sptµmust be connected. Hence the support is a single vertical line and µ is proportional
to S2

H restricted to the support. This completes the proof. �

We now turn to the proof of Proposition 4.1 and its corollary, Proposition 4.2.

Proof of Proposition 4.1. Let Σ = (x1, x2, x3) and x = Σ(0) be as in the statement of the
proposition. After a left translation, we may assume that Σ(0) = o = (0, 0, 0). We expand
x1(s) and x2(s) to sixth order:

x1(s) =

6∑
m=1

1
m!ams

m + o(s6)

x2(s) =
6∑

m=1

1
m!bms

m + o(s6)

and use the fact that Σ is parameterized by homogeneous arclength to determine a power
series expansion for x3(s). From the differential equation

ẋ3 + 2x1ẋ2 − 2x2ẋ1 = 1

we find that

x3(s) = s+
7∑

m=3

cms
m + o(s7)

with

c3 = 1
3(a2b1 − a1b2),

c4 = 1
6(a3b1 − a1b3),

c5 = 1
20(a4b1 − a1b4) + 1

30(a3b2 − a2b3),

c6 = 1
90(a5b1 − a1b5) + 1

72(a4b2 − a2b4),

and
c7 = 1

504(a6b1 − a1b6) + 1
280(a5b2 − a2b5) + 1

504(a4b3 − a3b4).

Theorem 2.1 implies that

(4.6) S2(BH(o, r) ∩ Σ) =

∫
Σ−1(BH(o,r))

|(Σ̇(s))(2)| ds .

Note that
Σ̇(s) = ẋ1(s)X1 + ẋ2(s)X2 + ϑ(Σ̇(s))X3

and so
(Σ̇(s))(2) = ϑ(Σ̇(s)) = 1.

It suffices to compute the interval of definition

Σ−1(BH(o, r)) = (s−(r), s+(r)).

The endpoints s±(r) are determined by solving the equation

(x1(s)2 + x2(s)2)2 + x3(s)2 = r4.
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We expand the left hand side in a series in s and invert. Omitting extensive algebraic
manipulations and making use of the notation gij , ωij introduced at the beginning of this
section, we record the following formulas for s±(r):

s±(r) =± r2 ±
(
−1

2g
2
11 + 1

3ω12

)
r6 +

(
−g11g12 + 1

6g13

)
r8

±
(

7
8g

4
11 − 7

6g
2
11ω12 + 1

12ω
2
12 − 3

4g
2
12 − 1

3g11g13 + 1
30ω23 + 1

20ω14

)
r10

+ C12(a1, . . . , a5, b1, . . . , b5)r12 ± C14(a1, . . . , a6, b1, . . . , b6)r14 + o(r14).

Here all of the quantities gij and ωij are assumed to be evaluated at s = 0, and C14 is one
half of the quantity on the right hand side of (4.4).1 We omit the value of the coefficient
C12 as it does not appear in the final formula. We now simply compute

S2(BH(o, r) ∩ Σ) = s+(r)− s−(r)

i.e. S2(BH(o, r) ∩ Σ) is equal to

2r2 +

(
−g2

11 + 2
3ω12

)
r6 +

(
7
4g

4
11 − 7

3g
2
11ω12 + 1

6ω
2
12 − 3

2g
2
12 − 2

3g11g13 + 1
15ω23 + 1

10ω14

)
r10

+ 2C14(a1, . . . , a6, b1, . . . , b6)r14 + o(r14).

In order to remove the assumption that Σ(0) = o we perform a left translation by the point
x, and observe that the action of a Heisenberg left translation in the first two coordinates is
simply a Euclidean translation, which preserves the quantities gij and ωij . This completes
the proof. �

Proof of Proposition 4.2. Let µ be a 2-uniform measure, and let Σ be a fully nonhorizontal
curve contained in the 1-dimensional stratum of sptµ. We may assume without loss of
generality that Σ is parameterized by homogeneous arclength, and that µ agrees with the
spherical 2-Hausdorff measure S2

H restricted to Σ. As usual, we denote by γ the planar
projection of Σ. By analyticity, either Σ is purely vertical, or γ̇ is nonzero on a dense open
subset of the parameterizing interval. We will show that the latter case cannot occur.

Let us suppose that γ is nondegenerate on a nonempty open interval. Since S2 Σ is a
(locally) 2-uniform measure, the coefficients b1,b2,b3 in (4.1) must vanish throughout Σ.
Equating b1 to zero shows that the curvature of γ is proportional to its speed:

(4.7) σ := |γ̇| = 2

3
k .

We will state the remaining two differential equations in terms of the speed σ. We show
that the only solution to this pair of equations is σ = 0. This contradicts our previous
assumption.

Lemma 4.4. The differential equation obtained by setting b2 = 0 is

(4.8) − 1

6
σσ̈ + σ̇2 +

1

8
σ6 = 0.

while the differential equation obtained by setting b3 = 0 is

− 4

39
σ3....
σ +

28

39
σ2σ̇

...
σ +

10

13
σ2σ̈2 +

16

3
σσ̇2σ̈ +

10

13
σ7σ̈ + σ̇4 +

7

2
σ6σ̇2 − 9

208
σ12 = 0.(4.9)

1One approach to computing the coefficients in the formula for C14 is to write down an arbitrary linear
combination of all weighted homogeneous polynomials of degree 12 in the gij ’s and ωij ’s, compare this to
the coefficient of r14 in the series, and solve for the coefficients.
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We postpone the proof of this lemma. Assume that the speed σ of γ satisfies both (4.8)
and (4.9). We use (4.8) to reduce (4.9) to the following first-order ODE for σ:

(4.10) 81σ6 + 32σ̇2 = 0.

Hence σ must be identically equal to zero. This completes the proof of Proposition 4.2,
modulo the lemma. �

It remains to prove Lemma 4.4.

Proof of Lemma 4.4. We write σ = |γ̇| =
√
ẋ2

1 + ẋ2
2 for the speed of γ; equation (4.7) reads

σ = 2
3k. In order to simplify the equations b2 = 0 and b3 = 0, we derive formulas for

the quantities gij and ωij in terms of σ. We use the following differential and algebraic
identities:

(4.11) g′ij = gi,j+1 + gi+1,j ,

(4.12) ω′ij = ωi,j+1 + ωi+1,j ,

(4.13) g2
ij + ω2

ij = giigjj ,

and

(4.14) ωijωjk = gijgjk − gikgjj .
Repeated use of these identities yields explicit formulas for the gij ’s and ωij ’s.

(1) g11 = σ2.
This is a restatement of the definition of σ.

(2) ω12 = 3
2σ

4.
This follows from the definition of curvature and equation (4.7).

(3) g12 = σσ̇.
This follows from (1) and an application of (4.11) with i = j = 1.

(4) g22 = σ̇2 + 9
4σ

6.
This follows from (1), (2) and (3) and an application of (4.13) with i = 1 and j = 2.

(5) g23 = σ̇σ̈ + 27
4 σ

5σ̇.
This follows from (4) and an application of (4.11) with i = j = 2.

(6) ω13 = 6σ3σ̇.
This follows from (2) and an application of (4.12) with i = 1 and j = 2. (Note that
ω22 = 0.) Subsequent identities are proved in much the same way, and we omit any
further explanation.

(7) g13 = σσ̈ − 9
4σ

6.

(8) g33 = (σ̈ − 9
4σ

5)2 + 36σ4σ̇2.

(9) g34 = (σ̈ − 9
4σ

5)(
...
σ − 45

4 σ
4σ̇) + 36σ4σ̇σ̈ + 72σ3σ̇3.

(10) g14 = σ
...
σ − 81

4 σ
5σ̇.

(11) g24 = σ̇
...
σ + 45

4 σ
5σ̈ − 9

4σ
4σ̇2 − 81

16σ
10.

(12) ω23 = −3
2σ

3σ̈ + 6σ2σ̇2 + 27
8 σ

8.

(13) ω14 = 15
2 σ

3σ̈ + 12σ2σ̇2 − 27
8 σ

8.

Identity (13) follows either from (1), (2), (3), (10), (11) and an application of (4.14) with
i = 2, j = 1 and k = 4, or from (1), (6), (7), (9), (10) and an application of (4.14) with
i = 3, j = 1 and k = 4. Using the preceding list of identities, we simplify the formula for
b2 in (4.3). The equation b2 = 0 reduces to (4.8).
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We continue with the preceding list of identities.

(14) g44 = (
...
σ − 81

4 σ
4σ̇)2 + (15

2 σ
2σ̈ + 12σσ̇2 − 27

8 σ
7)2.

(15) g15 = σ
....
σ − 63

2 σ
5σ̈ − 99σ4σ̇2 + 81

16σ
10.

(16) ω24 = −3
2σ

3...
σ + 15

2 σ
2σ̇σ̈ + 12σσ̇3 + 27σ7σ̇.

(17) ω34 = −6σ2σ̇
...
σ + 15

2 σ
2σ̈2 + 12σσ̇2σ̈ − 81

2 σ
7σ̈ + 189

2 σ6σ̇2 + 243
32 σ

12.

(18) ω25 = 3
2σ

3....
σ + 9σ2σ̇

...
σ + 39σσ̇2σ̈ + 135

2 σ7σ̈ + 12σ̇4 + 189
2 σ6σ̇2 − 243

32 σ
12.

(19) ω15 = 9σ3...
σ + 39σ2σ̇σ̈ + 12σσ̇3 − 54σ7σ̇.

(20) ω16 = 21
2 σ

3....
σ + 57σ2σ̇

...
σ + 75σσ̇2σ̈ + 39σ2σ̈2 − 243

2 σ7σ̈ − 945
2 σ6σ̇2 + 243

32 σ
12.

Using these identities, we simplify the formula for b3 in (4.4). The equation b3 = 0 reduces
to (4.9). �

5. 3-uniform measures and smooth fully noncharacteristic surfaces

The geometric equation (1.6) is an immediate consequence of the following power series
formula for the local measure of small Korányi balls at noncharacteristic points of smooth
surfaces.

Theorem 5.1. If Σ is a C4 smooth surface in H and x ∈ Σ is a noncharacteristic point,
then the following expansion holds

(5.1) S3(BH(x, r) ∩ Σ) = c0r
3 + c1(x)r5 + o(r5),

where c0 is a geometric constant and c1(x) agrees, up to a fixed multiplicative constant,
with the quantity

H0(x)2 +
3

2
P0(x)2 + 4(~e1)x(P0)(x) .

Corollary 5.2. Let Σ be a surface contained in the support of a 3-uniform measure. Then
the equation

(5.2) H2
0 + 3

2P
2
0 + 4(~e1)(P0) = 0

holds in all noncharacteristic patches of Σ.

We recall that H0 denotes the horizontal mean curvature of Σ, while P0 denotes the
imaginary curvature of Arcozzi–Ferrari (curvature of the metric normal). See section 2 for
the definitions. The leading coefficient c0 in (5.1) agrees with the quantity ωH in (6.1),
which is the area of the unit Korányi ball in a vertical plane.

As in previous sections, we will first prove Theorem 1.5 under the assumption that The-
orem 5.1 holds, after which we prove Theorem 5.1. Before beginning the proof of Theorem
1.5, we pause to answer a question which may have occurred to the reader, namely, why
we impose the hypothesis that all points in the support be non-characteristic. Recall that
in the corresponding proof in the 2-uniform case, Lemma 4.3 ruled out the existence of
horizontal points on the supports of 2-uniform measures, by showing that the local density
coefficient at horizontal points differs from that at non-horizontal points. We will see that
the corresponding statement for characteristic vs. non-characteristic points on surfaces is
not true. A counterexample can be found already within the class of circular paraboloids.
We also study the validity of our PDE in the noncharacteristic region of such paraboloids.

Example 5.3. Let us consider the surface Σ parameterized over the plane as follows:

Φ(η) = (η, tanα |η|2), η = (η1, η2) ∈ R2.
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Following the model in the 2-uniform case, we compute

(5.3)
µ(BH(0, r))

r3
=

1

r3

∫
Φ−1(BH(0,r)∩Σ)

|(Φ1 ∧ Φ2)(3)| dη.

Here, as before, Φj denotes the partial derivative of Φ with respect to ηj . Since the parab-
oloid Σ is invariant under dilation, the preceding ratio is constant in r and we need only
compare its value to the corresponding value for a vertical plane, namely, the quantity ωH
described in Lemma 2.2 and whose value is given in (6.1).

The change of variables η = rξ transforms the right hand side of (5.3) into

1

r

∫
r−1Φ−1(BH(0,r)∩Σ)

|(Φ1(rξ) ∧ Φ2(rξ))(3)| dξ.

Note that ξ ∈ r−1Φ−1(BH(0, r)) if and only if Φ(rξ) ∈ BH(0, r), which in turn occurs if
and only if

|ξ| <
√

cosα .

Furthermore, Φ1(rξ) = X + 2r(tanα ξ1− ξ2)T and Φ2(rξ) = Y + 2r(tanα ξ2 + ξ1)T , and so

(Φ1(rξ) ∧ Φ2(rξ))(3) = 2r(tanα ξ1 − ξ2)(X ∧ T )− 2r(tanα ξ1 − ξ2)(Y ∧ T ).

We conclude that

µ(BH(0, r))

r3
=

∫
{ξ:|ξ|<

√
cosα}

2
√

(tanα ξ2 + ξ1)2 + (tanαξ1 − ξ2)2 dξ

= 2 secα

∫
{ξ:|ξ|<

√
cosα}

|ξ| dξ

= (2 secα)(2π)(

∫ √cosα

0
ρ2 dρ) =

4π

3

√
cosα .

However, since ωH < 4π
3 there exists a choice for α such that

(5.4)
4π

3

√
cosα = ωH .

For this particular paraboloid, we are not able to distinguish characteristic and non-character-
istic points via the local density behavior of the measure.

We now show that the PDE (5.2) is satisfied for a specific choice of α, which is not the
same as the value for which (5.4) holds. The authors would like to thank Andrea Merlo for
pointing out this fact. Let u(x1, x2, x3) = (tanα)(x2

1 + x2
2) − x3 be a defining function for

Σα. Then X1u = 2(tanα)x1 − 2x2 and X2u = 2(tanα)x2 + 2x1, and so

|∇0u| = 2(secα)
√
x2

1 + x2
2.

The unit horizontal normal is

~n0 = (sinα I + cosαJ )

(
x1X1 + x2X2√

x2
1 + x2

2

)
where I denotes the fiberwise identity operator acting on the horizontal distribution. The
characteristic vector field is

~e1 = J (~n0) = (− cosα I + sinαJ )

(
x1X1 + x2X2√

x2
1 + x2

2

)
.
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The horizontal mean curvature is

H0 = X1(
X1u

|∇0u|
) +X2(

X2u

|∇0u|
) =

sinα√
x2

1 + x2
2

,

while the imaginary curvature is

P0 =
4X3u

|∇0u|
=
−2 cosα√
x2

1 + x2
2

.

We compute

~e1(P0) = (− cosα I + sinαJ )

(
x1X1 + x2X2√

x2
1 + x2

2

)(
−2 cosα√
x2

1 + x2
2

)
=
−2 cos2 α

x2
1 + x2

2

.

Finally,

H2
0 +

3

2
P2

0 + 4~e1(P0) =
sin2 α

x2
1 + x2

2

+
6 cos2 α

x2
1 + x2

2

− 8 cos2 α

x2
1 + x2

2

=
sin2 α− 2 cos2 α

x2
1 + x2

2

is identically equal to zero if tan2 α = 2 and never equal to zero for any other α.
To conclude this example, we show that the value of α for which the paraboloid Σα

satisfies (5.2) in the noncharacteristic patch is not the same value of α for which the local
density coefficient at the characteristic point agrees with ωH . From these observations, we
deduce that no paraboloid Σα can be the support of a 3-uniform measure. This is a partial
step towards the proof of Theorem 1.6; the full proof is deferred to the end of this section.

Our PDE is satisfied iff tan2 α = 2 or

cosα = 3−1/2.

However, according to 5.4, the local density coefficient at the characteristic point is equal
to ωH if and only if

cosα =

(
3ωH
4π

)2

=
1

8π3
Γ(1

4)4.

But 3−1/2 ≈ 0.57735 . . . while 1
8π3 Γ(1

4)4 ≈ 0.696602 . . . .

We now turn to the proof of Theorem 1.5.

Proof of Theorem 1.5. Let µ be a 3-uniform measure on H. By [6], M = sptµ is a real
analytic variety of topological dimension two and Hausdorff dimension three. The top
dimensional stratum M(2) is a countable union of real analytic surfaces. We assume that
the lower-dimensional strata of M are empty, and that M = M(2) is a single real-analytic
surface which is vertically ruled. In this case, every point on M is noncharacteristic. Since
vertically ruled surfaces are characterized by the equation P0 = 0, equation (1.6) in this
setting reduces to

H0 = 0.

Thus M is an H-minimal surface. Moreover, the stability criterion of [8, Theorem 3.2] is
verified. (Note that the quantity ω̄ in that theorem is proportional to P0, and hence both
ω̄ and A vanish.) In view of [8, Theorem A] (see also [7] and [12]), M must be contained in
a vertical plane. The 3-uniformity of the measure µ ensures that there can be no boundary
components, hence M is a single affine vertical plane, and µ is proportional to the restriction
of S3 to this plane. �
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The remainder of this section is devoted to the proof of Theorem 5.1. We proceed in
two steps. In the first step, we assume that x = o and HT0Σ is the e2-axis and derive
(5.1). In the second step we remove the assumptions on x and HTxΣ, obtaining the stated
conclusion in the theorem.

Before embarking on the proof, we introduce some additional notation and state a polar
coordinate formula for a Korányi-type norm in R2. We define

νK(η) := (η4
1 + η2

2)1/4, η = (η1, η2).

Denote by B1
K = {η ∈ R2 : νK(η) ≤ 1} the unit ball for this norm, and by S1

K = ∂B1
K the

boundary of B1
K . Introduce anisotropic dilations {δr : r > 0} on R2 by

(5.5) δr(η1, η2) = (rη1, r
2η2).

Relative to such dilations, we state the following polar coordinate decomposition.

Lemma 5.4. There exists a Radon measure σ on S1
K such that∫

H
h(η) dη =

∫
S1K

∫ ∞
0

h(δtξ)t
2 dt dσ(ξ)

for each integrable function h on R2.

This result appears as [10, Proposition 1.15]. For the purposes of this paper we need an
explicit representation of the measure σ. In section 6 we provide an explicit formula for σ.

Proof of Theorem 5.1. We first assume that x = o ∈ Σ is the noncharacteristic point, and
that vΣ is a defining function for Σ around o such that X2vΣ(o) = 0. Clearly, since o is
noncharacteristic X1vΣ(o) is not vanishing and we may select vΣ so that X1vΣ(o) > 0.

By the implicit function theorem, setting N := {η1e2 + η2e3 : η1, η2 ∈ R} and denoting
η = η1e2 + η2e3, we may parameterize a neighborhood of o in Σ as follows:

(5.6) Φ : N ⊃ Ω→ Σ ⊂ H, Φ(η) = η + ϕ(η)e1,

where ϕ : Ω → R satisfies ϕ(0) = 0 and ϕ1(0) = 0 (since e2 ∈ ToΣ). To ease the notation,
here and in what follows we write

ϕ1 =
∂ϕ

∂η1
, ϕ11 =

∂2ϕ

∂η2
1

, etc.

From (5.6) we obtain the following expressions for the partial derivatives of Φ:

Φ1 = e2 + ϕ1 e1 Φ2 = e3 + ϕ2 e1.

We write these expressions in the intrinsic vector fields X1, X2, X3 by using the identities
e1 = X1− 2x2X3, e2 = X2 + 2x1X3, e3 = X3. Along Φ(Ω) ⊂ Σ we have x1 = ϕ(η) = ϕ and
x2 = η1. Hence

Φ1 = ϕ1X1 +X2 + 2(ϕ− η1ϕ1)X3

and
Φ2 = ϕ2X1 + (1− 2η1ϕ2)X3,

so

(5.7) (Φ1 ∧ Φ2)(3) = (ϕ1 − 2ϕϕ2)X1 ∧X3 + (1− 2η1ϕ2)X2 ∧X3.

By the area formula (2.11),

S3(BH(o, r) ∩ Σ) =

∫
Φ−1(BH(o,r))

|(Φ1 ∧ Φ2)(3)| dη
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and (5.7) implies that

(5.8) S3(BH(o, r) ∩ Σ) =

∫
Φ−1(BH(o,r))

√
(ϕ1 − 2ϕϕ2)2 + (1− 2η1ϕ2)2 dη1 dη2

where

Φ−1(BH(o, r)) = {η ∈ N : η + ϕ(η)e1 ∈ BH(o, r)}
= {η = (η1, η2) : (ϕ(η)2 + η2

1)2 + η2
2 ≤ r4}.

Writing η = δρξ as in (5.5) we observe that Φ−1(BH(o, r)) can be identified with the set of
points (ρ, ξ) ∈ [0, r]× S1

K such that

(ϕ(δρξ)
2 + ρ2ξ2

1)2 + (ρ2ξ2)2 ≤ r4.

Since ξ ∈ S1
K this inequality is equivalent to the following

ϕ(δρξ)
4 + 2ρ2ξ2

1ϕ(δρξ)
2 + ρ4 ≤ r4.

Lemma 5.5. There exists r > 0 sufficiently small such that for each ξ ∈ S1
K the equation

(5.9) ϕ(δρξ)
4 + 2ρ2ξ2

1ϕ(δρξ)
2 + ρ4 = r4

has a unique solution ρ0 = ρ0(ξ, r) ≤ r.

Proof. The claim ρ0 ≤ r is clear from (5.9) since the terms ϕ4 and 2ρ2ξ2
1ϕ

2 are nonnegative.
To show the existence and uniqueness of r > 0 we let

F (ρ, ξ) := ϕ(δρξ)
4 + 2ρ2ξ2

1ϕ(δρξ)
2 + ρ4.

An extensive computation (done via Mathematica) reveals that

F (0, ξ) =
∂F

∂ρ
(0, ξ) =

∂2F

∂ρ2
(0, ξ) =

∂3F

∂ρ3
(0, ξ) = 0 and

∂4F

∂ρ4
(0, ξ) > 0

for all ξ ∈ S1
K . This implies that ∂4F

∂ρ4
(ρ, ξ) ≥ c0 > 0 for any (ρ, ξ) ∈ [0, ρ1] × S1

K . We

have proved that F (·, ξ) is strictly increasing on [0, ρ1] for all ξ ∈ S1
K with size of the image

bounded away from zero. This immediately gives our claim. �

We now expand ϕ by homogeneous polynomials. Let us write

(5.10) ϕ(η) = A1 +A2 +A3 +A4 +O(|η|5)

where A1 = a2η2,
A2 = a11η

2
1 + a12η1η2 + a22η

2
2

and
A3 = a111η

3
1 + a112η

2
1η2 + a122η1η

2
2 + a222η

3
2.

First we compute ϕ(δρξ) and group the resulting terms according to powers of ρ:

ϕ(δρξ) = B2ρ
2 +B3ρ

3 +B4ρ
4 +O(ρ5),

where
B2 = a2ξ2 + a11ξ

2
1 , and B3 = a12ξ1ξ2 + a111ξ

3
1 .

Hence

r4 = ρ4
0 + 2ρ2

0ξ
2
1ϕ(δρ0ξ)

2 + ϕ(δρ0ξ)
4 = ρ4

0 + 2ξ2
1B2

2ρ6
0 + 4ξ2

1B2B3ρ
7
0 +O(ρ8

0).

Taking the inverse gives the following series expansion for ρ0 in terms of r:

(5.11) ρ0(ξ, r) = r − 1

2
ξ2

1B2
2r3 − ξ2

1B2B3r
4 +O(r5).
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We now return to (5.10) and compute a power series for the integrand in (5.8), that is√
(ϕ1 − 2ϕϕ2)2 + (1− 2η1ϕ2)2.

The Taylor expansion of this integrand is as follows√
1− 4a2η1 + (4a2

11 + 4a2
2 − 4a12)η2

1 + (4a11(a12 − 2a2
2)− 8a22)η1η2 + (a12 − 2a2

2)η2
2 +O(|η|3).

Letting η1 = ρξ1 and η2 = ρ2ξ2 and expanding as a power series in ρ gives

(5.12)
√

(ϕ1 − 2ϕϕ2)2 + (1− 2η1ϕ2)2(δρξ) = 1− 2a2ξ1ρ+ 2(a2
11 − a12)ξ2

1ρ
2 +O(ρ3).

We are now ready to compute the integral in (5.8). First we convert to Korányi polar
coordinates:

S3(BH(o, r) ∩ Σ) =

∫
S1K

∫ ρ0(ξ,r)

0

√
(ϕ1 − 2ϕϕ2)2 + (1− 2η1ϕ2)2 ρ2 dρ dσ(ξ).

Next we insert the power series from (5.12) and integrate term-by-term in ρ:

S3(BH(o, r) ∩ Σ) =

∫
S1K

∫ ρ0(ξ,r)

0

(
ρ2 − 2a2ξ1ρ

3 + 2(a2
11 − a12)ξ2

1ρ
4 +O(ρ5)

)
dρ dσ(ξ)

=

∫
S1K

(
1

3
ρ3

0 −
1

2
a2ξ1ρ

4
0 +

2

5
(a2

11 − a12)ξ2
1ρ

5
0 +O(ρ6)

)
dσ(ξ).

Finally we insert the power series from (5.11). The result is

S3(BH(o, r) ∩ Σ) =

∫
S1K

(
1

3
r3 − 1

2
a2ξ1r

4 +

(
2

5
(a2

11 − a12)− 1

2
B2

2

)
ξ2

1r
5 +O(r6)

)
dσ(ξ).

This integral can be written as follows(
1

3

∫
S1K
dσ

)
r3 − 1

2
a2

(∫
S1K
ξ1 dσ

)
r4 +

(∫
S1K

(
2

5
(a2

11 − a12)− 1

2
B2

2

)
ξ2

1 dσ

)
r5 +O(r6).

The integrals over S1
K can be computed using Corollary 6.1 and Lemma 6.2. First,

1

3

∫
S1K
dσ = Vol(B1

K) = ωH .

The value of ωH is computed in (6.1). Next, we observe that∫
S1K
ξ1 dσ = 0

by symmetry. For the third term we compute∫
S1K

(
2

5
(a2

11 − a12)− 1

2
B2

2

)
ξ2

1 dσ

=
2

5
(a2

11 − a12)

∫
S1K
ξ2

1 dσ(ξ)− 1

2
a2

2

∫
S1K
ξ2

1ξ
2
2 dσ(ξ)− a11a2

∫
S1K
ξ4

1ξ2 dσ(ξ)

− 1

2
a2

11

∫
S1K
ξ6

1 dσ(ξ).
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Again, the ξ4
1ξ2 integral vanishes by symmetry considerations, so in turn∫

S1K

(
2

5
(a2

11 − a12)− 1

2
B2

2

)
ξ2

1 dσ

=
2

5
(a2

11 − a12)

∫
S1K
ξ2

1 dσ(ξ)− 1

2
a2

2

∫
S1K
ξ2

1ξ
2
2 dσ(ξ)− 1

2
a2

11

∫
S1K
ξ6

1 dσ(ξ)

= 2(a2
11 − a12)

∫
B1
K

η2
1 dη −

9

2
a2

2

∫
B1
K

η2
1η

2
2 dη −

9

2
a2

11

∫
B1
K

η6
1 dη

= 2(a2
11 − a12)

(
8

5

1√
2π

Γ(3
4)2

)
− 9

2
a2

2

(
16

45

1√
2π

Γ(3
4)2

)
− 9

2
a2

11

(
8

15

1√
2π

Γ(3
4)2

)
= β1

(
ϕ11(0)2 − 16ϕ12(0)− 8ϕ2(0)2

)
as stated in the theorem, where we recall that a2 = ϕ2(0), a12 = ϕ12(0), and a11 = 1

2ϕ11(0).
To complete the proof we need to remove the normalizing assumptions

x = o and HTxΣ = span{e2}.

To do this, we start with any noncharacteristic point x on a surface Σ, use a preliminary
isometry of (H, dH) to move x to the origin and suitably rotate the horizontal tangent space
HTxΣ. Precisely, once we have translated Σ to move x to the origin, we choose a suitable
rotation about the e3-axis

Rθ : H→ H Rθ

y1

y2

y3

 =

y1 cos θ − y2 sin θ
y1 sin θ + y2 cos θ

y3

 .

Since d`−1
x HTxΣ is a horizontal line through the origin of H, we may choose θ such that

(5.13) dR−1
θ d`−1

x HTxΣ = span


0

1
0

 .

It is then natural to define Σ̃ = R−1
θ `−1

x Σ and observe that it is normalized as in the initial

assumptions of the proof. We have o ∈ Σ̃, HT0Σ̃ = span e2 and by the implicit function
theorem, locally near o we may find ϕ such that Σ̃ = {y : y1 = ϕ(y2, y3)}. We introduce
the following local defining function

vΣ̃(y) = y1 − ϕ(y2, y3)

to fit precisely the same assumption of vΣ at the beginning of the proof, namelyX1vΣ̃(o) > 0.
We will compute the quantity

ϕ11(0)2 − 16ϕ12(0)− 8ϕ2(0)2

in terms of partial derivatives of a suitable defining function of Σ. We express Σ as level
set of u defined by the relation

(5.14) u(`xRθ(y)) = vΣ̃(y).

Equation (5.13) tells us that

HTxΣ = span {− sin θX1(x) + cos θX2(x)} = span


 − sin θ

cos θ
−2x2 sin θ − 2x1 cos θ

 .
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Differentiating (5.14) we get

0 < X1vΣ̃(o) = cos θX1u(x) + sin θX2u(x).

We know that − sin θX1u(x) + cos θX2u(x) = 0, therefore the unit vector (X1u(x), X2u(x))
is a multiple of (cos θ, sin θ) and the previous positivity condition yields

(X1u(x), X2u(x)) = (cos θ, sin θ) =: (p, q).

According to the results of the previous section, the invariance of S3 under rotations Rθ
and left translations, it follows that

S3(BH(x, r) ∩ Σ) = S3(BH(o, r) ∩ Σ̃)

= ωHr
3 + c1

o(ϕ11(0)2 − 16ϕ12(0)− 8ϕ2(0)2)r5 +O(r6).
(5.15)

Note that

`xRθ(y) =

 x1 + y1 cos θ − y2 sin θ
x2 + y1 sin θ + y2 cos θ

x3 + y3 − 2(x1y1 + x2y2) sin θ + 2(x2y1 − x1y2) cos θ

 .

We conclude that Σ is defined, locally near x, by the implicit equation

u
(
x1 + ϕ(y2, y3) cos θ − y2 sin θ, x2 + ϕ(y2, y3) sin θ + y2 cos θ,

x3 + y3 − 2(x1ϕ(y2, y3) + x2y2) sin θ + 2(x2ϕ(y2, y3)− x1y2) cos θ
)

= 0,
(5.16)

valid for (y2, y3) in a neighborhood of (0, 0) ∈ R2. Let us introduce the auxiliary function
Υ(y2, y3, θ) defined as the argument of u in (5.16).

Repeated differentiation of (5.16) yields formulas for iterated partial derivatives of ϕ in
terms of u. For instance, differentiating in (5.16) once with respect to y2 gives

u1(Υ(y2, y3, θ))(− sin θ + ϕ1 cos θ) + u2(Υ(y2, y3, θ))(cos θ + ϕ1 sin θ)

+ u3(Υ(y2, y3, θ))(−2x1 cos θ − 2x2 sin θ − 2x1ϕ1 sin θ + 2y1ϕ1 cos θ) = 0,
(5.17)

where ϕ1 is evaluated at (y2, y3) and subscripts denote partial derivatives. Setting y2 =
y3 = 0 gives

u1(x)(− sin θ) + u2(x)(cos θ) + u3(x)(−2x1 cos θ − 2x2 sin θ) = 0,

i.e.,

X2u(x) cos θ −X1u(x) sin θ = 0

which was already known to be true by the definition of θ. On the other hand, differentiating
in (5.16) once with respect to y3 gives

u1(Υ(y2, y3, θ))(ϕ2 cos θ) + u2(Υ(y2, y3, θ))(ϕ2 sin θ)

+ u3(Υ(y2, y3, θ))(1− 2x1 sin θ + 2x2 cos θ) = 0.

Again setting y2 = y3 = 0 and combining terms gives

(X1u(x) cos θ +X2u(x) sin θ)ϕ2(0) + u3(x) = 0.

We can rewrite the previous equality as

ϕ2(0) = − u3(x)

|∇0u(x)|
= −1

4
P0(x),

where P0 denotes the imaginary curvature of Arcozzi–Ferrari. Our defining function u is
chosen to be compatible with the orientation of the surface Σ in the sense of Arcozzi–Ferrari,
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indeed, in this case ∇0u(x) coincides with the outward unit horizontal normal to Σ at x,
locally relative to the open set {u < 0}.

Differentiating once in (5.17) with respect to y2, evaluating at y2 = y3 = 0 and combining
terms yields

ϕ11(0) = −X11u(X2u)2 − (X12u+X21u)X1uX2u+X22u(X1u)2

|∇0u|3
(x) = −H0(x),

where H0 denotes the horizontal mean curvature.
Finally, differentiating once in (5.17) with respect to y3, evaluating and y2 = y3 = 0 and

combining terms yields

−X1X3u sin θ +X2X3u cos θ

+ ϕ2(0)[1
2(X1X2u+X2X1u)(cos2 θ − sin2 θ) + (X2X2u−X1X1u) cos θ sin θ]

+ ϕ12(0)(X1u cos θ +X2u sin θ) = 0

where all iterated derivatives of u with respect to the vector fields X1, X2, X3 are evaluated
at x. Inserting the known value of ϕ2(0) and solving for ϕ12(0) gives

ϕ12(0) = − 1

|∇0u|

(
−X1X3uX2u+X2X3uX1u

|∇0u|
−

X3u[1
2(X1X2u+X2X1u)((X1u)2 − (X2u)2) + (X2X2u−X1X1u)X1uX2u]

|∇0u|3

)
,

or (after some algebra)

ϕ12(0) =
X2u

|∇0u|
X1

(
X3u

|∇0u|

)
− X1u

|∇0u|
X2

(
X3u

|∇0u|

)
− 2

(
X3u

|∇0u|

)2

= −1
4~e1(P0)− 1

8P
2
0 .

Finally,

ϕ11(0)2 − 16ϕ12(0)− 8ϕ2(0)2 = H2
0 +

3

2
P2

0 + 4~e1(P0) .

This completes the proof of Theorem 5.1. �

We conclude this section by giving the proof of Theorem 1.6, which asserts that no
quadratic x3-graph can be the support of a 3-uniform measure. Fixing a symmetric 2 × 2
matrix S, we consider the quadratic surface Σ defined by the equation u(x) = 0, where

(5.18) u(z, x3) = 〈z,Sz〉 − x3.

The following lemma provides an explicit expression for our partial differential operator
H2

0 + 3
2P

2
0 + 4~e1(P0) on such a surface. We would again like to acknowledge Andrea Merlo

for pointing out to us the expression in (5.19).

Lemma 5.6. Let Σ be the quadratic x3-graph defined by the equation u(x) = 0, where u(x)
is as in (5.18). At a point x = (z, x3) ∈ Σ, the expression

(H2
0 + 3

2P
2
0 + 4~e1(P0))(x)

is proportional to the quantity

(5.19) MS(x) :=
〈SJnS(z),JnS(z)〉2 − 2− 8〈SnS(z),JnS(z)〉

|(S− J)z|2
,
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where we have defined

nS(z) =
(S− J)(z)

|(S− J)(z)|
∈ S1, ~nS = n1

S(z)X1(z, qS(z)) + n2
S(z)X2(z, qS(z))

and qS(z) = 〈z,Sz〉 for all z ∈ R2.

Proof of Lemma 5.6. We first show that it is enough to consider the case when the defining
matrix S is diagonal. We then verify the conclusion in the diagonal case.

Let S be a symmetric 2 × 2 matrix and write S = QTΛQ with Λ diagonal and Q is a
rotation. As a consequence, we have the equalities

(5.20) QS = ΛQ and QJ = JQ.

We introduce a new defining function ũ as follows

u(z, x3) = 〈Qz,ΛQz〉 − x3 = ũ(Qz, x3),

where ũ(w, x3) = 〈w,Λw〉 − x3. As a consequence, we have that u(Q−1w, x3) = ũ(w, x3).

Defining Σ̃ = ũ−1(0), there holds

(5.21) Σ̃ = Q0Σ

with Q0(z, x3) = (Qz, x3). By (5.20) we get

QnΣ(z) = n
Σ̃

(Qz).

This formula can be seen also as a consequence of (5.21). Moreover, we get

MS(z, x3) =
〈QSJnS(z),QJnS(z)〉2 − 2− 8〈QSnS(z),QJnS(z)〉

|Q(S− J)z|2

=
〈ΛJQnS(z),JQnS(z)〉2 − 2− 8〈ΛQnS(z),JQnS(z)〉

|(Λ− J)Qz|2

=
〈ΛJnΛ(Qz),JnΛ(Qz)〉2 − 2− 8〈ΛnΛ(Qz),JnΛ(Qz)〉

|(Λ− J)Qz|2
=MΛ(Qz, x3) .

The geometric quantities H0 and P0, being metrically defined, are invariant under the
rotations (z, x3) 7→ (Qz, x3), which in this case are isometries of both Carnot–Carathéodory

and Korányi distances. Precisely P0(z, t) = P̃0(Qz, t) and H0(z, t) = H̃0(Qz, t), where we

have denoted by P̃0 and H̃0 the imaginary curvature and the horizontal mean curvature

and imaginary curvature, respectively, of the rotated surface Σ̃. It is not difficult to check
by direct computation that

~e1P0(z, x3) = 〈∇P0(z, x3),J ~nΣ(z, x3)〉 = 〈∇P̃0(Qz, x3),J ~n
Σ̃

(Qz, x3)〉 = ~̃e1P̃0(Qz, x3).

As a consequence, we have proved that

(H2
0 + 3

2P
2
0 + 4~e1(P0))(z, x3) = (H̃2

0 + 3
2 P̃

2
0 + 4~̃e1(P̃0))(Qz, x3).

The preceding argument shows that in order to prove the lemma, it suffices to assume that
S is a diagonal matrix.

We therefore consider a surface Σ defined by the equation u(x) = 0, where u(x) =
〈z,Λz〉 − x3 = λ1x

2
1 + λ2x

2
2 − x3 and x = (z, x3) = (x1, x2, x3). We compute

X1u = 2λ1x1 − 2x2, X2u = 2λ2x2 + 2x1,
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and

|∇0u| = 2
√

(λ1x1 − x2)2 + (λ2x2 + x1)2 = 2|(Λ− J)z| .
Then

nΛ(z) =

(
λ1x1 − x2

|(Λ− J)z|
,
λ2x2 + x1

|(Λ− J)z|

)
and

H0 = X1

(
X1u

|∇0u|

)
+X2

(
X2u

|∇0u|

)
=
λ1(λ2x2 + x1)2 + λ2(λ1x1 − x2)2

|(Λ− J)z|3
=
〈ΛJnΛ,JnΛ〉
|(Λ− J)z|

,

P0 =
4X3u

|∇0u|
=

−2

|(Λ− J)z|
,

and

~e1(P0) =
X1uX2P0 −X2uX1P0

|∇0u|

=
λ1x1 − x2

|(D − J)z|
X2(

−2

|(Λ− J)z|
)− λ2x2 + x1

|(Λ− J)z|
X1(

−2

|(Λ− J)z|
)

=
−2

|(Λ− J)z|2
+

2(λ2 − λ1)(λ1x1 − x2)(λ2x2 + x1)

|(Λ− J)z|4

=
−2

|(Λ− J)z|2
− 2〈ΛnΛ,JnΛ〉
|(Λ− J)z|2

.

Thus

H2
0 +

3

2
P2

0 + 4~e1(P0) =
〈ΛJnΛ,JnΛ〉2 + 6− 8− 8〈ΛnΛ,JnΛ〉

|(Λ− J)z|2

which completes the proof of the lemma. �

Proof of Theorem 1.6. Let Σ be a quadratic x3-graph. As previously explained, we may
assume without loss of generality that Σ is defined by the equation u(x) = 0, where
u(z, x3) = 〈z,Λz〉 − x3 and

Λ =

(
λ1 0
0 λ2

)
is diagonal. The case λ1 = λ2 has already been treated in Example 5.3, so we assume
λ1 6= λ2. We will show that in this case, the expression

〈ΛJnΛ,JnΛ〉2 − 2− 8〈ΛnΛ,JnΛ〉

cannot vanish in any open subset of Σ. Clearing denominators, we consider the equation

〈ΛJ(Λ− J)z,J(Λ− J)z〉2 − 2|(Λ− J)z|4 − 8|(Λ− J)z|2〈Λ(Λ− J)z,J(Λ− J)z〉 = 0.

By direct computation, taking into account that

|(Λ− J)z|2 = (λ1x1 − x2)2 + (λ2x2 + x1)2

and writing the previous expression in terms of A = λ2x2 + x1 and B = λ1x1 − x2 we get

(5.22) (λ2
1 − 2)A4 + (λ2

2 − 2)B4 + (2λ1λ2 − 4)A2B2 + 8(λ2 − λ1)AB(A2 +B2) = 0.
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If the matrix Λ − J is invertible, namely λ1λ2 6= −1, the variable (A,B) takes any vector
of R2, hence all coefficients of (5.22) are null, leading to the contradiction λ1 = λ2. If
λ1λ2 = −1, then B = λ1A and the previous equation becomes{

λ2
1 − 2 + λ4

1(λ2
2 − 2)− 6λ2

1 + 8(λ2 − λ1)λ1(1 + λ2
1)
}
A4 = 0.

The coefficient of A4 must vanish and can be written as

−(10)(1 + 2λ2
1 + λ4

1)

that is never vanishing, hence getting a contradiction. �

6. Integrals of monomials over the Korányi sphere and Korányi ball

In this section we prove Lemma 5.4 on a polar coordinate decomposition for the Korányi-
type norm νK in R2. We begin by stating some corollaries of this lemma. We consider
weighted polynomials in the coordinates η1 and η2, where the weighting is defined by the
dilations δr.

Corollary 6.1. Let h = h(η) be a monomial of weighted degree d. Then∫
S1K
h(ξ) dσ(ξ) = (d+ 3)

∫
B1
K

h(η) dη.

Proof. Compute∫
B1
K

h(η) dη =

∫
S1K

∫ 1

0
h(δtξ) t

2 dt dσ(ξ) =

∫
S1K

∫ 1

0
h(ξ) td+2 dt dσ(ξ).

The conclusion follows upon integrating in t. �

In particular, we compute monomial integrals
∫
B1
K
ηα1 η

β
2 dη over the ball B1

K . If either α

or β is odd, the integral is clearly zero.

Lemma 6.2. For nonnegative integers a, b,∫
B1
K

η2a
1 η2b

2 dη =
1

2b+ 1

∫ 1

0
ua/2−3/4(1− u)b+1/2 du =

Γ(a2 + 1
4)Γ(b+ 1

2)

2Γ(b+ a
2 + 7

4)
.

Proof. Integrating first in η2 yields∫
B1
K

η2a
1 η2b

2 dη = 4

∫ 1

0
η2a

1

∫ √1−η41

0
η2b

2 dη2 dη1 =
4

2b+ 1

∫ 1

0
η2a

1 (1− η4
1)b+1/2 dη1.

The change of variables u = η4
1 gives the first conclusion of the lemma. To obtain the second

conclusion we use the standard integral representation of the beta function:

B(s, t) =

∫ 1

0
us−1(1− u)t−1 =

Γ(s)Γ(t)

Γ(s+ t)

valid for s, t > 0. �

For instance, the value of ωH := Vol(B1
K) is obtained from Lemma 6.2 with a = b = 0.

We find

(6.1) ωH =
Γ(1

4)Γ(1
2)

2Γ(7
4)

=
1

3

√
2

π
Γ(1

4)2 ≈ 3.49608

via the reflection formula Γ(1
4)Γ(3

4) = π
√

2.
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Proof of Lemma 5.4. The spheres S1
K(r) := {η : νK(η) = r}, r > 0, are smooth submani-

folds of R2. According to the classical coarea formula, for an arbitrary integrable h on B1
K

we have

(6.2)

∫
B1
K

h(η) dη =

∫ 1

0

∫
ν−1
K (t)

h(η)

|∇νK(η)|
dH1(η) dt,

where ∇ denotes the standard Euclidean gradient. We convert the inner integral into an
integral over the unit sphere S1

K via the change of variables δt : S1
K → S1

K(t) = ν−1
K (t). For

an integrable function g : S1
K(t)→ R we have

(6.3)

∫
S1K(t)

g(η) dH1(η) =

∫
S1K
g(δtη) d((δ1/t)#H1)(η).

The measure (δ1/t)#H1 S1
K is absolutely continuous with respect to H1 S1

K . Recall that

(δ1/t)#H1(B) = H1(δt(B)) for B ⊂ S1
K . The Radon–Nikodym derivative of (δ1/t)#H1 S1

K

with respect to H1 S1
K is given by

d(δ1/t)#H1

dH1
(η) =

|(δt)∗(~T )|
|~T |

for any nonzero tangent vector ~T ∈ TηS1
K , where | · | denotes the usual Euclidean norm.

We have ∇νK = ν−3
K (η3

1,
1
2η2) and so ~T = ν−3

K (1
2η2,−η3

1) is a nonzero tangent vector at η.
Evaluating the above Radon–Nikodym derivative, we find

d(δ1/t)#H1

dH1
(η) = t

(
1
4η

2
2 + t2η6

1
1
4η

2
2 + η6

1

)1/2

.

We also have

|∇νK(η)| =

√
η6

1 + 1
4η

2
2

ν3
K(η)

and so, for η ∈ S1
K and t > 0,

|∇νK(δtη)| =

√
t6η6

1 + 1
4 t

4η2
2

t3
=

√
t2η6

1 + 1
4η

2
2

t
.

Returning to (6.2) and using (6.3) with g = h/|∇νK | we obtain∫
B1
K

h(η) dη =

∫ 1

0

∫
S1K

t h(δtη)√
t2η6

1 + 1
4η

2
2

t

(
1
4η

2
2 + t2η6

1
1
4η

2
2 + η6

1

)1/2

dH1(η) dt

=

∫ 1

0

∫
S1K

t2 h(δtη)√
η6

1 + 1
4η

2
2

dH1(η) dt .

The conclusion holds with the Radon measure dσ(η) = (η6
1 + 1

4η
2
2)−1/2 dH1(η). �
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Progress in Mathematics. Birkhäuser, Basel, 1996, pp. 79–323.
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