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ABSTRACT. A well known notion of k-rectifiable set can be formulated in any metric space
using Lipschitz images of subsets of Rk. We prove some characterizations of k-rectifiability,
when the metric space is an arbitrary homogeneous group. In particular, we show that the
a.e. existence of the (k,G)-approximate tangent group implies k-rectifiability.
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1. INTRODUCTION

Rectifiability is a central concept in Geometric Measure Theory and in many other areas of
Mathematics, like Calculus of Variations and Geometric Analysis. It can be naturally defined
in metric spaces, considering countably many Lipschitz images of subsets of the Euclidean
space Rk, [6, 3.2.14]. We say that the union of these images is a k-rectifiable set.

A rich literature is available about characterizations and basic properties of k-rectifiable
sets in Euclidean spaces and also general metric spaces. For more information, we address
the reader to [2, 6, 7, 16, 19]. Actually, more references could be added.

Since the example of Ambrosio and Kirchheim, [2], it is well known that rectifiability
through Lipschitz images does not always work in all metric spaces. The authors showed
that the three dimensional Heisenberg group is purely k-unrectifiable with k = 2, 3, 4.
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A natural notion of “intrinsic rectifiability” in codimension one was first proposed in the
seminal paper [10], where Franchi, Serapioni and Serra Cassano established the De Giorgi
rectifiability theorem for finite perimeter sets in all Heisenberg groups. More generally they
introduced G-rectifiable sets as countable unions of level sets of functions with nonvanishing
and continuous horizontal gradient in a stratified group G, up to a suitable negligible set, [11].

A number of recent results arose in connection with characterizations of G-rectifiable
sets, somehow confirming that they constitute the natural class of “intrinsic rectifiable sets
of codimension one”. Merlo showed that in Heisenberg groups such type of rectifiability
can be characterized in terms of densities and intrinsically flat tangents, finally reaching the
analogous of Preiss’ theorem in Heisenberg groups, [23]. Although G-rectifiable sets can
be very far from being k-rectifiable, [15], one may still ask whether they can be covered
by countable unions of Lipschitz images of more general homogeneous groups, in place
of Rk. These unions of Lipschitz images correspond to the extended notion rectifiability
introduced by Pauls, [24]. Pauls rectifiability and G-rectifiability are in general different,
as showed by Antonelli and Le Donne in [3], but their equivalence in Heisenberg groups is
still an interesting open question. Recently, the work of Di Donato, Fässler and Orponen
showed that “intrinsic C1,α” hypersurfaces can be seen as countable Lipschitz images of
1-codimensional vertical subgroups, [5].

A third notion of rectifiability can be provided through the notion of intrinsic Lipschitz
graph, [12, 13], considering countable unions of intrinsic Lipschitz graphs. The results of
Franchi, Marchi, Serapioni and Serra Cassano essentially showed that this rectifiability cor-
responds to G-rectifiability as soon as we have a De Giorgi rectifiability theorem, [9, 13].
In Heisenberg groups and for all codimensions, this question has been recently settled by
Vittone, using the theory of currents, that lead to a Rademacher type theorem for intrinsic
Lipschitz functions, [25]. In connection with the De Giorgi’s rectifiability problem for sets
of finite perimeters, a fourth notion of rectifiability appeared in [4]. Still many questions are
to be investigated to find a unified view of “intrinsic rectifiability” in homogeneous groups.

In the present paper, we wish to study all subsets of homogeneous groups that are captured
by the classical notion of k-rectifiability. A first work in this direction is [24], where the
author treats rectifiable sets in an extended sense, considering subsets of stratified groups as
domains of the Lipschitz parametrizations. On one hand, a general notion of rectifiability is
studied and some first partial results are established. On the other hand, the use of Euclidean
projections to define cones seems to constitute an obstacle in reaching a characterization
of this rectifiability through approximate tangent cones. A stronger notion of approximate
tangent cone was needed to prove a rectifiability criterion [24, Theorem B].

The natural notion of “approximate tangent group” was first introduced in the work of
Mattila, Serapioni and Serra Cassano, [22], where the projections to define the intrinsic
cones arose from the semidirect factorizations of Heisenberg groups. From the a.e. existence
of approximate tangent groups in suitable Grassmannians, k-rectifiable sets in all Heisenberg
groups Hn, with k ≤ n, were characterized, along with low codimensional rectifiable sets
with positive lower density, [22].

Our main result is the characterization of k-rectifiable sets in any homogeneous group.
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Theorem 1.1. Let G be a homogeneous group and let 1 ≤ k ≤ υ be an integer, where υ is
introduced in Definition 2.11. Let E ⊂ G be a Borel set such that HkxE is locally finite.
Then the following conditions are all equivalent:

(i) The set E is k-rectifiable.

(ii) ForHk-a.e. p ∈ E, there exists Tp ∈ H(G, k) such that

1

rk
(Tp,r)#HkxE ⇀ HkxTp as r → 0+. (1.1)

(iii) ForHk-a.e. p ∈ E, there exists Tp ∈ H(G, k) such that

Tan(HkxE, p) =
{
λHkxTp : 0 < λ <∞

}
.

(iv) ForHk-a.e. p ∈ E, there exists Tp ∈ H(G, k) such that

apTank
G(E, p) = Tp.

The first important implication is from (i) to (ii), where the crucial role is played by a
“linearization type lemma”, stated in Lemma 3.15. It is a consequence of the a.e. differen-
tiability of Lipschitz mappings taking values in homogeneous groups [18, Theorem 1.1] and
the associated area formula, [18, Theorem 1.2]. These results allow for characterizing k-
rectifiable sets in the large class of homogeneous groups, where the Lie bracket generating
condition on the first layer of their Lie algebra is not required. The main implication is
from (iv) to (i), namely the a.e. existence of the (k,G)-approximate tangent group implies
k-rectifiability. The proof of this step in [22] is established by the important positive lower
density theorem, see [22, Theorem 3.10].

For the same implication, we follow a different method, fixing our attention on the purely
k-unrectifiable part of the given set. Our main tool is Theorem 4.4, that provides an estimate
of the Hausdorff measure of a purely k-unrectifiable set intersected with suitable “intrinsic
tubes” (4.3). The consequence is a density upper bound estimate (4.4), that is the final step
to conclude the proof of the implication.

Rather surprisingly, the classical approach can be made to work also in noncommutative
homogeneous groups, see for instance [6, Lemma 3.3.6] and [20, Theorem 15.19]. However,
some technical difficulties have to be overcome. We have introduced a definition of distance
in the horizontal Grassmannian, that relies on horizontal projections and in a rather “natural
way” leads to the “distance estimates” of Theorem 2.13. It is of crucial importance that the
geometric constants of these estimates are independent of the horizontal subgroups.

The paper is structured as follows. Section 2 recalls the basic definitions on homogeneous
groups and introduces the horizontal Grassmannian. Section 3 is devoted to definitions and
preliminary facts that will be used to prove our results. We introduce tangent measures,
the (k,G)-approximate tangent group, differentiability results, the metric Jacobian, an area
formula and a characterization of Radon measures with unique tangents, due to Mattila,
[21]. In Section 4 a density estimate on purely k-unrectifiable sets is established. Section 5
contains the proof of our main result.
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2. BASIC FACTS ON HOMOGENEOUS GROUPS

2.1. Graded nilpotent Lie groups and their metric structure. A connected and simply
connected graded nilpotent Lie group is a graded linear space G = H1⊕ · · · ⊕H ι equipped
with a polynomial group operation such that its Lie algebra Lie(G) is graded. This grading
corresponds to the following conditions

g := Lie(G) = V1 ⊕ · · · ⊕ Vι, [Vi,Vj] ⊂ Vi+j (2.1)

for all integers i, j ≥ 0 and Vj = {0} for all j > ι, with Vι 6= {0}. The integer ι ≥ 1 is the
step of the group. We denote by q the topological dimension of G.

The graded structure of G agrees with a one parameter family of intrinsic dilations

δr : G→ G

defined as linear mappings such that δr(p) = rip for each p ∈ H i, r > 0 and i = 1, . . . , ι.
The graded nilpotent Lie group G equipped with intrinsic dilations is called homogeneous
group, [8]. With the stronger assumption that

[V1,Vj] = Vj+1 (2.2)

for each j = 1, . . . , ι and [V1,Vι] = {0}, we say that G is a stratified group. Further
identifying G with the tangent space T0G at the origin 0, we have a canonical isomorphism
between Hj and Vj , that associates to each v ∈ Hj the unique left invariant vector field
X ∈ Vj such that X(0) = v.

A Lie product defined on G induces a Lie algebra structure, where its group operation is
given by the Baker-Campbell-Hausdorff (BCH) formula:

xy =
ι∑

j=1

cj(x, y) = x+ y +
[x, y]

2
+

ι∑
j=3

cj(x, y) (2.3)

with x, y ∈ G. Here cj denote homogeneous polynomials of degree j with respect to the
nonassociative Lie product on G.

It is always possible to have these additional conditions, since the exponential mapping

exp : Lie(G)→ G

of any simply connected nilpotent Lie group G is a bianalytic diffeomorphism. In addition,
the given Lie product and the Lie algebra associated to the induced group operation are
compatible, according to the following standard fact.

Proposition 2.1. Let G be a nilpotent, connected and simply connected Lie group and con-
sider the new group operation given by (2.3). Then the Lie algebra associated to this Lie
group structure is isomorphic to the Lie algebra of G.

A homogeneous distance d on a graded nilpotent Lie group G is a left invariant distance
with d(δrx, δry) = r d(x, y) for all x, y ∈ G and r > 0. We define

B(p, r) =
{
q ∈ G : d(q, p) < r

}
and B(p, r) =

{
q ∈ G : d(q, p) ≤ r

}
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to be the open and closed balls, respectively. The corresponding homogeneous norm is
denoted by

‖x‖ = d(x, 0) for all x ∈ G.

The homogeneous distance d, along with its associated homogeneous norm ‖·‖, will be fixed
for the sequel. When the graded nilpotent Lie group is equipped with the corresponding
dilations, along with a homogeneous norm, it is called homogeneous group.

Throughout the paper the symbol G will denote a homogeneous group, equipped with a
homogeneous distance d, if not otherwise stated. The linear structure allows us to fix a scalar
product that makes G a finite dimensional Hilbert space. We also assume that all the layers
H i are orthogonal to each other, namely the scalar product is graded. The symbol | · | is used
to denote the Euclidean norm associated to this scalar product, that will be understood in the
sequel.

Definition 2.2. A linear subspace S of G that satisfies δr(S) ⊂ S for every r > 0 is a
homogeneous subspace of G. If in addition S is a Lie subgroup of G then we say that S is a
homogeneous subgroup of G.

Using dilations it is not difficult to check that S ⊂ G is a homogeneous subspace if and
only if we have the direct decomposition

S = S1 ⊕ · · · ⊕ Sι,

where each Sj is a subspace of Hj .

Definition 2.3 (Graded basis). A graded basis (e1, . . . , eq) of a homogeneous group G is a
basis of vectors such that

(emj−1+1, emj−1+2, . . . , emj
) (2.4)

is a basis of Hj for each j = 1, . . . , ι, where we have set

mj =

j∑
i=1

hi and hj = dimHj, (2.5)

with m0 = 0. We will also denote m = m1.

A graded basis provides the associated graded coordinates x = (x1, . . . , xq) ∈ Rq, that
define the unique element p =

∑q
j=1 xjej ∈ G.

Remark 2.4. It is easy to realize that one can always equip a homogeneous subgroup with
graded coordinates.

We conclude this section by recalling the definition of Hausdorff measure and of spherical
measure in metric spaces.

Definition 2.5. Let X be a metric space with distance d and let A ⊂ X , k ∈ (0,∞) and
δ ∈ (0,∞). The k-dimensional Hausdorff measureHk

d is defined as

Hk
d(A) := sup

δ>0
Hk
d,δ(A),
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whereHk
d,δ(A) = inf

{∑
i 2
−kdiamd(Ei)

k : A ⊂
⋃
iEi, diamd(Ei) ≤ δ

}
. The spherical Haus-

dorff measure Skd is obtained by requiring that the countable family {Ei} is made only by
closed metric balls.

When the metric space is a homogeneous group equipped with a homogeneous distance
we denote the k-dimensional Hausdorff measure byHk. If the Hausdorff measure is consid-
ered in the Euclidean space equipped with the Euclidean norm | · |, we denote it byHk

|·|.

2.2. The horizontal Grassmannian. Let S be a homogeneous subgroup of G as in Defini-
tion 2.2 and let

S = S1 ⊕ · · · ⊕ Sι
be the decomposition induced by the layers of G. We say that S is a horizontal subgroup if
S = S1 and a vertical subgroup if Sj = Hj for all 2 ≤ j ≤ ι.

Remark 2.6. It is easy to realize that any vertical subgroup is also a normal subgroup.

Definition 2.7. We say that two homogeneous subgroups V and W of G are complementary
subgroups in G if V∩W = {0} and G = WV. If, in addition, W is normal we say that G is
the semidirect product of V and W and write G = WoV.

If G is the semidirect product of homogeneous subgroups V and W, then we can define
unique projections πV : G→ V and πW : G→W in such a way that

idG = πWπV. (2.6)

Furthermore, if W is normal in G, then the following algebraic equalities hold:

πW(p−1) = πV(p)−1πW(p)−1πV(p), πV(p−1) = πV(p)−1,

πW(δrp) = δrπW(p), πV(δrp) = δrπV(p),

πW(pq) = πW(p)πV(p)πW(q)πV(p)−1, πV(pq) = πV(p)πV(q),

(2.7)

for p, q ∈ G and r > 0.

Definition 2.8. Let P and G be two homogeneous groups. We say that a linear mapping
L : P→ G is an h-homomorphism if

L(xy) = L(x)L(y) and L(δPrx) = δGr L(x)

for all x, y ∈ P and r > 0, where δGr and δPr represent the dilations on G and P, respectively.

Remark 2.9. From (2.7), it follows that πV is an h-homomorphism.

Definition 2.10. Let V be a horizontal homogeneous subgroup of G. We denote by V⊥ the
orthogonal homogeneous subgroup

V⊥ := V ⊥1 ⊕H2 ⊕ · · · ⊕H ι,

where V ⊥1 is meant as the orthogonal of V1 = V in H1, with respect to a fixed scalar product.

It is obvious to observe that V⊥ is a vertical subgroup.

Definition 2.11. To every homogeneous group G, we can associate a positive integer υ ≤ q,
which is the maximal linear dimension among all horizontal subgroups of G.
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Definition 2.12. Let V be a k-homogeneous subgroup of G. We say that V belongs to the
family of subspaces H(G, k) if it is a k-dimensional and horizontal subgroup. We say that
H(G, k) is the horizontal Grassmannian of k-dimensional subspaces. We write

H(G) =
υ⋃
k=1

H(G, k)

to indicate the horizontal Grassmannian of G.

Notice that the horizontal Grassmannian H(G) is a compact subset of the (standard)
Grassmannian G(G), that is made by all linear subspaces of G and using our fixed Eu-
clidean distance on G. Using the homogeneous distance d, we define the distance between
two elements V1,V2 ∈ H(G, k) as follows

ρ(V1,V2) = max
‖x‖=1

d(πV1(x), πV2(x)),

where πV1 , πV2 are the orthogonal projections onto V1 and V2, respectively. This distance
defines the same topology of the standard distance on Grassmannians, but it turns out to be
more manageable in the setting of homogeneous groups. In particular, we point out that
H(G, k) is compact with respect to this topology.

In the sequel, we will frequently use the distance function

d(p, S) = inf {d(p, s) : s ∈ S} = inf
{
‖p−1s‖ : s ∈ S

}
with respect to our fixed homogeneous distance d.

Theorem 2.13. For any V ∈ H(G) the semidirect factorization

G = V⊥ oV
holds. In addition, there exists a universal constant cG ∈ (0, 1) such that for every p ∈ G we
have

‖πV(p)‖ ≤ c−1G ‖p‖ (2.8)
and the following estimates hold

cG ‖πV(p)‖ ≤ d(p,V⊥) ≤ ‖πV(p)‖,
cG ‖πV(p)−1πV⊥(p)πV(p)‖ ≤ d(p,V) ≤ ‖πV(p)−1πV⊥(p)πV(p)‖.

(2.9)

Proof. We consider the orthogonal projection PV1 : H1 → V1 and set

πV : G→ V, πV(h1 + · · ·+ hι) := PV1(h1),

where hi ∈ H i. Then we define

πV⊥(p) = pπV(p)−1 = (p− πV(p)) +
ι∑

j=2

cj(p,−πV(p)).

The first addend belongs to V ⊥1 ⊂ H1, while (2.3) joined with the grading assumption (2.1)
shows that the second addend is in H2 ⊕ · · · ⊕ H ι. We have established that the image of
πV⊥ is contained in V⊥. By definition of V⊥ we have V ∩ V⊥ = {0}. The definition of πV⊥
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yields (2.6) with W = V⊥, therefore V⊥V = G. Due to the homogeneity properties of (2.7),
for any p 6= 0 we clearly have

‖πV(p)‖+ ‖πV⊥(p)‖
‖p‖

≤ max
‖z‖=1

(‖πV(z)‖+ ‖πV⊥(z)‖) . (2.10)

The crucial point is to obtain a universal bound on the right hand side, that is independent of
V. We fix an arbitrary V0 ∈ H(G, k) and observe that

max
‖z‖=1

‖πV(z)‖ ≤
(

max
‖z‖=1

‖πV0(z)‖
)

+
(

max
1≤k≤υ

max
V∈H(G,k)

ρ(V,V0)
)

= c1(G).

In addition, being πV⊥(z) = z(πV(z))−1, it holds

max
‖z‖=1

‖πV⊥(z)‖ ≤ 1 + c1(G).

Setting cG = 1/[1 + 2c1(G)], by (2.10), we have proved that

cG (‖πV(p)‖+ ‖πV⊥(p)‖) ≤ ‖p‖. (2.11)

In particular, (2.8) holds. To prove (2.9), we start by noticing that

d(p,V⊥) = inf{‖w−1p‖ : w ∈ V⊥} ≤ ‖πV(p)‖,
by plugging in w = πV⊥(p). In a similar fashion, we apply (2.11) to deduce that

‖w−1p‖ = ‖w−1πV⊥(p)πV(p)‖ ≥ cG(‖w−1πV⊥(p)‖+ ‖πV(p)‖) ≥ cG‖πV(p)‖.
The distance d(p,V) can be bounded from below as before by taking v = πV(p) in

d(p,V) = inf{‖v−1p‖ : v ∈ V} ≤ ‖πV(p)−1πV⊥(p)πV(p)‖.
For the opposite bound, we apply once again (2.11) and obtain

d(p,V) = inf{‖p−1v‖ : v ∈ V} =

= inf{‖πV(p)−1πV⊥(p)−1πV(p)πV(p)−1v‖ : v ∈ V} ≥
≥ cG

[
inf{‖πV(p)−1πV⊥(p)−1πV(p)‖+ ‖πV(p)−1v‖ : v ∈ V}

]
=

= cG‖πV(p)−1πV⊥(p)−1πV(p)‖.
We observe that

‖πV(p)−1πV⊥(p)−1πV(p)‖ = ‖(πV(p)−1πV⊥(p)πV(p))−1‖,
therefore the previous estimates complete the proof. �

The universal constant cG of the previous theorem will appear several times in the sequel.
An immediate consequence of (2.9) is the estimate

d(p, πV(p)) ≤ 1

cG
d(p,V) (2.12)

for all p ∈ G and V ∈ H(G).

3. TECHNICAL PRELIMINARIES

This section is devoted to the essential tools that will be used to prove our main results.
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3.1. Tangent measures. For p ∈ G and r > 0, similarly to the Euclidean setting, we can
define the magnification map using intrinsic dilations, by setting

Tp,r(q) := δ 1
r
(p−1q)

for all p, q ∈ G and r > 0. Notice that Tp,r maps the ball of center p and radius r to the unit
ball centered at the identity element of G.

Definition 3.1. Let µ be a Radon measure on G and let p ∈ G. A Radon measure ν on G
with ν(G) > 0 is said to be a tangent measure of µ at p, if there are sequences of positive
numbers ci and ri → 0 such that the following weak convergence of measures holds

ci(Tp,ri)#µ ⇀ ν

as i→∞. The set of all tangent measures of µ at p is denoted by Tan(µ, p).

Notice that if ν ∈ Tan(µ, p), clearly λν ∈ Tan(µ, p) for all λ > 0, hence uniqueness is
understood up to a positive factor. The next theorem is a consequence of combining [21,
Theorem 3.2] and [21, Lemma 2.5]. It holds for general locally compact metric Lie groups
equipped with dilations.

Theorem 3.2. Let µ be a Radon measure on G. The following conditions are equivalent:
(1) At µ-a.e. p ∈ G there exists a unique tangent measure νp ∈ Tan(µ, p).

(2) For µ-a.e. p ∈ G there exists a closed homogeneous subgroup Vp of G for which

Tan(µ, p) = {λνp : 0 < λ <∞},
where νp is a Haar measure on Vp.

If one of these two conditions hold, then for µ-a.e. p ∈ G there exists cp > 0 such that

(Tp,r)#µ

µ(B(p, r))
→ cpνp as r → 0+.

3.2. Density and approximate tangent group. Let µ be a Radon measure in G. We define
the upper and lower k-densities of µ at p ∈ G as

Θ∗k(µ, p) := lim sup
r→0+

µ(B(p, r))

rk
and Θk

∗(µ, p) := lim inf
r→0+

µ(B(p, r))

rk
.

If E ⊂ G isHk measurable and µ = HkxE is locally finite, then we define the correspond-
ing upper and lower k-densities

Θ∗k(E, p) = lim sup
r→0+

Hk(E ∩B(p, r))

rk
and Θk

∗(E, p) = lim inf
r→0+

Hk(E ∩B(p, r))

rk
,

respectively. The next result recalls the standard density estimates for Hausdorff measures,
see for instance [6, 2.10.19].

Lemma 3.3. Let E ⊂ G be Hk-measurable with Hk(E) < +∞. Then the following state-
ments hold.

(i) ForHk-a.e. p ∈ E, we have

2−k ≤ Θ∗k(E, p) ≤ 1.
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(ii) ForHk-a.e. p ∈ G \ E, it holds Θ∗k(E, p) = 0.

It is well known in the Euclidean setting that rectifiability can be characterized by cones,
see [20, Theorem 15.19]. The next definition provides the proper notion of cone in homoge-
neous groups, that naturally works with the notion of rectifiability.

Definition 3.4. Let s ∈ (0, 1), p ∈ G and let T be a homogeneous subgroup of G. The
intrinsic cone of vertex p, axis T and opening s is defined as

X(p, T, s) =
{
q ∈ G : d(p−1q, T) < sd(p, q)

}
.

We will also use the notation X(p, r,T, s) = X(p,T, s) ∩B(p, r).

The notion of intrinsic cone leads us to the notion of “intrinsic approximate tangent group”
for anHk-measurable set.

Definition 3.5. Let E ⊂ G be an Hk-measurable set. A homogeneous k-subgroup Tp of
dimension k and Hausdorff dimension k is a (k,G)-approximate tangent group to E at p if
the following properties hold:

(1) Θ∗k(E, p) > 0,
(2) for all s ∈ (0, 1) we have

lim
r→0+

HkxE(B(p, r) \X(p,Tp, s))
rk

= 0.

We denote by apTankG(E, p) the set of all (k,G)-approximate tangent groups to E at p and
we use Tp when it is unique.

The next result establishes several properties of the (k,G)-approximate tangent group,
along with its uniqueness up to negligible sets.

Proposition 3.6. Let E ⊂ G be anHk-measurable set, 1 ≤ k ≤ υ, and let

A = {p ∈ E : apTankG(E, p) 6= ∅}.
Then the following properties hold:

(i) The set A isHk-measurable.

(ii) ForHk-a.e. p ∈ A there exists a unique (k,G)-approximate tangent group Tp.
(iii) The map p 7→ Tp is measurable.

The proof of this theorem does not involve the type of algebraic structure of the group,
rather it is measure theoretic. Indeed, it can be carried out following the same argument of
[22, Proposition 3.9] for the Heisenberg group.

3.3. Rectifiability, differentiability and metric Jacobian. Next we recall the standard no-
tion of rectifiability in metric spaces, see for instance [6, 3.2.14].

Definition 3.7 (Rectifiable set). A measurable set E ⊂ G is k-rectifiable if there exist sets
Ai ⊂ Rk and Lipschitz maps fi : Ai ⊂ Rk → G, with i ∈ N, such that

Hk
(
E \

⋃
i∈N

fi(Ai)
)

= 0.
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Remark 3.8. By completeness of G, we may assume that all Ai ⊂ Rk in the definition of
k-rectifiability are closed sets.

For Banach homogeneous group targets, the a.e. differentiability of Lipschitz mappings
still holds if the first layer of the target satisfies the so-called Radon–Nikodym property,
see [18, Theorem 1.1]. In particular, it holds for any Lipschitz mapping from a subset of a
stratified group to a finite dimensional homogeneous group.

Definition 3.9 (Differentiability). If A ⊂ Rk, f : A → G, x ∈ A is a density point and
L : Rk → G is an h-homomorphism, we say that f is differentiable at x if

d(f(x)−1f(x+ z), L(z)) = o(d(z, 0))

as z → 0. The differential of f at x is denoted by Df(x).

The differential for group-valued mappings also inherits a Lie group homomorphism prop-
erty, namely it is an h-homomorphism, according to Definition 2.8.

Differentiability is strictly related to area through the area formula. Kirchheim observed
that to compute the area of a set parametrized by a Lipschitz mapping on a subset of Eu-
clidean space a weaker notion of differentiability suffices, [14]. This is the so-called the
“metric differentiability”.

Definition 3.10 (Metric differential). Let A ⊂ Rk, f : A→ G and fix a density point x ∈ A.
We say that f is metrically differentiable at x if there exists a seminorm s on Rk such that

d(f(x), f(x+ z))− s(z) = o(‖z‖) as x+ z ∈ A and ‖z‖ → 0+.

The seminorm s is unique and it is denoted by mdf(x), which we call the metric differential
of f at x.

Remark 3.11. Differentiability implies metric differentiability. It is easy to notice that when
f : A→ G is differentiable at x, then it is also metrically differentiable at x and

mdf(x)(h) = d(Df(x)(h), 0) for h ∈ Rk.

A general notion of metric Jacobian can be introduced for metric space targets, see [18]
for more information.

Definition 3.12 (Metric Jacobian). Let f : A ⊂ Rk → G be metrically differentiable at x
and let s denote its metric differential mdf(x). The metric Jacobian is defined as follows

Jf(x) =


Hk
s(BE(0, 1))

Hk
|·|(BE(0, 1))

if s is a norm on Rk,

0 otherwise.

The unit ball BE(0, 1) ⊂ Rk is defined with respect to the Euclidean metric of Rk.

With this notion, a general metric area formula holds for a.e. metric differentiable map-
pings defined on a stratified group. The following theorem is a consequence of combining
[18, Theorem 1.1] and [18, Theorem 1.2], when the Lipschitz mapping is defined on a sub-
set of the Euclidean space. We present the area formula in the general form, where also a
summable function is considered.
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Theorem 3.13. Let A be a measurable set of Rk and let f : A → G be Lipschitz, where G
is a homogeneous group. Then for every integrable function u : A→ R we have�

A

Jf(x)u(x)dx =

�
G

∑
x∈f−1(y)

u(x) dHk(y).

In our setting, a “linearization type lemma” is available, [6, Lemma 3.22], [14, Lemma 4],
[17, Proposition 4.1]. Specializing [18, Lemma 4.2] to our setting and taking into account
formula (51) of [18], we obtain the following result.

Lemma 3.14. Let A ⊂ Rk be a closed set, let f : A → G be Lipschitz and let D ⊂ A be
the subset of differentiability points where the metric differential of f is a norm. Then the
following statements hold.

(1) There exists a family of Borel sets {Ai}i∈N such that D =
⋃
i∈NAi and f |Ai

is bi-
Lipschitz onto its image for all i ∈ N.

(2) For a.e. x ∈ D, we have

Jf(x) =
Hk (Df(x)(BE(0, 1))

Hk
|·|(BE(0, 1))

= lim sup
r→0+

Hk(f(A ∩ BE(x, r)))

Hk
|·|(BE(x, r))

.

We have introduced the notation BE(0, 1) to denote the Euclidean unit ball of Rk. Next,
we extend the previous lemma to the case of Lipschitz mappings with measurable domains.

Lemma 3.15. Let E ⊂ G be a k-rectifiable set. Then there exist measurable set Mi ⊂ Rk

and Lipschitz maps fi : Mi → G such that for every i ∈ N the following conditions hold.
(1) fi is bi-Lipschitz onto its image
(2) fi is everywhere metrically differentiable
(3) mdfi(x) is a norm at all x ∈Mi,

Jfi(x) =
Hk (Dfi(x)(BE(0, 1)))

Hk
|·|(BE(0, 1))

for all x ∈Mi and x→ Jfi(x) is measurable.
Finally, there exists anHk-negligible set E0 ⊂ G such that

E ⊆
⋃
i∈N

fi(Mi) ∪ E0 (3.1)

and the measurable sets Mi can be chosen to make the family {fi(Mi) : i ∈ N} disjoint.

Proof. By Remark 3.8, [18, Theorem 1.1], Lemma 3.14 and Theorem 3.13, we end up
with an Hk-negligible set E0 and a countable family of Borel sets Bi ⊂ Rk and Lips-
chitz mappings fi : Bi → G that satisfy condition (1), (2) and (3) of our claim, along
with (3.1). Taking into account that fi are bi-Lipschitz, then their images and preimages of
Borel sets are Hk measurable and Lk measurable, respectively. Thus, the measurable sets
Mi = Bi \ f−1i

(⋃i−1
l=1 fl(Ml)

)
recursively defined make the images f(Mi) disjoint. �
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4. DENSITY ESTIMATE FOR PURELY UNRECTIFIABLE SETS

The main result of this section is Theorem 4.4, that can be seen as an improving of a decay
estimate on suitable intersections of cones with purely k-unrectifible sets.

Definition 4.1. We say that a set E ⊂ G is purely k-unrectifiable if for every Lipschitz
mapping f : A→ G with A ⊂ Rk we have

Hk(E ∩ f(A)) = 0.

Notice that in [6, 3.2.14] the set of the previous definition would have been called purely
(Hk, k)-unrectifiable.

Lemma 4.2. If E ⊂ G, T ∈ H(G, k), r > 0, 0 < s < 1, and

E ∩X(p,T⊥, s) ∩B(p, r) = ∅ (4.1)

whenever p ∈ E, then every subset of E with diameter less than r is contained in the image
of some Lipschitz map f : Rk → G with Lip(f) ≤ s−1.

Proof. Let F ⊂ E be a subset with diam(F ) < r and let πT be the orthogonal projection
onto T. If p, q ∈ F , then ‖p−1q‖ < r and by our assumption q /∈ X(p, r,T⊥), s). It follows
that

s−1d(p−1q,T⊥) ≥ ‖p−1q‖.
The estimates (2.9) on the distance with respect to vertical subgroups leads to the inequality

s−1‖πT(p−1q)‖ ≥ ‖p−1q‖.

Finally, the homomorphism property of πT immediately gives our claim. �

Remark 4.3. In the assumptions of the previous lemma, it is easy to realize that replacing
the condition (4.1) by

E ∩X(p,T⊥, s) = ∅,
we then obtain a unique Lipschitz mapping that parametrizes E.

Theorem 4.4. Let E ⊂ G be a purely k-unrectifiable set, fix V ∈ H(G, k), 0 < s < c3G,
λ > 0 and δ > 0, where cG is as in (2.9). If for all p ∈ E and any 0 < r ≤ δ we have

HkxE (X(p, r,V⊥, s)
)
≤ λrksk, (4.2)

then for all w ∈ G and 0 < ρ ≤ sδ/(24cG) we obtain

HkxE (B (w, 4cGρ/s) ∩ π−1V (B (πV(w), ρ))
)
≤ 2λ

(
84

cG

)k
ρk. (4.3)

In particular, for all w ∈ G we have the density upper bound

Θ∗k(HkxE,w) ≤ 2λ

(
84

c2G

)k
. (4.4)
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Proof. We fix w ∈ G and 0 < ρ ≤ sδ/(24 cG). We set the parameter ε = s/4cG and define

A = E ∩B
(
w,
ρ

ε

)
∩ π−1V (B (πV(w), ρ)) .

We consider the set C = {y ∈ A : A ∩X(y,V⊥, ε) 6= ∅}. Taking into account Lemma 4.2
and Remark 4.3, the difference A \ C is k-rectifiable, therefore Hk(A \ C) = 0 and we can
prove (4.3) replacing A by C. For every x ∈ C, the following function is well defined

h(x) = sup
{
‖x−1y‖ : y ∈ A ∩X(x,V⊥, ε)

}
and it satisfies the easy estimates 0 < h(x) ≤ diam(A) ≤ 2ρ/ε. We have the inclusion

πV (C) ⊂
⋃
x∈C

B

(
πV(x),

εh(x)

5

)
∩ V ⊂ B

(
πV(w),

7

5
ρ

)
∩ V, (4.5)

since for all points x of C we have d(πV(x), πV(w)) < ρ. We apply Vitali’s covering lemma
to find an at most countable subset D ⊂ C such that{

B

(
πV(x),

εh(x)

5

)
: x ∈ D

}
is disjoint and the corresponding family of balls with radii εh(x) covers πV(C). We have

πV(C) ⊆
⋃
x∈D

B(πV(x), εh(x)) ∩ V. (4.6)

In particular, πV restricted to D is injective. Since V is a homogeneous subgroup of Haus-
dorff dimension k, there exists a constant γV > 0 such that

Hk = γVLk,

where Lk is the k-dimensional Lebesgue measure on V with respect to an orthonormal sys-
tem of coordinates on V. It follows that

Hk(V ∩B(u, t)) = γVLk(V ∩B(0, 1)) tk

for every u ∈ V and t > 0. As a result, the inclusion (4.5) immediately implies that∑
x∈D

εkh(x)k ≤ 7kρk. (4.7)

To obtain our claim we have to estimate the measure

HkxC (π−1V (B(πV(x), εh(x)))
)

for all x ∈ D by λεk h(x)k, up to a universal geometric factor, and then use (4.7). Let us fix
x ∈ D. By definition of h(x), we may find y ∈ A ∩X(x,V⊥, ε) such that

4‖x−1y‖ > 3h(x). (4.8)

Using (2.9), we immediately notice that

cG‖πV(x−1y)‖ < ε‖x−1y‖ ≤ εh(x),
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therefore ‖πV(x−1y)‖ < εh(x)/cG. We claim that C ∩ π−1V (B(πV(x), εh(x))) is contained
in the following union of cones

X
(
x, 3h(x),V⊥,

s

c2G

)
∪X

(
y, 3h(x),V⊥,

s

c2G

)
.

Let z ∈ C be such that ‖πV(x−1z)‖ < εh(x) and notice that either z ∈ A ∩ X(x,V⊥, ε),
therefore ‖x−1z‖ ≤ h(x) or otherwise z /∈ X(x,V⊥, ε), hence

‖x−1z‖ ≤ 1

ε
‖πV(x−1z)‖ < h(x).

Therefore, in both cases ‖x−1z‖ ≤ h(x) < 3h(x) and consequently

‖y−1z‖ ≤ ‖x−1z‖+ ‖x−1y‖ ≤ 2h(x) < 3h(x).

It follows that z ∈ B(x, 3h(x)) ∩B(y, 3h(x)) and

‖πV(x−1z)‖+ ‖πV(y−1z)‖ ≤ 2‖πV(x−1z)‖+ ‖πV(x−1y)‖

< 2εh(x) +
ε

cG
h(x) ≤ 3ε

cG
h(x).

Taking into account (4.8), we get

‖πV(x−1z)‖+ ‖πV(y−1z)‖ < 4ε

cG
‖x−1y‖ =

s

c2G
‖x−1y‖

≤ s

c2G
‖x−1z‖+

s

c2G
‖x−1y‖.

It follows that

C ∩ π−1V (B(πV(x), εh(x))) ⊂ E ∩
(
X
(
x, 3h(x),V⊥,

s

c2G

)
∪X

(
y, 3h(x),V⊥,

s

c2G

))
.

Since 3h(x) ≤ 6ρ/ε = 24cGρ/s ≤ δ, we may apply (4.2), getting

Hk
(
C ∩ π−1V (B(πV(x), εh(x)))

)
≤ 2λ

(
3h(x)

s

c2G

)k
= 2λ

(
12h(x)ε

cG

)k
.

As a consequence of (4.6), we observe that

C ⊆
⋃
x∈D

π−1V (B(πV(x), εh(x))) .

Summing the previous estimate over all x ∈ D, using (4.7) and taking into account that
Hk(A \ C) = 0, we obtain

HkxE
(
B
(
w,

4cGρ

s

)
∩ π−1V (B (πV(w), ρ))

)
≤ 2

(
84

cG

)k
λρk,

therefore establishing (4.3). Finally, taking into account (2.8) and the fact that πV is a Lie
group homomorphism, we get the inclusion

B(w, cGρ) ⊂ π−1V (B(πV(w), ρ)) .
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It follows that

HkxE(B(w, cGρ)
)
≤ 2

(
84

cG

)k
λρk

and this immediately gives the density estimate (4.4). �

5. PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem 1.1.
We start with the proof of (i) =⇒ (ii). In view of Lemma 3.15, we can find a countable

family of bi-Lipschitz mappings fi : Ei → Si, Ei ⊂ Rk is measurable, Si ⊂ G is Hk

measurable, i ∈ N, such that
(a) the sets Si are disjoint,

(b) E is equal to the union of anHk-negligible set E0 with
⋃
i∈N Si,

(c) mdfi(x) is a norm at all x ∈ Ei.
The proof of (ii) is actually equivalent to the validity for all i ∈ N of the limit

1

rk
(Tp,r)#(HkxSi) ⇀ HkxDfi(f−1i (p))(Rk) as r → 0+ (5.1)

atHk-a.e. p ∈ Si, beingDfi(f−1i (p))(Rk) ∈ H(G, k). Indeed, using Lemma 3.3, forHk-a.e.
p ∈ Si we have

Θ∗k(E \ Si, p) = 0. (5.2)

Then the two statements are equivalent, due to the equality

1

rk

�
E

ϕ ◦ Tp,rdHk =
1

rk

�
E\Si

ϕ ◦ Tp,rdHk +
1

rk

�
Si

ϕ ◦ Tp,rdHk

for all ϕ ∈ Cc(G), where p satisfies (5.2).
For the sake of notation, in the sequel we denote fi by f , Ei by M and Si by S. We may

also fix p = f(x) such that (5.2) holds, we have the estimates{
‖Df(x)(y)‖ ≥ cx|y| for all y ∈ Rk,

d(f(x), f(y)) ≥ c|x− y| for all y ∈M,

with c, cx > 0. Here we have chosen x ∈ M such that it is a Lebesgue point of Jf and a
differentiability point of f . Let ϕ ∈ Cc(G) and let R > 0 be such that suppϕ ⊂ B(0, R).
Then defining Cx = min {c, cx} > 0, we get

ϕ
(
δ 1

r
(f(x)−1f(y))

)
= ϕ

(
Df(x)

(
y − x
r

))
= 0

whenever |x − y| ≥ Rr
Cx

. Since x is a Lebesgue point for Jf and f is differentiable at x, we
infer that�

M

ϕ
(
δ 1

r
(f(x)−1f(y))

)
Jf(y)dy − Jf(x)

�
M

ϕ

(
Df(x)

(
y − x
r

))
dy = o(rk) (5.3)
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as r → 0+. From the area formula of Theorem 3.13 and applying a change of variables of
the form y = x+ rz, for every r > 0 we get

�
G
ϕ dHkxDf(x)(Rk) =

�
Df(x)(Rk)

ϕ dHk

= r−kJf(x)

�
Rk

ϕ

(
Df(x)

(
y − x
r

))
dy.

(5.4)

The last theorem along with basic properties of push-forward measures yields
�
M

ϕ
(
δ 1

r
(f(x)−1f(y))

)
Jf(y)dy =

�
G
ϕ
(
δ 1

r
(p−1z)

)
dHkxS(z)

=

�
G
ϕ d(Tp,r)#(HkxS).

(5.5)

Considering (5.4), (5.3) and (5.5), we find that
�
G
ϕ dHkxDf(x)(Rk) = lim

r→0+
r−kJf(x)

�
Rk

ϕ

(
Df(x)

(
y − x
r

))
dy

= lim
r→0+

r−k
�
B

ϕ
(
δ 1

r
(f(x)−1f(y))

)
Jf(y) dy

= lim
r→0+

r−k
�
G
ϕ d
(
(Tp,r)#(HkxS)

)
,

hence concluding the proof of our claim.
Proof of (ii) =⇒ (iii). ForHk-a.e. p ∈ E, the assumption (ii) tells us that

1

rk
(Tp,r)#(HkxE) ⇀ HkxTp as r → 0+.

If νp ∈ Tan(HkxE, p), then there are sequences ci ∈ R and ri > 0 such that ri is infinitesi-
mal and

ci(Tp,ri)#(HkxE) ⇀ νp.

Therefore, being νp nonvanishing, the sequence rki ci converges to some λp ∈ R \ {0} and
the following holds:

ci(Tp,ri)#(HkxE) ⇀ λpHkxTp.
Proof of (iii) =⇒ (iv). By Theorem 3.2, for a.e. p ∈ E there exists cp > 0 such that

1

HkxE(B(p, r))
(Tp,r)#(HkxE) ⇀ cpHkxTp as r → 0+.

By homogeneity and the fact thatHkxTp is locally finite, we get

Hk
(
Tp ∩ ∂(B(e, 1) \X(e,Tp, s))

)
= 0
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for all s ∈ (0, 1), hence we can apply [1, Proposition 1.62] to infer that

lim
r→0+

HkxE(B(p, r) \X(p,Tp, s))
HkxE(B(p, r))

= lim
r→0+

(Tp,r)#(HkxE)(B(e, 1) \X(e,Tp, s))
HkxE(B(p, r))

= HkxTp(B(e, 1) \X(e,Tp, s)) = 0.

This, together with Lemma 3.3, shows that at Hk-a.e. p ∈ G the homogeneous subgroup
Tp is a (k,G)-approximate tangent group, which can be also taken to be unique, in view of
Proposition 3.6.

Proof of (iv) =⇒ (i). By compactness of H(G, k), we can find V1, . . . ,VN ∈ H(G, k)
such that for every V ∈ H(G, k) there exists Vi such that ρ(V,Vi) < 1/3. Since HkxE is
locally finite, we can define the purely k-unrectifiable part Epu of E and consider

Ci =

{
p ∈ Epu : there exists apTankG(E, p) and ρ(apTankG(E, p),Vi) <

1

3

}
,

that satisfy Epu ⊆ Z ∪
⋃N
i=1Ci, whereHk(Z) = 0. So, to prove our claim it suffices that

Hk(Ci) = 0 for all i = 1, . . . , N .

We fix one of these integers i and select p ∈ Ci. We wish to prove that

X
(
p,V⊥i , ε0

)
⊂ G \X (p,Tp, ε0) , (5.6)

up to choosing ε0 > 0 suitably small. We choose

q ∈ X(p,V⊥i , ε0)
and notice that by definition of cone we have

d(p−1q,V⊥i ) < ε0d(p, q).

It follows from (2.9) that d(p−1q,V⊥i ) ≥ cG‖πVi
(p−1q)‖ so, ultimately, we get

d(p, q) >
cG
ε0
‖πVi

(p−1q)‖. (5.7)

To conclude that q /∈ X (p,Tp, ε0), we need to prove that

d(p−1q,Tp) ≥ ε0d(p, q),

but this is not immediate, since Tp is horizontal and (2.9) does not provide directly a good
lower estimate of the distance. We start from the weaker lower estimate (2.9), getting

d(p−1q,Tp) ≥ cG‖πTp(p−1q)−1πT⊥p (p−1q)πTp(p−1q)‖,
so we have to show that

cG‖πTp(p−1q)−1πT⊥p (p−1q)πTp(p−1q)‖ ≥ ε0‖p−1q‖ (5.8)

for some suitably small ε0 > 0. Recall that Tp belongs to B(Vi,
1
3
), so from definition of

distance in the horizontal Grassmannian, we obtain

‖πTp(p−1q)‖ − ‖πVi
(p−1q)‖ ≤ ‖πVi

(p−1q)−1πTp(p−1q)‖ ≤ ‖p
−1q‖
3

.
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It follows that
‖πTp(p−1q)−1πT⊥p (p−1q)πTp(p−1q)‖ ≥ ‖p−1q‖ − ‖πTp(p−1q)‖

≥ d(p, q)− d(p, q)

3
− ‖πVi

(p−1q)‖

≥
(

2

3
− ε0
cG

)
d(p, q),

where the last inequality follows from (5.7). If we multiply the previous inequalities by cG,
we immediately realize that ε0 can be arbitrarily chosen in the interval (0, cG/3) in order to
have (5.8) established. This concludes the proof of the inclusion (5.6).

The existence of the (k,G)-approximate tangent group at p yields

HkxE(B(p, r) \X(p,Tp, ε0))
rk

→ 0 as r → 0+

and the point is that ε0 does not depend on p. We fix λ > 0 arbitrarily. As a consequence,
we obtain

HkxE (X (p, r,V⊥i , ε0)) ≤ λrkεk0 (5.9)
when 0 < r ≤ δp,λ and for some δp,λ > 0, depending on p and λ. For any integer m ≥ 1, we
define

Cim =
{
q ∈ Ci : (5.9) holds for p = q and any 0 < r < e−m

}
and observe that Ci =

⋃
m≥1Cim. The conditions of Theorem 4.4 are satisfied at all points

p ∈ Cim, up to choosing a possily smaller ε0 < c3G, therefore

Θ∗k(Cim, p) ≤ 2λ

(
84

c2G

)k
.

SinceHkxE is locally finite, combining the arbitrary choice of λ and Lemma 3.3 we obtain
Hk(Cim) = 0 and this immediately leads us to the conclusion of the proof.
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