On the sub-Riemannian area of submanifolds Conference on "Geometric Analysis in Control and Vision Theory"

Valentino Magnani

Department of Mathematics, University of Pisa

Voss, May 9-13, 2016

Known area formulas

- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- Intrinsic measure of submanifolds
- 6 Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- Blow-up and sub-Riemannian area formula
- Existence of blow-ups

Known area formulas

- 2) Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- 4 Degree of vectors and intrinsic area
- Intrinsic measure of submanifolds
- 6 Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- Blow-up and sub-Riemannian area formula
- Existence of blow-ups

Known area formulas

- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- 4 Degree of vectors and intrinsic area
- 5 Intrinsic measure of submanifolds
- 6 Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- Blow-up and sub-Riemannian area formula
- Existence of blow-ups

- Known area formulas
- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- 5 Intrinsic measure of submanifolds
- 6 Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- Blow-up and sub-Riemannian area formula
- Existence of blow-ups

- Known area formulas
- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- Intrinsic measure of submanifolds
- 6 Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- Blow-up and sub-Riemannian area formula
- Existence of blow-ups

- 1 Known area formulas
- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- Intrinsic measure of submanifolds
- Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- Blow-up and sub-Riemannian area formula
- Existence of blow-ups

- 1 Known area formulas
- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- 5 Intrinsic measure of submanifolds
- Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- 8 Blow-up and sub-Riemannian area formula
- Existence of blow-ups

- 1 Known area formulas
- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- Intrinsic measure of submanifolds
- Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- 8 Blow-up and sub-Riemannian area formula

9 Existence of blow-ups

- 1 Known area formulas
- 2 Hausdorff measure in sub-Riemannian manifolds
- 3 Homogeneous groups
- Degree of vectors and intrinsic area
- 5 Intrinsic measure of submanifolds
- Measure theoretic area formula
- Intrinsic singular points of smooth submanifolds
- 8 Blow-up and sub-Riemannian area formula
- 9 Existence of blow-ups

The idea of this notion is elementary. Let $E \subset X$ be a subset of a metric space *X*. Then for some fixed number $c_{\alpha} > 0$ and $k\alpha > 0$ we define

$$\mathcal{H}^{\alpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{\alpha} \operatorname{diam}(S_j)^k : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \leq \delta \right\}$$

$$\mathcal{S}^{lpha}(E) = \sup_{\delta > 0} \inf \Big\{ \sum_{j=0}^{\infty} c_{lpha} \operatorname{diam}(S_j)^{lpha} : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \le \delta$$

and S_j is a ball $\Big\}$

The Hausdorff dimension of $E \subset X$ is the number

$\dim_H E = \inf \left\{ \alpha > 0 : \ \mathcal{S}^{\alpha}(E) = 0 \right\} \in [0, +\infty].$

The idea of this notion is elementary. Let $E \subset X$ be a subset of a metric space *X*. Then for some fixed number $c_{\alpha} > 0$ and $k\alpha > 0$ we define

$$\mathcal{H}^{lpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{lpha} \operatorname{diam}(S_j)^k : E \subset \bigcup S_j, \operatorname{diam}(S_j) \le \delta \right\}$$

 $\mathcal{S}^{lpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{lpha} \operatorname{diam}(S_j)^{lpha} : E \subset \bigcup S_j, \operatorname{diam}(S_j) \le \delta$
and S_j is a ball $\left\}$

The Hausdorff dimension of $E \subset X$ is the number

$\dim_H E = \inf \{ \alpha > 0 : S^{\alpha}(E) = 0 \} \in [0, +\infty].$

The idea of this notion is elementary. Let $E \subset X$ be a subset of a metric space *X*. Then for some fixed number $c_{\alpha} > 0$ and $k\alpha > 0$ we define

$$\mathcal{H}^{\alpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{\alpha} \operatorname{diam}(S_j)^k : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \le \delta \right\}$$

$$S^{lpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{lpha} \operatorname{diam}(S_j)^{lpha} : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \le \delta
ight.$$

and S_j is a ball $\left. \right\}$

The *Hausdorff dimension* of $E \subset X$ is the number

$\dim_H E = \inf \{ \alpha > 0 : \ \mathcal{S}^{\alpha}(E) = 0 \} \in [0, +\infty].$

The idea of this notion is elementary. Let $E \subset X$ be a subset of a metric space *X*. Then for some fixed number $c_{\alpha} > 0$ and $k\alpha > 0$ we define

$$\mathcal{H}^{\alpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{\alpha} \operatorname{diam}(S_j)^k : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \leq \delta \right\}$$

$$\mathcal{S}^{lpha}(E) = \sup_{\delta > 0} \inf \Big\{ \sum_{j=0}^{\infty} c_{lpha} \operatorname{diam}(S_j)^{lpha} : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \le \delta$$

and S_j is a ball $\Big\}$

The *Hausdorff dimension* of $E \subset X$ is the number

$\dim_H E = \inf \{ \alpha > 0 : S^{\alpha}(E) = 0 \} \in [0, +\infty].$

The idea of this notion is elementary. Let $E \subset X$ be a subset of a metric space *X*. Then for some fixed number $c_{\alpha} > 0$ and $k\alpha > 0$ we define

$$\mathcal{H}^{\alpha}(E) = \sup_{\delta > 0} \inf \left\{ \sum_{j=0}^{\infty} c_{\alpha} \operatorname{diam}(S_j)^k : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \leq \delta \right\}$$

$$\mathcal{S}^{lpha}(E) = \sup_{\delta > 0} \inf \Big\{ \sum_{j=0}^{\infty} c_{lpha} \operatorname{diam}(S_j)^{lpha} : E \subset \bigcup S_j, \ \operatorname{diam}(S_j) \le \delta$$

and S_j is a ball $\Big\}$

The *Hausdorff dimension* of $E \subset X$ is the number

$$\dim_H E = \inf \{ \alpha > \mathbf{0} : \ S^{\alpha}(E) = \mathbf{0} \} \in [\mathbf{0}, +\infty].$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^k_
ho(\Sigma\cap\psi(\Omega))=\int_\Omega\sqrt{{\sf det}(ilde g_{ij})}{\sf d} x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^{\textit{k}}_{
ho}(\Sigma \cap \psi(\Omega)) = \int_{\Omega} \sqrt{\det(ilde{g}_{\textit{ij}})} \textit{d}x,$$

If *M* is an *n*-dimensional Riemannian manifold with metric *g*, (U, ψ) is a local chart of *M* and with $\psi : A \to U$ with an open set $A \subset \mathbb{R}^n$, then we have

$$\mathcal{H}^n_
ho(U) = \int_\mathcal{A} \sqrt{\det(g_{ij})} dx,$$

where ρ is the Riemannian distance associated to g.

If $\Sigma \subset M$ is a *k*-dimensional submanifold of (M, g), then for a local chart $\psi : \Omega \to \Sigma$ of Σ , we have

$$\mathcal{H}^{\textit{k}}_{
ho}(\Sigma \cap \psi(\Omega)) = \int_{\Omega} \sqrt{\det(ilde{g}_{\textit{ij}})} \textit{d}x,$$

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

 $\mathcal{H}^k(f(A)) = \int_A Jf(x) dx$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).

More generally, if $f : A \rightarrow X$ is a Lipschitz mapping taking values in a metric space, then

$$\mathcal{H}^k(f(A)) = \int_A Jf(x)dx$$

where $A \subset \mathbb{R}^k$ is a Lebesgue measure subset and $k \leq n$. This result was proved in [B. Kirchheim, Proceeding of AMS, 1994].

Definition (Rectifiable sets)

A subset $E \subset X$ in a metric space X is called rectifiable if there exists a Lipschitz mapping $f : A \to E$, where $A \subset \mathbb{R}^k$ such that E = f(A).
M. Gromov [1996, Carnot-Carathéodory spaces seen from within] introduced a natural formula for the Hausdorff dimension of submanifolds, that works for *generic* submanifolds of equiregular Carnot-Carathéodory spaces.

Let $\Sigma \subset \mathbb{M}$ be a smooth submanifold of an *equiregular* sub-Riemannian manifold M and fix $p \in M$. If \mathcal{D} is the horizontal distribution of M, we define the following flag

 $T^{1}_{\rho}M = \mathcal{D}_{\rho}, \quad T^{2}_{\rho}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho}, \quad \dots,$ $\dots \quad T^{\iota}_{\rho}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho} + \dots + [[\cdots [\mathcal{D}, \mathcal{D}], \mathcal{D}], \dots, \mathcal{D}]_{\rho}$

M. Gromov [1996, Carnot-Carathéodory spaces seen from within] introduced a natural formula for the Hausdorff dimension of submanifolds, that works for *generic* submanifolds of equiregular Carnot-Carathéodory spaces.

Let $\Sigma \subset \mathbb{M}$ be a smooth submanifold of an *equiregular* sub-Riemannian manifold M and fix $p \in M$. If \mathcal{D} is the horizontal distribution of M, we define the following flag

$$T_{\rho}^{1}M = \mathcal{D}_{\rho}, \quad T_{\rho}^{2}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho}, \quad \dots,$$
$$\dots \quad T_{\rho}^{\iota}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho} + \dots + [[\cdots [\mathcal{D}, \mathcal{D}], \mathcal{D}], \dots, \mathcal{D}]_{\rho}$$

M. Gromov [1996, Carnot-Carathéodory spaces seen from within] introduced a natural formula for the Hausdorff dimension of submanifolds, that works for *generic* submanifolds of equiregular Carnot-Carathéodory spaces.

Let $\Sigma \subset \mathbb{M}$ be a smooth submanifold of an *equiregular* sub-Riemannian manifold M and fix $p \in M$. If \mathcal{D} is the horizontal distribution of M, we define the following flag

$$T_{\rho}^{1}M = \mathcal{D}_{\rho}, \quad T_{\rho}^{2}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho}, \quad \dots,$$
$$\dots \quad T_{\rho}^{\iota}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho} + \dots + [[\cdots [\mathcal{D}, \mathcal{D}], \mathcal{D}], \dots, \mathcal{D}]_{\rho}$$

M. Gromov [1996, Carnot-Carathéodory spaces seen from within] introduced a natural formula for the Hausdorff dimension of submanifolds, that works for *generic* submanifolds of equiregular Carnot-Carathéodory spaces.

Let $\Sigma \subset \mathbb{M}$ be a smooth submanifold of an *equiregular* sub-Riemannian manifold M and fix $p \in M$. If \mathcal{D} is the horizontal distribution of M, we define the following flag

$$T^{1}_{\rho}M = \mathcal{D}_{\rho}, \quad T^{2}_{\rho}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho}, \quad \dots,$$
$$\dots \quad T^{\iota}_{\rho}M = \mathcal{D}_{\rho} + [\mathcal{D}, \mathcal{D}]_{\rho} + \dots + [[\cdots [\mathcal{D}, \mathcal{D}], \mathcal{D}], \dots, \mathcal{D}]_{\rho}$$

We consider the induced flag on ${\cal T}_{\rho}\Sigma$ defining

$$T^{j}_{p}\Sigma = T_{p}\Sigma \cap T^{j}_{p}M$$

for each $j = 1, \ldots, \iota$.

We define we define a kind of "pointwise Hausdorff dimension" at p as

$$D'(p) = \sum_{j=0}^{\iota} j \operatorname{dim}\left(T_{p}^{j}\Sigma/T_{p}^{j-1}\Sigma\right)$$

Finally, we define the integer $D_H(\Sigma) = \max_{\rho \in \Sigma} D'(\rho)$.

Gromov 1996 Smooth submanifolds $\Sigma \subset \mathbb{M}$ have generically Hausdorff dimension $D_H(\Sigma)$.

We consider the induced flag on $T_{\rho}\Sigma$ defining

$$T_{\rho}^{j}\Sigma = T_{\rho}\Sigma \cap T_{\rho}^{j}M$$

for each $j = 1, \ldots, \iota$.

We define we define a kind of "pointwise Hausdorff dimension" at p as

$$D'(p) = \sum_{j=0}^{\iota} j \dim \left(T_p^j \Sigma / T_p^{j-1} \Sigma \right)$$

Finally, we define the integer $D_H(\Sigma) = \max_{p \in \Sigma} D'(p)$.

Gromov 1996 Smooth submanifolds $\Sigma \subset \mathbb{M}$ have generically Hausdorff dimension $D_H(\Sigma)$. We consider the induced flag on $T_{\rho}\Sigma$ defining

$$T_{\rho}^{j}\Sigma = T_{\rho}\Sigma \cap T_{\rho}^{j}M$$

for each $j = 1, \ldots, \iota$.

We define we define a kind of "pointwise Hausdorff dimension" at p as

$$D'(p) = \sum_{j=0}^{\iota} j \dim \left(T_p^j \Sigma / T_p^{j-1} \Sigma \right)$$

Finally, we define the integer $D_H(\Sigma) = \max_{\rho \in \Sigma} D'(\rho)$.

Gromov 1996

Smooth submanifolds $\Sigma \subset \mathbb{M}$ have generically Hausdorff dimension $D_{H}(\Sigma).$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^{k}$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Let us now pick any submanifold $\Sigma \subset M$ of topological dimension k and Hausdorff dimension N with respect to the sub-Riemannian distance, where N > k.

Assume by contradiction that there exists a Lipschitz mapping $f: \Omega \to \Sigma$, where $\Omega \subset \mathbb{R}^k$ is an open set, that is also *surjective*. From the standard property of Lipschitz mappings, we get

 $\dim_{CC} \Sigma \leq \dim_{Eucl} \Omega = k,$

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma \subset \mathbb{G}$, we can immediately consider the natural notion of "surface measures" that is

 $\mathcal{H}^{\mathrm{N}}_{
ho} \sqcup \Sigma$ or $\mathcal{S}^{\mathrm{N}}_{
ho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma \subset \mathbb{G}$, we can immediately consider the natural notion of "surface measures" that is

 $\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$ or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

 $\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$ or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma \subset \mathbb{G}$, we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma \subset \mathbb{G}$, we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

The exact formula for $\mathcal{H}^{N}(\Sigma)$ is not yet unknown. Not even for a 2-dimesional surface in the 3-dimensional Heisenberg group.

We will focus our attention on computing $\mathcal{S}^{N}(\Sigma)$, where only recently some rather general results have been obtained.

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

The exact formula for $\mathcal{H}^{N}(\Sigma)$ is not yet unknown. Not even for a 2-dimesional surface in the 3-dimensional Heisenberg group. We will focus our attention on computing $\mathcal{S}^{N}(\Sigma)$,

where only recently some rather general results have been obtained.

Once we know that N is the Hausdorff dimension of a submanifold $\Sigma\subset\mathbb{G},$ we can immediately consider the natural notion of "surface measures" that is

$$\mathcal{H}^{\mathrm{N}}_{\rho} \sqcup \Sigma$$
 or $\mathcal{S}^{\mathrm{N}}_{\rho} \sqcup \Sigma$,

where ρ here is the sub-Riemannian distance.

How can we compute these measures? Are they finite and positive?

The exact formula for $\mathcal{H}^N(\Sigma)$ is not yet unknown. Not even for a 2-dimesional surface in the 3-dimensional Heisenberg group.

We will focus our attention on computing $\mathcal{S}^N(\Sigma)$, where only recently some rather general results have been obtained.

• We think of a *homogeneous group*

 $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each r > 0 the dilation

 $\delta_r: \mathbb{G} o \mathbb{G}, \quad \delta_r x = r^j x \quad ext{for all } x \in H^j$

• We think of a *homogeneous group*

 $\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

 $\delta_r: \mathbb{G} o \mathbb{G}, \quad \delta_r x = r^j x \quad ext{for all } x \in H^j$

• We think of a *homogeneous group*

 $\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

 $\delta_r: \mathbb{G} o \mathbb{G}, \quad \delta_r x = r^j x \quad ext{for all } x \in H^j$

• We think of a *homogeneous group*

$$\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

 $\delta_r: \mathbb{G} o \mathbb{G}, \quad \delta_r x = r^j x \quad ext{for all } x \in H^j$

• We think of a *homogeneous group*

 $\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of \mathbb{G} allows us to define for each r > 0 the dilation

 $\delta_r : \mathbb{G} \to \mathbb{G}, \quad \delta_r x = r^j x \quad \text{for all } x \in H^j$

• We think of a *homogeneous group*

 $\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

 $\delta_r : \mathbb{G} \to \mathbb{G}, \quad \delta_r x = r^j x \text{ for all } x \in H^j$

• We think of a *homogeneous group*

$$\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

$$\delta_{\mathbf{r}}: \mathbb{G} \to \mathbb{G}, \quad \delta_{\mathbf{r}} \mathbf{x} = \mathbf{r}^{j} \mathbf{x} \text{ for all } \mathbf{x} \in H^{j}$$

• We think of a *homogeneous group*

$$\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

$$\delta_r : \mathbb{G} \to \mathbb{G}, \quad \delta_r x = r^j x \quad \text{for all } x \in H^j$$
Homogeneous groups

• We think of a *homogeneous group*

$$\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of G allows us to define for each *r* > 0 the dilation

$$\delta_r : \mathbb{G} \to \mathbb{G}, \quad \delta_r x = r^j x \quad \text{for all } x \in H^j$$

and $j = 1, \ldots, \iota$, that are Lie group homomorphisms.

Homogeneous groups

• We think of a *homogeneous group*

 $\mathbb{G}=H^1\oplus\cdots\oplus H^{\iota}$

as a graded vector space equipped with both a group operation and a Lie product with the properties

$$H^{i+j} \subset [H^i, H^j] \tag{1}$$

for every $i, j \ge 1$, where we have set $H^j = \{0\}$ whenever $j > \iota$. The algebraic grading (1) gives the nilpotence of the group and it allows us for compatible dilations.

• This grading of \mathbb{G} allows us to define for each r > 0 the dilation

$$\delta_r : \mathbb{G} \to \mathbb{G}, \quad \delta_r x = r^j x \quad \text{for all } x \in H^j$$

and $j = 1, \ldots, \iota$, that are Lie group homomorphisms.

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

d(xz, xw) = d(z, w) and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
(2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

Homogenous distance and SR distance A distance function $d : \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{R}$ which satisfies

d(xz, xw) = d(z, w) and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
(2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

d(xz, xw) = d(z, w) and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
(2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

d(xz, xw) = d(z, w) and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
 (2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

$$d(xz, xw) = d(z, w)$$
 and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*.

It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
(2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

$$d(xz, xw) = d(z, w)$$
 and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
 (2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

$$d(xz, xw) = d(z, w)$$
 and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
 (2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

$$d(xz, xw) = d(z, w)$$
 and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
 (2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \le \rho(x,y) \le C d(x,y).$$

A distance function $d : \mathbb{G} \times \mathbb{G} \to \mathbb{R}$ which satisfies

$$d(xz, xw) = d(z, w)$$
 and $d(\delta_r z, \delta_r w) = rd(z, w)$

for each $x, z, w \in \mathbb{G}$ and r > 0 is a *homogeneous distance*. It can be proved that for every compact set $K \subset \mathbb{G}$ there exists C > 0 such that the powers in the following estimates are optimal

$$C^{-1}|x-y| \le d(x,y) \le C |x-y|^{1/\iota}$$
 (2)

whenever $x, y \in K$.

$$C^{-1}d(x,y) \leq \rho(x,y) \leq C d(x,y).$$

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

 $d(0,tv)=\sqrt[j]{|t|}d(0,v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

$$\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$$
 and $\dim_H L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

 $d(0,tv)=\sqrt[j]{|t|}d(0,v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

$$\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$$
 and $\dim_H L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get $d(0, tv) = \sqrt{|t|} d(0, v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^{j}$ is a one dimensional subspace, then

 $\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$ and $\dim_H L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

 $d(0,tv)=\sqrt[j]{|t|}d(0,v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

 $\mathcal{H}^{j}_{d} \sqcup L = \mathcal{H}^{1}_{E} \quad \text{and} \quad \dim_{H} L = j,$

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

 $d(0,tv) = \sqrt[j]{|t|}d(0,v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

 $\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$ and dim_H L = j,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

 $d(0,tv) = \sqrt[j]{|t|}d(0,v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

 $\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$ and $\dim_H L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

$$d(0,tv)=\sqrt[j]{|t|}d(0,v).$$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

$$\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$$
 and $\dim_H L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

 $d(0,tv) = \sqrt[j]{|t|}d(0,v).$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

$$\mathcal{H}_{d}^{j} \sqcup L = \mathcal{H}_{E}^{1}$$
 and $\dim_{H} L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

$$d(0,tv)=\sqrt[j]{|t|}d(0,v).$$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

$$\mathcal{H}_d^j \sqcup L = \mathcal{H}_E^1$$
 and $\dim_H L = j$,

The homogeneity of any homogeneous distance implies different behaviors along different directions of the group.

If $v \in H^j$ is not vanishing, then for each $t \in \mathbb{R}$ we get

$$d(0,tv)=\sqrt[j]{|t|}d(0,v).$$

So, the distance is Hölder continuous with respect to the Euclidean distance. As a result, if $L \subset H^j$ is a one dimensional subspace, then

$$\mathcal{H}_{d}^{j} \sqcup L = \mathcal{H}_{E}^{1}$$
 and $\dim_{H} L = j$,

Definition (Degree of vectors)

For each $j = 1, \ldots, \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is **not** true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, \ldots, \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is **not** true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is **not** true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is **not** true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is **not** true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is **not** true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

$$\dim_H V = \deg(x) + \deg(y) = 2.$$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$

The reason of this fact arises from the **noncommutativity** of any two spanning directions $e_1, e_2 \in H^1$.

Valentino Magnani (University of Pisa) Sub-Riemannian area of submanifolds

Definition (Degree of vectors)

For each $j = 1, ..., \iota$, if $x \in H^j$, we define its degree deg(x) = j.

Remark

If $V = \text{span} \{x, y\}$, where $x, y \in H^1$, it is not true in general that

 $\dim_H V = \deg(x) + \deg(y) = 2.$

Example (Heisenberg group)

Let us consider the Heisenberg group $\mathbb{H} = H^1 \oplus H^2$, where dim $H^1 = 2$ and dim $\mathbb{H}^2 = 1$. It is well known in fact that

 $\dim_H H^1 = 3.$
What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_{\rho}\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by $\exp : \operatorname{Lie}(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

$$\exp \mathcal{V}_j = H^j$$

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_{\rho}\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by $\exp : \operatorname{Lie}(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

$$\exp \mathcal{V}_j = H^j$$

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_{\rho}\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by $\exp : \operatorname{Lie}(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

$$\exp \mathcal{V}_j = H^j$$

for each
$$j = 1, \ldots, \iota$$
.

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_{\rho}\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by exp : $Lie(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

$$\exp \mathcal{V}_j = H^j$$

for each
$$j = 1, \ldots, \iota$$
.

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_p\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

 $\mathsf{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$

where denoting by exp : $Lie(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

 $\exp \mathcal{V}_j = H^j$

for each $j = 1, ..., \iota$.

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_p\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

 $\mathsf{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$

where denoting by $\exp:\operatorname{Lie}(\mathbb{G})\to\mathbb{G}$ the exponential mapping, we get

 $\exp \mathcal{V}_i = H^j$

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_p\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by $exp : Lie(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

$$\exp \mathcal{V}_j = H^j$$

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_p\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by $exp : Lie(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

 $\exp \mathcal{V}_i = H^j$

What allows us to overcome the previuos problem is the idea that degrees can be summed only at **infinitesimal level**.

The idea is to look at the manifold at very large scale, to detect the precise nature of a point. We then look at vectors in the tangent space.

The grading of $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$ automatically induces a grading at every tangent space $T_p\mathbb{G}$. We can canonically identify $T_0\mathbb{G}$ with \mathbb{G} , since \mathbb{G} is a linear space. Then we have a grading of the Lie algebra

$$\operatorname{Lie}(\mathbb{G}) = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_{\iota},$$

where denoting by $exp: Lie(\mathbb{G}) \to \mathbb{G}$ the exponential mapping, we get

$$\exp \mathcal{V}_j = H^j$$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree j, and set deg(X) = j, if and only if X belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree j, and set deg(X) = j, if and only if X belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

$$\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$$

Definition (Degree of homogeneous vector fields) We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, ..., Z_k \in Lie(\mathbb{G})$, having degrees $n_1, ..., n_k$, respectively. Then we set

 $\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

$$\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

$$\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$$

Definition (Degree of homogeneous vector fields)

We say that $X \in \text{Lie}(\mathbb{G})$ is a (homogeneous) left invariant vector field of degree *j*, and set deg(*X*) = *j*, if and only if *X* belongs to the subspace $\mathcal{V}_j \subset \text{Lie}(\mathbb{G})$.

Definition (Degree of homogeneous *k*-vector fields) Let us consider $Z_1, \ldots, Z_k \in \text{Lie}(\mathbb{G})$, having degrees n_1, \ldots, n_k , respectively. Then we set

$$\deg(Z_1\wedge\cdots\wedge Z_k)=n_1+\cdots+n_k.$$

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates.*

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H^j

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H^j

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{r} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \ldots, e_{m_j})$$
 is a basis of H^j

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in \mathbb{G})

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{r} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H

for each $j = 1, ..., \iota$.

Definition (Graded basis in $\operatorname{Lie}(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G) If $\mathbb{G} = H^1 \oplus \cdots \oplus H^i$, then we define $m_j = \sum_{i=1}^j \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of G is graded if

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

 $(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$ is a basis of H

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

Once we have assign a degree, or *weight*, to any direction of any tangent space, it is convenient to introduce special *adapted coordinates*.

Definition (Graded basis in G)

If $\mathbb{G} = H^1 \oplus \cdots \oplus H^{\iota}$, then we define $m_j = \sum_{i=1}^{j} \dim H^j$ and $m_0 = 0$. We say that a basis (e_1, \ldots, e_q) of \mathbb{G} is graded if

$$(e_{m_{j-1}+1}, e_{m_{j-1}+2}, \dots, e_{m_j})$$
 is a basis of H

for each $j = 1, ..., \iota$.

Definition (Graded basis in $Lie(\mathbb{G})$)

As for polynomials, once we have assigned a degree to homogeneous *k*-vector fields, then we can assigne a degree to all of them.

Projections If $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ is a *k*-vector field with

$$\xi = \sum_{I \in \mathcal{I}_k} c_I X_I$$

$$\pi_{\mathrm{N}}(\xi) = \sum_{\substack{l \in \mathcal{I}_k \\ d(X_l) = \mathrm{N}}} c_l X_l.$$

As for polynomials, once we have assigned a degree to homogeneous k-vector fields, then we can assigne a degree to all of them.

Projections If $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ is a *k*-vector field with

$$\xi = \sum_{I \in \mathcal{I}_k} c_I X_I$$

$$\pi_{\mathrm{N}}(\xi) = \sum_{\substack{l \in \mathcal{I}_k \\ d(X_l) = \mathrm{N}}} c_l X_l.$$

As for polynomials, once we have assigned a degree to homogeneous k-vector fields, then we can assigne a degree to all of them.

Projections If $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ is a *k*-vector field with

$$\xi = \sum_{I \in \mathcal{I}_k} c_I X_I$$

$$\pi_{\mathrm{N}}(\xi) = \sum_{\substack{l \in \mathcal{I}_k \\ d(X_l) = \mathrm{N}}} c_l X_l.$$

As for polynomials, once we have assigned a degree to homogeneous k-vector fields, then we can assigne a degree to all of them.

As for polynomials, once we have assigned a degree to homogeneous k-vector fields, then we can assigne a degree to all of them.

Projections If $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ is a *k*-vector field with $\xi = \sum_{l \in \mathcal{I}_k} c_l X_l$ then we define the N-projection of ξ as follows

As for polynomials, once we have assigned a degree to homogeneous k-vector fields, then we can assigne a degree to all of them.

Projections

If $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ is a *k*-vector field with

$$\xi = \sum_{l \in \mathcal{I}_k} c_l X_l$$

$$\pi_{\mathrm{N}}(\xi) = \sum_{\substack{l \in \mathcal{I}_k \\ d(X_l) = \mathrm{N}}} c_l X_l.$$
Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

 $\mathsf{deg}(\xi) = \mathsf{max}\left\{ j \in \mathbb{N}: \ j \leq Q, \ \pi_j(\xi) \neq \mathsf{0}
ight\}.$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

 $au_{\Sigma}(\boldsymbol{p}) = \boldsymbol{t}_1 \wedge \cdots \wedge \boldsymbol{t}_n,$

where (t_1, \ldots, t_n) is a basis of $T_p\Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

 $\deg(\xi) = \max\left\{j \in \mathbb{N} : \ j \leq Q, \ \pi_j(\xi) \neq 0\right\}.$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

$$au_{\Sigma}(\boldsymbol{p}) = \boldsymbol{t}_1 \wedge \cdots \wedge \boldsymbol{t}_n,$$

where (t_1, \ldots, t_n) is a basis of $T_p\Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

 $\deg(\xi) = \max\left\{j \in \mathbb{N} : \ j \leq Q, \ \pi_j(\xi) \neq 0\right\}.$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

 $au_{\Sigma}(\boldsymbol{p}) = \boldsymbol{t}_1 \wedge \cdots \wedge \boldsymbol{t}_n,$

where $(t_1, ..., t_n)$ is a basis of $T_p \Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

 $\deg(\xi) = \max\left\{j \in \mathbb{N} : \ j \leq Q, \ \pi_j(\xi) \neq 0\right\}.$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

 $\tau_{\Sigma}(\boldsymbol{p}) = \boldsymbol{t}_1 \wedge \cdots \wedge \boldsymbol{t}_n,$

where $(t_1, ..., t_n)$ is a basis of $T_p \Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

 $\deg(\xi) = \max\left\{j \in \mathbb{N} : \ j \leq Q, \ \pi_j(\xi) \neq 0\right\}.$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

 $\tau_{\Sigma}(\boldsymbol{p}) = \boldsymbol{t}_1 \wedge \cdots \wedge \boldsymbol{t}_n,$

where $(t_1, ..., t_n)$ is a basis of $T_p\Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

 $\deg(\xi) = \max\left\{j \in \mathbb{N} : \ j \leq Q, \ \pi_j(\xi) \neq 0\right\}.$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

$$au_{\Sigma}(\boldsymbol{p}) = t_1 \wedge \cdots \wedge t_n,$$

where $(t_1, ..., t_n)$ is a basis of $T_p \Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let $\xi \in \Lambda_k(\text{Lie}(\mathbb{G}))$ be any left invariant *k*-vector field, with $k \leq q$. Then we define its *degree* as the following integer

$$\mathsf{deg}(\xi) = \mathsf{max}\left\{ j \in \mathbb{N}: \; j \leq \mathcal{Q}, \; \pi_j(\xi) \neq \mathsf{0}
ight\}.$$

Definition (Degree of submanifolds)

If $\Sigma \subset \mathbb{G}$ is an n-dimensional smooth submanifold of \mathbb{G} and $p \in \Sigma$, then we define a tangent n-vector of Σ at p as follows

$$au_{\Sigma}(\boldsymbol{p}) = t_1 \wedge \cdots \wedge t_n,$$

where $(t_1, ..., t_n)$ is a basis of $T_p\Sigma$. We define the degree $d_{\Sigma}(p)$ of Σ at p as

 $d_{\Sigma}(p) = \deg(\tau_{\Sigma}(p)).$

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{\textit{vol}}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

sub-Riemannian area of submanifolds.

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\widetilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

sub-Riemannian area of submanifolds.

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{\textit{vol}}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

sub-Riemannian area of submanifolds.

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

However, this equality of measures is not yet proved in all cases.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\widetilde{g}} \Box \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

sub-Riemannian area of submanifolds.

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

sub-Riemannian area of submanifolds.

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

However, this equality of measures is not yet proved in all cases.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

sub-Riemannian area of submanifolds.

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

However, this equality of measures is not yet proved in all cases.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

```
sub-Riemannian area of submanifolds.
```

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

```
sub-Riemannian area of submanifolds.
```

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

```
sub-Riemannian area of submanifolds.
```

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

Let us fix any auxiliary Riemannian metric \tilde{g} on \mathbb{G} , such that τ_{Σ} is a *unit* tangent n-vector with respect to this metric. Let N be the degree of Σ . Then we introduce the *intrinsic measure* of Σ as follows

 $\mu_{\Sigma} = |\pi_{\mathrm{N}}(\tau_{\Sigma})| \operatorname{vol}_{\tilde{g}} \sqcup \Sigma.$

This measure, introduced in [M. and D. Vittone, J. Reine Ang. Math., 2008], is the natural

```
sub-Riemannian area of submanifolds.
```

In fact, we will see that using recent differentiation theorems for measures, it is possible to show that this measure *coincides with the spherical Hausdorff measure*.

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) S^{\alpha} \sqcup \Sigma.$$
(3)

Some technical assumptions on X are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$\theta^{\alpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ \frac{\mu(\mathbb{B})}{c_{\alpha}(2r)^{\alpha}} : \mathbb{B} \in \mathcal{F}_{b}, \ x \in \mathbb{B}, \ \operatorname{diam} \mathbb{B} \le \varepsilon \right\}$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) S^{\alpha} \bot \Sigma.$$
(3)

20/33

Some technical assumptions on X are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$heta^{lpha}(\mu, x) = \inf_{arepsilon>0} \sup\left\{rac{\mu(\mathbb{B})}{c_{lpha}(2r)^{lpha}}: \mathbb{B}\in\mathcal{F}_b, \; x\in\mathbb{B}, \; \mathrm{diam}\mathbb{B}\leqarepsilon
ight\}.$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space *X*. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) \,\mathcal{S}^{\alpha} \llcorner \Sigma. \tag{3}$$

Some technical assumptions on X are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$heta^{lpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ rac{\mu(\mathbb{B})}{c_{lpha}(2r)^{lpha}} : \mathbb{B} \in \mathcal{F}_b, \; x \in \mathbb{B}, \; \mathrm{diam}\mathbb{B} \leq \varepsilon
ight\}.$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) S^{\alpha} \bot \Sigma.$$
(3)

Some technical assumptions on X are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$\theta^{\alpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ \frac{\mu(\mathbb{B})}{c_{\alpha}(2r)^{\alpha}} : \mathbb{B} \in \mathcal{F}_{b}, \ x \in \mathbb{B}, \ \operatorname{diam} \mathbb{B} \le \varepsilon \right\}$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\iota = heta^lpha(\mu, \cdot) \, \mathcal{S}^lpha ot \Sigma.$$

20/33

Some technical assumptions on X are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$\theta^{\alpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ \frac{\mu(\mathbb{B})}{c_{\alpha}(2r)^{\alpha}} : \mathbb{B} \in \mathcal{F}_{b}, \ x \in \mathbb{B}, \ \operatorname{diam}\mathbb{B} \leq \varepsilon \right\}$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) \,\mathcal{S}^{\alpha} \sqcup \Sigma. \tag{3}$$

Some technical assumptions on X are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$heta^{lpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ rac{\mu(\mathbb{B})}{c_{lpha}(2r)^{lpha}} : \mathbb{B} \in \mathcal{F}_b, \; x \in \mathbb{B}, \; \mathrm{diam}\mathbb{B} \leq \varepsilon
ight\}$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) \, \mathcal{S}^{\alpha} \sqcup \Sigma. \tag{3}$$

Some technical assumptions on *X* are needed, as for instance that $\operatorname{diam}(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$\theta^{\alpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ \frac{\mu(\mathbb{B})}{c_{\alpha}(2r)^{\alpha}} : \mathbb{B} \in \mathcal{F}_{b}, \ x \in \mathbb{B}, \ \text{diam}\mathbb{B} \le \varepsilon \right\}$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) \, \mathcal{S}^{\alpha} \sqcup \Sigma. \tag{3}$$

Some technical assumptions on *X* are needed, as for instance that $diam(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$\theta^{\alpha}(\mu, x) = \inf_{\varepsilon > 0} \sup \left\{ \frac{\mu(\mathbb{B})}{c_{\alpha}(2r)^{\alpha}} : \mathbb{B} \in \mathcal{F}_{b}, \ x \in \mathbb{B}, \ \text{diam}\mathbb{B} \le \varepsilon \right\}$$

In a recent paper [M., Proc. Royal. Soc. Ed., 2015.] a rather general area-type formula has been established in a general metric space X. If $\Sigma \subset X$ is a Borel set, μ is a Borel regular measure concentrated on Σ , that is absolutely continuous with respect to $S^{\alpha} \sqcup \Sigma$, then

$$\mu = \theta^{\alpha}(\mu, \cdot) \,\mathcal{S}^{\alpha} \sqcup \Sigma. \tag{3}$$

Some technical assumptions on X are needed, as for instance that $diam(\mathbb{B}(x, r)) = \varphi(r)$ for each $x \in X$, where φ is continuous. The key of this formula is the explicit representation of the density θ^{α} , namely the Federer density:

$$heta^{lpha}(\mu, {\pmb{x}}) = \inf_{arepsilon > {\pmb{0}}} \sup \left\{ rac{\mu(\mathbb{B})}{{\pmb{c}}_{lpha}({\pmb{2}}{\pmb{r}})^{lpha}} : \mathbb{B} \in \mathcal{F}_{{\pmb{b}}}, \; {\pmb{x}} \in \mathbb{B}, \; \mathrm{diam}\mathbb{B} \leq arepsilon
ight\}.$$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ \mathcal{p} \in \Sigma : d_{\Sigma}(\mathcal{p}) < \mathrm{N}
ight\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem

Find the minimal regularity of Σ , such that

$S^{\mathrm{N}}(C(\Sigma)) = 0.$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ \boldsymbol{\rho} \in \Sigma : d_{\Sigma}(\boldsymbol{\rho}) < \mathrm{N}
ight\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem

Find the minimal regularity of Σ , such that

$S^{\mathrm{N}}(C(\Sigma)) = 0.$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ p \in \Sigma : d_{\Sigma}(p) < \mathrm{N}
ight\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem Find the minimal regularity of Σ , such that

$S^{\mathrm{N}}(C(\Sigma)) = 0.$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

 $\mathcal{C}(\Sigma) = \left\{ p \in \Sigma : d_{\Sigma}(p) < N \right\},$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem Find the minimal regularity of Σ , such that

$S^{\mathrm{N}}(C(\Sigma)) = 0.$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ p \in \Sigma : d_{\Sigma}(p) < \mathrm{N}
ight\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem Find the minimal regularity of Σ , such that $\mathcal{S}^{N}(\mathcal{C}(\Sigma)) = 0.$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ \mathcal{p} \in \Sigma : d_{\Sigma}(\mathcal{p}) < \mathrm{N}
ight\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $\mathbb{N} = d(\Sigma)$.

 Negligibility problem

 Find the minimal regularity of Σ , such that

 $\mathcal{S}^N(\mathcal{C}(\Sigma)) = 0.$

 Valentino Magnani (University of Pisa)

 Sub-Riemannian area of submanifolds

 Voss, May 13, 2016
 21/33

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

Valentino Magnani (University of Pisa)

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ \boldsymbol{p} \in \Sigma : d_{\Sigma}(\boldsymbol{p}) < \mathrm{N} \right\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem Find the minimal regularity of Σ , such that $S^{N}(C(\Sigma)) = 0.$

Sub-Riemannian area of submanifolds

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ \boldsymbol{p} \in \Sigma : d_{\Sigma}(\boldsymbol{p}) < \mathrm{N} \right\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem Find the minimal regularity of Σ , such that $\mathcal{S}^{N}(\mathcal{C}(\Sigma)) = 0.$

The previous formula is general, so in which cases we are able to compute the Federer density?

Singular points

The notion of degree we have seen could be seen somehow as a "pointwise Hausdorff dimension". According to this fact, we consider the following set of points

$$\mathcal{C}(\Sigma) = \left\{ \boldsymbol{p} \in \Sigma : d_{\Sigma}(\boldsymbol{p}) < \mathrm{N} \right\},$$

as the *singular set* of the submanifold, with respect to the distance of the group, where $N = d(\Sigma)$.

Negligibility problem

Find the minimal regularity of Σ , such that

$$S^{\mathrm{N}}(C(\Sigma)) = 0.$$

$C^{1,1}$ blow-up

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(p^{-1}\Sigma) o S_{p}\Sigma$$

locally as $r
ightarrow 0^+$ with respect to the Hausdorff convergence of sets. $S_{
ho}\Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).
In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$\delta_{1/r}(p^{-1}\Sigma) \to S_p\Sigma$

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p\Sigma$ is a subgroup of G.

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

 $\delta_{1/r}(p^{-1}\Sigma) \to S_p\Sigma$

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a subgroup of \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^N \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^N \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^N \bot \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point of maximum degree $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \rightarrow 0^+$ with respect to the Hausdorff convergence of sets. $S_p\Sigma$ is a subgroup of \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a suitable homogeneous distance, we get

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point of maximum degree $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \rightarrow 0^+$ with respect to the Hausdorff convergence of sets. $S_p\Sigma$ is a subgroup of \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a suitable homogeneous distance, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \bot \Sigma.$$

(5)

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point of maximum degree $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \rightarrow 0^+$ with respect to the Hausdorff convergence of sets. $S_p\Sigma$ is a subgroup of \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a suitable homogeneous distance, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \sqcup \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

Valentino Magnani (University of Pisa)

(5)

In the paper [M. and D. Vittone, J. Reine Ang. Math., 2008], we have proved that at each point *of maximum degree* $p \in \Sigma$, if Σ is a $C^{1,1}$ smooth submanifold, then

$$\delta_{1/r}(\rho^{-1}\Sigma) \to S_{\rho}\Sigma$$
 (4)

locally as $r \to 0^+$ with respect to the Hausdorff convergence of sets. $S_p \Sigma$ is a *subgroup of* \mathbb{G} .

Application to area-type formula

If the blow-up holds at some point, then we can compute the Federer density at that point. Joining this fact with the negligibility condition and taking a *suitable homogeneous distance*, we get

$$\mu_{\Sigma} = \mathcal{S}^{N} \sqcup \Sigma.$$

For $C^{1,1}$ smooth submanifolds in two step groups the negligibility condition holds, [M., JGA, 2010], then the formula (5).

Valentino Magnani (University of Pisa) Sub

Sub-Riemannian area of submanifolds

(5)

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \mbox{dim}\, \mathbb{G},$ we define

 ${\mathcal D}({
m n})={
m max}\left\{d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \mbox{dim}\, \mathbb{G},$ we define

 ${\mathcal D}({
m n})={
m max}\left\{d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \mbox{dim}\, \mathbb{G},$ we define

 $\mathcal{D}(\mathrm{n})=\max\left\{ d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\} .$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \text{dim}\,\mathbb{G},$ we define

 ${\mathcal D}({
m n})={
m max}\left\{d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 .

This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \text{dim}\,\mathbb{G},$ we define

 ${\mathcal D}({
m n})={
m max}\left\{d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \text{dim}\,\mathbb{G},$ we define

 ${\mathcal D}({
m n})=\max\left\{ d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\} .$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \dim \mathbb{G}$, we define

 ${\mathcal D}({
m n})={
m max}\left\{d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \text{dim}\,\mathbb{G},$ we define

 ${\mathcal D}({
m n})={
m max}\left\{d(\Sigma):\Sigma ext{ is an n-dimensional submanifold of }\mathbb{G}
ight\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \text{dim}\,\mathbb{G},$ we define

 $D(n) = \max \left\{ d(\Sigma) : \Sigma \text{ is an } n \text{-dimensional submanifold of } \mathbb{G} \right\}.$

For higher step groups the validity of the negligibility condition for $C^{1,1}$ submanifolds is not yet established. Do we have blow-up for C^1 smooth submanifolds?

According to the classical situation, it is natural to expect an area formula for smooth submanifolds of class C^1 . This is the case for generic submanifolds.

Transversal submanifold

For each dimension $n \leq q = \text{dim}\,\mathbb{G},$ we define

 $D(n) = \max \left\{ d(\Sigma) : \Sigma \text{ is an } n \text{-dimensional submanifold of } \mathbb{G} \right\}.$

If Σ is a C¹ smooth transversal submanifold of degree N, then
S^N(C(Σ)) = 0,
for each p ∈ Σ, with d_Σ(p) = N, δ₁(p⁻¹Σ) → S_pΣ as r → 0⁺.

 $S_{p}\Sigma$ is a subgroup of G,

for a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

Theorem (M., J. T. Tyson and D. Vittone, JAM, 2015) If Σ is a C^1 smooth transversal submanifold of degree N, then $\Im S^N(C(\Sigma)) = 0$, for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$, $\delta_{1/r}(p^{-1}\Sigma) \rightarrow S_p\Sigma$ as $r \rightarrow 0^+$, $S_p\Sigma$ is a subgroup of G,

for a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

If Σ is a C^1 smooth transversal submanifold of degree N, then $\Im S^N(C(\Sigma)) = 0$,

2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = \mathbb{N}$, $\delta_{1/r}(p^{-1}\Sigma) \to S_p\Sigma$ as $r \to 0^+$, $S_p\Sigma$ is a subgroup of \mathbb{G} ,

If or a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

- If Σ is a C^1 smooth transversal submanifold of degree N, then $\mathcal{S}^N(C(\Sigma)) = 0$,
 - 2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$,
 - $\delta_{1/r}(p^{-1}\Sigma) o S_p\Sigma$ as $r o 0^{-r}$ $S_p\Sigma$ is a subgroup of \mathbb{G} ,
 - for a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

If Σ is a C^1 smooth transversal submanifold of degree N, then

•
$$\mathcal{S}^{\mathrm{N}}(\mathcal{C}(\Sigma)) = 0$$
,

2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$, $\delta_{1/r}(p^{-1}\Sigma) \rightarrow S_p\Sigma$ as $r \rightarrow 0^+$,

 $S_p\Sigma$ is a subgroup of \mathbb{G} ,

for a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

If Σ is a C^1 smooth transversal submanifold of degree N, then

• $\mathcal{S}^{N}(\mathcal{C}(\Sigma)) = 0$,

- 2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$,
 - $\delta_{1/r}(p^{-1}\Sigma) o S_p\Sigma$ as $r o 0^+$,
 - $S_p\Sigma$ is a subgroup of \mathbb{G} ,

If a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

If Σ is a C^1 smooth transversal submanifold of degree N, then

2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$, $\delta_{1/r}(p^{-1}\Sigma) \rightarrow S_p\Sigma$ as $r \rightarrow 0^+$, $S_p\Sigma$ is a subgroup of \mathbb{G} ,

If or a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

However, how can we have this information if we do not know a priori its existence?

If Σ is a C^1 smooth transversal submanifold of degree N, then

2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$, $\delta_{1/r}(p^{-1}\Sigma) \rightarrow S_p\Sigma$ as $r \rightarrow 0^+$, $S_p\Sigma$ is a subgroup of \mathbb{G} ,

If or a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

However, how can we have this information if we do not know a priori its existence?

If Σ is a C^1 smooth transversal submanifold of degree N, then

2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$, $\delta_{1/r}(p^{-1}\Sigma) \rightarrow S_p\Sigma$ as $r \rightarrow 0^+$, $S_p\Sigma$ is a subgroup of \mathbb{G} ,

If or a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

However, how can we have this information if we do not know a priori its existence?

If Σ is a C^1 smooth transversal submanifold of degree N, then

2 for each $p \in \Sigma$, with $d_{\Sigma}(p) = N$, $\delta_{1/r}(p^{-1}\Sigma) \rightarrow S_p\Sigma$ as $r \rightarrow 0^+$, $S_p\Sigma$ is a subgroup of \mathbb{G} ,

If or a suitable homogeneous distance, there holds

$$\mu_{\Sigma} = \mathcal{S}^{\mathrm{N}} \bot \Sigma.$$

On the blow-up problem

A central ingredient in the proof of this theorem is that

 $S_{
ho}\Sigma$ is a subgroup of $\mathbb{G}.$

However, how can we have this information if we do not know a priori its existence?

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

$$\xi_{\rm N} = \pi_{\rm N}(\xi).$$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the *algebraic tangent space of* Σ *at* p as the n-dimensional subspace

$$A_{\rho}\Sigma = \{ v \in \mathbb{G} : v \wedge \tau_{\Sigma,\mathrm{N}}(\rho) = 0 \}.$$

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

 $\xi_{\rm N} = \pi_{\rm N}(\xi).$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the *algebraic tangent space of* Σ *at p* as the n-dimensional subspace

 $\mathcal{A}_{\rho}\Sigma = \{ v \in \mathbb{G} : v \wedge au_{\Sigma,\mathrm{N}}(
ho) = 0 \}.$

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

 $\xi_{\rm N} = \pi_{\rm N}(\xi).$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the *algebraic tangent space of* Σ *at* p as the n-dimensional subspace

 $A_{\rho}\Sigma = \{ v \in \mathbb{G} : v \wedge \tau_{\Sigma,\mathrm{N}}(\rho) = 0 \}.$

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

 $\xi_{\rm N} = \pi_{\rm N}(\xi).$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the *algebraic tangent space of* Σ *at p* as the n-dimensional subspace

 $\mathsf{A}_{\rho}\Sigma = \left\{ v \in \mathbb{G} : v \wedge au_{\Sigma,\mathrm{N}}(
ho) = 0
ight\}.$

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

 $\xi_{\rm N} = \pi_{\rm N}(\xi).$

Then we define the n-vector $\tau_{\Sigma,N}(\rho) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the algebraic tangent space of Σ at ρ as the n-dimensional subspace

 $\mathsf{A}_{\rho}\Sigma = \{ v \in \mathbb{G} : v \wedge \tau_{\Sigma,\mathrm{N}}(\rho) = 0 \}.$
Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

 $\xi_{\rm N}=\pi_{\rm N}(\xi).$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the *algebraic tangent space* of Σ at p as the n-dimensional subspace

 $\mathcal{A}_{\rho}\Sigma = \left\{ v \in \mathbb{G} : v \wedge au_{\Sigma,\mathrm{N}}(
ho) = \mathsf{0}
ight\}.$

We say that $p \in \Sigma$ is algebraically regular if $A_p\Sigma$ is a Lie subgroup of Lie(G).

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

 $\xi_{\rm N}=\pi_{\rm N}(\xi).$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the algebraic tangent space of Σ at p as the n-dimensional subspace

$$\mathcal{A}_{\mathcal{P}}\Sigma = \{ v \in \mathbb{G} : v \wedge \tau_{\Sigma,\mathrm{N}}(\mathcal{P}) = 0 \}.$$

We say that $p \in \Sigma$ is algebraically regular if $A_p\Sigma$ is a Lie subgroup of Lie(G).

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

$$\xi_{\mathrm{N}}=\pi_{\mathrm{N}}(\xi).$$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the algebraic tangent space of Σ at p as the n-dimensional subspace

$$\mathcal{A}_{\mathcal{P}}\Sigma = \left\{ \mathbf{v} \in \mathbb{G} : \mathbf{v} \wedge au_{\Sigma,\mathrm{N}}(\mathbf{\mathcal{P}}) = \mathbf{0}
ight\}.$$

We say that $p \in \Sigma$ is algebraically regular if $A_p\Sigma$ is a Lie subgroup of Lie(G).

Algebraic tangent space

Let $\Sigma \subset \mathbb{G}$ be a C^1 smooth submanifold of dimension n and let $d_{\Sigma}(p) = N$, where $p \in \Sigma$. We first consider the unique left invariant n-vector field ξ such that $\xi(p) = \tau_{\Sigma}(p)$ and $\tau_{\Sigma}(p)$ is a tangent n-vector of Σ at p. We project ξ on the space of left invariant n-vector fields ξ with degree N, that is

$$\xi_{\mathrm{N}}=\pi_{\mathrm{N}}(\xi).$$

Then we define the n-vector $\tau_{\Sigma,N}(p) = \xi_N(0) \in \Lambda_n(\mathbb{G})$. Thus, we define the algebraic tangent space of Σ at p as the n-dimensional subspace

$$\mathcal{A}_{\mathcal{P}}\Sigma = \left\{ \mathbf{v} \in \mathbb{G} : \mathbf{v} \wedge au_{\Sigma,\mathrm{N}}(\mathbf{\mathcal{P}}) = \mathbf{0}
ight\}.$$

We say that $p \in \Sigma$ is algebraically regular if $A_p\Sigma$ is a Lie subgroup of $\text{Lie}(\mathbb{G})$.

In [M. and D. Vittone, J. Reine Ang. Math., 2008] we proved that points of maximum degree are *algebraically regular*.

Sketch of the proof

If $X_j(0), X_i(0) \in A_p\Sigma$, we can find an adapted basis (X_1, \ldots, X_q) and special Lipschitz vector fields on Σ of the form

$$v_j^k = X_j + \sum_{d(X_r) \le k} \phi_r X_r$$
 and $v_i^l = X_i + \sum_{d(X_s) \le l} \psi_s X_s$.

where deg(X_j) = k and deg(X_i) = l and we have Lipschitz functions ϕ_r , ψ_s , which vanish at x whenever d(r) = k or d(s) = l.

In [M. and D. Vittone, J. Reine Ang. Math., 2008] we proved that points of maximum degree are *algebraically regular*.

Sketch of the proof

If $X_j(0), X_i(0) \in A_p\Sigma$, we can find an adapted basis (X_1, \ldots, X_q) and special Lipschitz vector fields on Σ of the form

$$v_j^k = X_j + \sum_{d(X_r) \le k} \phi_r X_r$$
 and $v_i^l = X_i + \sum_{d(X_s) \le l} \psi_s X_s$.

where deg(X_j) = k and deg(X_i) = l and we have Lipschitz functions ϕ_r , ψ_s , which vanish at x whenever d(r) = k or d(s) = l.

In [M. and D. Vittone, J. Reine Ang. Math., 2008] we proved that points of maximum degree are *algebraically regular*.

Sketch of the proof

If $X_j(0), X_i(0) \in A_p\Sigma$, we can find an adapted basis (X_1, \ldots, X_q) and special Lipschitz vector fields on Σ of the form

$$v_j^k = X_j + \sum_{d(X_r) \le k} \phi_r X_r$$
 and $v_i^l = X_i + \sum_{d(X_s) \le l} \psi_s X_s$.

where deg(X_j) = k and deg(X_i) = l and we have Lipschitz functions ϕ_r , ψ_s , which vanish at x whenever d(r) = k or d(s) = l.

In [M. and D. Vittone, J. Reine Ang. Math., 2008] we proved that points of maximum degree are *algebraically regular*.

Sketch of the proof

If $X_j(0), X_i(0) \in A_p\Sigma$, we can find an adapted basis (X_1, \ldots, X_q) and special Lipschitz vector fields on Σ of the form

$$v_j^k = X_j + \sum_{d(X_r) \le k} \phi_r X_r$$
 and $v_i^l = X_i + \sum_{d(X_s) \le l} \psi_s X_s$.

where deg(X_j) = k and deg(X_i) = l and we have Lipschitz functions ϕ_r , ψ_s , which vanish at x whenever d(r) = k or d(s) = l.

In [M. and D. Vittone, J. Reine Ang. Math., 2008] we proved that points of maximum degree are *algebraically regular*.

Sketch of the proof

If $X_j(0), X_i(0) \in A_p\Sigma$, we can find an adapted basis (X_1, \ldots, X_q) and special Lipschitz vector fields on Σ of the form

$$v_j^k = X_j + \sum_{d(X_r) \le k} \phi_r X_r$$
 and $v_i^l = X_i + \sum_{d(X_s) \le l} \psi_s X_s$.

where deg(X_j) = k and deg(X_i) = l and we have Lipschitz functions ϕ_r , ψ_s , which vanish at x whenever d(r) = k or d(s) = l.

$$\begin{bmatrix} v_j, v_i \end{bmatrix} = \begin{bmatrix} X_j + \sum_{d(X_r) \le k} \phi_r X_r, X_i + \sum_{d(X_s) \le l} \psi_s X_s \end{bmatrix}$$

$$= \begin{bmatrix} X_j, X_i \end{bmatrix} + \sum_{d(X_r) \le k} \phi_r \begin{bmatrix} X_r, X_i \end{bmatrix} + \sum_{d(X_s) \le l} \psi_s \begin{bmatrix} X_j^k, X_s \end{bmatrix}$$

$$+ \sum_{d(X_r) \le k, d(X_s) \le l} \phi_r \psi_s \begin{bmatrix} X_r, X_s \end{bmatrix}$$

$$+ \sum_{d(X_s) \le l} (X_j \psi_s) X_s - \sum_{d(X_r) \le k} (X_i \phi_r) X_r$$

$$+ \sum_{d(X_r) \le k, d(X_s) \le l} (\phi_r (X_r \psi_s) X_s - \psi_s (X_s \psi_r) X_r)$$
(7)

By Frobenius theorem we know that this vector is tangent to Σ a.e. Then this Lie product is a linear combination of v_1, \ldots, v_n , spanning the tangent space.

$$\begin{bmatrix} v_j, v_i \end{bmatrix} = \begin{bmatrix} X_j + \sum_{d(X_r) \le k} \phi_r X_r, X_i + \sum_{d(X_s) \le l} \psi_s X_s \end{bmatrix}$$
$$= \begin{bmatrix} X_j, X_i \end{bmatrix} + \sum_{d(X_r) \le k} \phi_r [X_r, X_i] + \sum_{d(X_s) \le l} \psi_s [X_j^k, X_s]$$
$$+ \sum_{d(X_r) \le k, d(X_s) \le l} \phi_r \psi_s [X_r, X_s]$$
$$+ \sum_{d(X_s) \le l} (X_j \psi_s) X_s - \sum_{d(X_r) \le k} (X_i \phi_r) X_r$$
$$+ \sum_{d(X_r) \le k, d(X_s) \le l} \left(\phi_r (X_r \psi_s) X_s - \psi_s (X_s \psi_r) X_r \right)$$
(7)

By Frobenius theorem we know that this vector is tangent to Σ a.e. Then this Lie product is a linear combination of v_1, \ldots, v_n , spanning the tangent space. The Lie product lies in $V_1 \oplus \cdots \oplus V_{k+l}$, hence the special form of these vector fields implies

$$[v_j, v_i] = \sum_{\deg(v_r) \le k+l} a_r v_r$$

almost everywhere on Σ .

Projecting both sides of the previous identity onto V_{k+l} , we get

$$[X_{j}, X_{i}] + \sum_{d(X_{r})=k} \phi_{r} [X_{r}, X_{i}] + \sum_{d(X_{s})=l} \psi_{s} [X_{j}, X_{s}] + \sum_{d(X_{r})=k, d(X_{s})=l} \phi_{r} \psi_{s} [X_{r}, X_{s}] = \sum_{\sigma(v_{r})=k+l} a_{r} \pi_{k+l}(v_{r}).$$

Finally we pass to the limit by a converging sequence $a_r(p_k)$ where $p_k \rightarrow p$, where all ϕ_r , ϕ_s vanish at p for deg $(X_r) = k$ and deg $(X_s) = l$. We get

$[X_j, X_i] = \operatorname{span} \{ \pi_{k+l}(v_r)(0) : d(v_r) = k+l \} \subset A_p \Sigma.$

The Lie product lies in $V_1 \oplus \cdots \oplus V_{k+l}$, hence the special form of these vector fields implies

$$[v_j, v_i] = \sum_{\deg(v_r) \le k+l} a_r v_r$$

almost everywhere on Σ .

Projecting both sides of the previous identity onto V_{k+l} , we get

$$\begin{split} [X_{j}, X_{i}] + \sum_{d(X_{r})=k} \phi_{r} \ [X_{r}, X_{i}] + \sum_{d(X_{s})=l} \psi_{s} \ [X_{j}, X_{s}] + \\ + \sum_{d(X_{r})=k, d(X_{s})=l} \phi_{r} \ \psi_{s} \ [X_{r}, X_{s}] = \sum_{\sigma(v_{r})=k+l} a_{r} \ \pi_{k+l}(v_{r}). \end{split}$$

Finally we pass to the limit by a converging sequence $a_r(p_k)$ where $p_k \rightarrow p$, where all ϕ_r , ϕ_s vanish at p for deg $(X_r) = k$ and deg $(X_s) = l$. We get

$$[X_j, X_i] = \operatorname{span} \{ \pi_{k+l}(v_r)(0) : d(v_r) = k+l \} \subset A_p \Sigma.$$

The Lie product lies in $V_1 \oplus \cdots \oplus V_{k+l}$, hence the special form of these vector fields implies

$$[v_j, v_i] = \sum_{\deg(v_r) \le k+l} a_r v_r$$

almost everywhere on Σ .

Projecting both sides of the previous identity onto V_{k+l} , we get

$$\begin{split} [X_{j}, X_{i}] + \sum_{d(X_{r})=k} \phi_{r} \ [X_{r}, X_{i}] + \sum_{d(X_{s})=l} \psi_{s} \ [X_{j}, X_{s}] + \\ + \sum_{d(X_{r})=k, d(X_{s})=l} \phi_{r} \ \psi_{s} \ [X_{r}, X_{s}] = \sum_{\sigma(v_{r})=k+l} a_{r} \ \pi_{k+l}(v_{r}). \end{split}$$

Finally we pass to the limit by a converging sequence $a_r(p_k)$ where $p_k \rightarrow p$, where all ϕ_r , ϕ_s vanish at p for deg $(X_r) = k$ and deg $(X_s) = l$. We get

$$[X_j, X_i] = \operatorname{span} \left\{ \pi_{k+l}(v_r)(0) : d(v_r) = k+l \right\} \subset A_p \Sigma.$$

If Σ is a C^1 smooth submanifold and $p\in\Sigma$ has maximum degree, ther

 $\delta_{1/r}(p^{-1}\Sigma) o S_p\Sigma$ as $r o 0^+$

holds under one of the following conditions.

- Image A_ρΣ is a horizontal subgroup.
- ${\it 20}~~A_{
 m p}\Sigma$ is a subgroup and ${
 m G}$ has step two.
- **3** $A_{\rho}\Sigma$ has dimension one.
- **(a)** $A_p\Sigma$ is a subgroup of maximal degree (p is a transversal point)

In all of these cases we have $S_p \Sigma = A_p \Sigma$.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$\delta_{1/r}(ho^{-1}\Sigma) o S_{ ho}\Sigma$ as $r o 0^-$

holds under one of the following conditions.

- 1 $A_p\Sigma$ is a horizontal subgroup.
- ${\it 20}~~A_p\Sigma$ is a subgroup and ${
 m G}~$ has step two.
- I A_pΣ has dimension one.
- **(a)** $A_p\Sigma$ is a subgroup of maximal degree (p is a transversal point)

In all of these cases we have $S_p \Sigma = A_p \Sigma$.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$$\delta_{1/r}(p^{-1}\Sigma) o S_p\Sigma \quad as \quad r \to 0^+$$
 (8)

holds under one of the following conditions.

A_pΣ is a horizontal subgroup.
 A_pΣ is a subgroup and G has step two.
 A_pΣ has dimension one.
 A_pΣ is a subgroup of maximal degree (p is a transversal point).
 In all of these cases we have *S_pΣ* = *A_pΣ*.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$$\delta_{1/r}(p^{-1}\Sigma) o S_{p}\Sigma \quad as \quad r \to 0^+$$
 (8)

holds under one of the following conditions.

- **1** $A_{p}\Sigma$ is a horizontal subgroup.
- ${\it 20}~~{\it A_p\Sigma}$ is a subgroup and ${\Bbb G}$ has step two
- \bigcirc $A_p\Sigma$ has dimension one.
- Δ A_pΣ is a subgroup of maximal degree (p is a transversal point)

In all of these cases we have $S_p\Sigma = A_p\Sigma$.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$$\delta_{1/r}(p^{-1}\Sigma) o S_{p}\Sigma \quad as \quad r \to 0^+$$
 (8)

holds under one of the following conditions.

- **1** $A_{\rho}\Sigma$ is a horizontal subgroup.
- **2** $A_{\rho}\Sigma$ is a subgroup and \mathbb{G} has step two.
- I A_pΣ has dimension one.
- $A_p\Sigma$ is a subgroup of maximal degree (p is a transversal point)

In all of these cases we have $S_p \Sigma = A_p \Sigma$.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$$\delta_{1/r}(p^{-1}\Sigma) \to S_p\Sigma \quad as \quad r \to 0^+$$
 (8)

holds under one of the following conditions.

- **1** $A_{\rho}\Sigma$ is a horizontal subgroup.
- **2** $A_{\rho}\Sigma$ is a subgroup and \mathbb{G} has step two.
- **3** $A_{p}\Sigma$ has dimension one.

O $A_p\Sigma$ is a subgroup of maximal degree (p is a transversal point). In all of these cases we have $S_p\Sigma = A_p\Sigma$.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$$\delta_{1/r}(p^{-1}\Sigma) \to S_p\Sigma \quad as \quad r \to 0^+$$
 (8)

holds under one of the following conditions.

- **1** $A_{\rho}\Sigma$ is a horizontal subgroup.
- **2** $A_{\rho}\Sigma$ is a subgroup and \mathbb{G} has step two.
- **3** $A_p\Sigma$ has dimension one.
- $A_p\Sigma$ is a subgroup of maximal degree (p is a transversal point).

In all of these cases we have $S_p \Sigma = A_p \Sigma$.

If Σ is a C^1 smooth submanifold and $p \in \Sigma$ has maximum degree, then

$$\delta_{1/r}(p^{-1}\Sigma) o S_{p}\Sigma \quad as \quad r \to 0^+$$
 (8)

holds under one of the following conditions.

- **1** $A_{\rho}\Sigma$ is a horizontal subgroup.
- **2** $A_{\rho}\Sigma$ is a subgroup and \mathbb{G} has step two.
- **3** $A_{p}\Sigma$ has dimension one.
- A_pΣ is a subgroup of maximal degree (p is a transversal point).

In all of these cases we have $S_p \Sigma = A_p \Sigma$.

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of \mathbb{G} ?

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of G?

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of G

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular?

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of \mathbb{G} ?

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of \mathbb{G} ?

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of \mathbb{G} ?

Question 2

Let Σ be a C^1 smooth submanifold of homogeneous group and let $p \in \Sigma$ be a point of maximum degree. Is p algebraically regular? In other words, is the algebraic tangent space at p a subgroup of \mathbb{G} ?

Question 2

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$S^{N}(\Sigma) = \int_{\Sigma} |\pi_{N}(\tau_{\Sigma})| \, dvol \tag{9}$$

in each of the following cases.

- $\bigcirc \Sigma$ is a smooth Legendrian submanifold
- $@~\Sigma$ is a transversal submanifold

 $\bigcirc \Sigma$ is a curve

Extending the SR area formula (9) to all C^1 submanifolds is still a *largely open question.*

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$\mathcal{S}^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(au_{\Sigma})| \, dvol$$

in each of the following cases.

 $\bigcirc \Sigma$ is a smooth Legendrian submanifold

 $@ \Sigma$ is a transversal submanifold

🗿 Σ is a curve

Extending the SR area formula (9) to all *C*¹ submanifolds is still a *largely open question*.

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$\mathcal{S}^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(au_{\Sigma})| \, dvol$$

in each of the following cases.

 \bigcirc Σ is a smooth Legendrian submanifold

2) Σ is a transversal submanifold

Σ is a curve

Extending the SR area formula (9) to all *C*¹ submanifolds is still a *largely open question*.

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$S^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(\tau_{\Sigma})| \, dvol$$
 (9)

in each of the following cases.

Σ is a smooth Legendrian submanifold
 Σ is a transversal submanifold
 Σ is a curve

Extending the SR area formula (9) to all *C*¹ submanifolds is still a *largely open question*.

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$S^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(\tau_{\Sigma})| \, dvol$$
 (9)

in each of the following cases.

Σ is a smooth Legendrian submanifold
 Σ is a transversal submanifold
 Σ is a curve

Extending the SR area formula (9) to all C^1 submanifolds is still a *largely open question*.

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$S^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(\tau_{\Sigma})| \, dvol$$
 (9)

in each of the following cases.

- Σ is a smooth Legendrian submanifold
- 2 Σ is a transversal submanifold

 \bigcirc Σ is a curve

Extending the SR area formula (9) to all C^1 submanifolds is still a *largely open question*.
A recent account on SR area formulae

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$S^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(\tau_{\Sigma})| \, dvol$$
 (9)

in each of the following cases.

- Σ is a smooth Legendrian submanifold
- 2 Σ is a transversal submanifold

Σ is a curve

Extending the SR area formula (9) to all C^1 submanifolds is still a *largely open question*.

A recent account on SR area formulae

Theorem (M. 2016 and previous work.)

If d is a suitable distance and Σ is a C¹ smooth submanifold of degree N, then we have

$$S^{\mathrm{N}}(\Sigma) = \int_{\Sigma} |\pi_{\mathrm{N}}(\tau_{\Sigma})| \, dvol$$
 (9)

in each of the following cases.

- Σ is a smooth Legendrian submanifold
- 2 Σ is a transversal submanifold

Σ is a curve

Extending the SR area formula (9) to all C^1 submanifolds is still a *largely open question*.

We have limited out presentation to special distances to construct the spherical measure, without giving more details.

In the assumption of the previous theorem, we also have

$$\theta^{\mathrm{N}}(\mu_{\Sigma}, p) = \max_{d(y,0) \leq 1} \mathcal{H}^{\mathrm{n}}_{|\cdot|}((y^{-1}A_{p})\Sigma \cap \mathbb{B}(0,1)),$$

where the right hand side con be defined a priori as a *metric factor*, depending on the distance. We denote this factor with respect to p as $\beta(d, p)$.

$$\int_{\Sigma}eta(d,p)d\mathcal{S}^{\mathrm{N}}(p)=\int_{\Sigma}|\pi_{\mathrm{N}}(au_{\Sigma}(p))|\,d extsf{vol}(p).$$

We have limited out presentation to special distances to construct the spherical measure, without giving more details.

In the assumption of the previous theorem, we also have

$$\theta^{\mathrm{N}}(\mu_{\Sigma}, p) = \max_{d(y,0) \leq 1} \mathcal{H}^{\mathrm{n}}_{|\cdot|}((y^{-1}A_{\rho})\Sigma \cap \mathbb{B}(0,1)),$$

where the right hand side con be defined a priori as a *metric factor*, depending on the distance. We denote this factor with respect to p as $\beta(d, p)$.

$$\int_{\Sigma} eta(d,p) d\mathcal{S}^{\mathrm{N}}(p) = \int_{\Sigma} |\pi_{\mathrm{N}}(au_{\Sigma}(p))| \, d extsf{vol}(p).$$

We have limited out presentation to special distances to construct the spherical measure, without giving more details.

In the assumption of the previous theorem, we also have

$$heta^{\mathrm{N}}(\mu_{\Sigma}, \boldsymbol{\rho}) = \max_{d(y,0) \leq 1} \mathcal{H}^{\mathrm{n}}_{|\cdot|} \big((y^{-1} A_{\boldsymbol{\rho}}) \Sigma \cap \mathbb{B}(0,1) \big),$$

where the right hand side con be defined a priori as a *metric factor*, depending on the distance.

We denote this factor with respect to p as $\beta(d, p)$.

$$\int_{\Sigma} \beta(d,p) dS^{N}(p) = \int_{\Sigma} |\pi_{N}(\tau_{\Sigma}(p))| \, dvol(p).$$
(10)

We have limited out presentation to special distances to construct the spherical measure, without giving more details.

In the assumption of the previous theorem, we also have

$$heta^{\mathrm{N}}(\mu_{\Sigma}, p) = \max_{d(y,0) \leq 1} \mathcal{H}^{\mathrm{n}}_{|\cdot|}ig((y^{-1}A_p)\Sigma \cap \mathbb{B}(0,1)ig),$$

where the right hand side con be defined a priori as a *metric factor*, depending on the distance. We denote this factor with respect to p as $\beta(d, p)$.

$$\int_{\Sigma} \beta(d,p) dS^{N}(p) = \int_{\Sigma} |\pi_{N}(\tau_{\Sigma}(p))| \, dvol(p).$$
(10)

We have limited out presentation to special distances to construct the spherical measure, without giving more details.

In the assumption of the previous theorem, we also have

$$heta^{\mathrm{N}}(\mu_{\Sigma}, \boldsymbol{\rho}) = \max_{d(y,0) \leq 1} \mathcal{H}^{\mathrm{n}}_{|\cdot|} \big((y^{-1} A_{\boldsymbol{\rho}}) \Sigma \cap \mathbb{B}(0,1) \big),$$

where the right hand side con be defined a priori as a *metric factor*, depending on the distance. We denote this factor with respect to p as $\beta(d, p)$.

$$\int_{\Sigma} \beta(d,p) dS^{N}(p) = \int_{\Sigma} |\pi_{N}(\tau_{\Sigma}(p))| \, dvol(p). \tag{10}$$

It is always possible to construct a*special* homogeneous distance *d* on any homogeneous group G whose unit ball is an Euclidean ball with sufficiently small radius, see [W. Hebisch and A. Sikora, Studia Math. 1990].

From this special symmetric distance *d*, the metric factor

$$\beta(d,p) = \max_{d(y,0) \le 1} \mathcal{H}^{n}_{|\cdot|} \left((y^{-1}A_{p}) \Sigma \cap \mathbb{B}(0,1) \right)$$

becomes a geometric constant independent of the point, that can be included in the definition of spherical Hausdorff measure, hence giving the area formula for the spherical Hausdorff measure.

Open question

It is always possible to construct a *special* homogeneous distance d on any homogeneous group \mathbb{G} whose unit ball is an Euclidean ball with sufficiently small radius, see [W. Hebisch and A. Sikora, Studia Math. 1990].

From this special symmetric distance *d*, the metric factor

$$\beta(d,p) = \max_{d(y,0) \le 1} \mathcal{H}^{n}_{|\cdot|} \left((y^{-1}A_{p}) \Sigma \cap \mathbb{B}(0,1) \right)$$

becomes a geometric constant independent of the point, that can be included in the definition of spherical Hausdorff measure, hence giving the area formula for the spherical Hausdorff measure.

Open question

It is always possible to construct a*special* homogeneous distance d on any homogeneous group \mathbb{G} whose unit ball is an Euclidean ball with sufficiently small radius, see [W. Hebisch and A. Sikora, Studia Math. 1990].

From this special symmetric distance *d*, the metric factor

$$\beta(d,p) = \max_{d(y,0) \le 1} \mathcal{H}^{n}_{|\cdot|} \left((y^{-1}A_{p}) \Sigma \cap \mathbb{B}(0,1) \right)$$

becomes a geometric constant independent of the point, that can be included in the definition of spherical Hausdorff measure, hence giving the area formula for the spherical Hausdorff measure.

Open question

It is always possible to construct a*special* homogeneous distance d on any homogeneous group \mathbb{G} whose unit ball is an Euclidean ball with sufficiently small radius, see [W. Hebisch and A. Sikora, Studia Math. 1990].

From this special symmetric distance d, the metric factor

$$\beta(\boldsymbol{d},\boldsymbol{p}) = \max_{\boldsymbol{d}(\boldsymbol{y},\boldsymbol{0}) \leq 1} \mathcal{H}^{n}_{|\cdot|} \big((\boldsymbol{y}^{-1} \boldsymbol{A}_{\boldsymbol{p}}) \boldsymbol{\Sigma} \cap \mathbb{B}(\boldsymbol{0},1) \big)$$

becomes a geometric constant independent of the point, that can be included in the definition of spherical Hausdorff measure, hence giving the area formula for the spherical Hausdorff measure.

Open question

It is always possible to construct a*special* homogeneous distance d on any homogeneous group \mathbb{G} whose unit ball is an Euclidean ball with sufficiently small radius, see [W. Hebisch and A. Sikora, Studia Math. 1990].

From this special symmetric distance d, the metric factor

$$\beta(\boldsymbol{d},\boldsymbol{p}) = \max_{\boldsymbol{d}(\boldsymbol{y},\boldsymbol{0}) \leq 1} \mathcal{H}^{n}_{|\cdot|} \big((\boldsymbol{y}^{-1} \boldsymbol{A}_{\boldsymbol{p}}) \boldsymbol{\Sigma} \cap \mathbb{B}(\boldsymbol{0},1) \big)$$

becomes a geometric constant independent of the point, that can be included in the definition of spherical Hausdorff measure, hence giving the area formula for the spherical Hausdorff measure.

Open question

It is always possible to construct a*special* homogeneous distance d on any homogeneous group \mathbb{G} whose unit ball is an Euclidean ball with sufficiently small radius, see [W. Hebisch and A. Sikora, Studia Math. 1990].

From this special symmetric distance d, the metric factor

$$\beta(\boldsymbol{d},\boldsymbol{p}) = \max_{\boldsymbol{d}(\boldsymbol{y},\boldsymbol{0}) \leq 1} \mathcal{H}^{n}_{|\cdot|} \big((\boldsymbol{y}^{-1} \boldsymbol{A}_{\boldsymbol{p}}) \boldsymbol{\Sigma} \cap \mathbb{B}(\boldsymbol{0},1) \big)$$

becomes a geometric constant independent of the point, that can be included in the definition of spherical Hausdorff measure, hence giving the area formula for the spherical Hausdorff measure.

Open question