
9th Lecture (3h)

(1) Def’n. The graded coordinates x in Rn are exactly those coordinates of V associated to a
graded basis.

(2) Thm. Let x, y be some graded coordinates of Rn. Then the induced group operation in
Rn has the form p(x, y) = x + y + S(x, y) where S(x, y) is the ”noncommutative part”.
Then
(a) Sj = 0 if j ≤ m
(b) Sj(σr(x), σr(x)) = rdjRj(x, y)
(c) Sj belongs to the ideal of polynomials spanned by xpys − xsyp, where p < s and

dp, ds < dj,
(d) Xj = ∂xj +

∑n
l=m+1 a

l
j(x) ∂xl , where alj(x) = ∂yjS

l(x, 0).

(e) XR
j = ∂xj +

∑n
l=m+1 b

l
j(x) ∂xl , where blj(x) = ∂xjS

l(0, x)
No prf: Just mention that it follows from BCH!,......

(3) Horizontal subbundle: V1 = span{X1, . . . , Xm} and the horizontal subspace

HpV = span{X1(p), . . . , Xm(p)} for every p ∈ V .

The left invariant vector fields Xj, with 1 ≤ j ≤ n are called horizontal.

(4) In Hn represented by Cn × R, we have at the point p = (x, y, t) the horizontal subspace

Hp

(
Cn × R

)
=

{
n∑
j=1

λj ∂xj + µj ∂yj + 2
( n∑
j=1

λjyj −
n∑
j=1

µjxj

)
∂t

∣∣∣ λj, µj ∈ R

}
⊂ Tp

(
Cn × R

)
(5) Def’n of horizontal curve. An AC curve γ : [a, b] −→ V is horizontal if γ̇(t) ∈ Hγ(t)H for

a.e. t.

(6) There are plenty of horizontal curves. As an example, considering the variables (x1, y1, x2, y2, t)
in H2 and the left invariant horizontal vector fields Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t
take for instance the curve

γ(t) =
(

cos t, sin t, t, 0,−2t
)

and notice that it is horizontal, since

γ̇(t) = − sin t X1(γ(t)) + cos t Y1(γ(t)) +X2(γ(t))

Clearly, not all curves are horizontal. Using the same coordinates, consider for instance

γ(t) =
(
t, 1, 0, 0, 0

)
then

γ̇ = ∂x1(γ) = X1(γ)− 2y1∂t(γ) = X1 − 2T .

(7) Any stratified group is connected by horizontal paths.
prf. Define [x, y] = xyx−1y−1 and let (U1, . . . , Um) be a basis of V1. Then by BCH we get

ϕU(expY ) = [expY, expU ] +O(|Y |2), then dϕU(0)(Y ) = [Y, U ]

Take a multi-index α ∈ Ijm and define

ϕjα = ϕUαj ◦ ϕUαj−1
◦ · · · ◦ ϕUα2



observing by the chain rule that

dϕjα(0) = [, [, [· · · , [Y, Uα2 ], Uα3 ], · · · , Uαj ]
Since G is stratified, we have

Vj = [V1, Vj−1] = [V1, [V1, Vj−2]] = [V1, [V1, [· · · , [V1, V1], · · · ]︸ ︷︷ ︸
j−times

any vector of Vj can be written as a linear combination of elements of the form

Uα = [, [· · · , [Uα1 , Uα2 ], Uα3 ], · · · , Uαj ]
for suitable multi-indexes α = (α1, . . . , αj) ∈ Ijm.

Now we select families Aj ⊂ Ijm such that

{U j
α}α∈Aj is a basis of Vj for every j = 1, . . . , ι

notice that for j = 1, we have A1 = Im, then consider

Φ(xjα) =
ι∏

j=1

∏
α∈Aj

ϕjα
(

exp(xjαUα1)
)

then
∂xjαΦ(0) = U j

α

is a basis of TeV !! It follows that Φ is surjective from a neighbourhood of the origin in
RN for some N ∈ N onto a neighbourhood of 0 in V .

Then a neighbourhood of 0 in V is connected by horizontal curves and this implies
global connectedness.

(8) Sub-Finsler metric. Fix a norm on | · |F : H0V −→ R. Then the corresponding left
invariant Finsler norm. Let X ∈ HpV and set

|X|p = |dLp−1X|F .
Then p −→ | · |p is a continuous and left invariant Finsler norm, namely

left translating a vector does not affect its norm

by construction, for A ∈ HqV we have

|dLpA|pq = |A|q

(9) Length of horizontal curves

length(γ) =

∫ b

a

|γ̇(t)|γ(t) dt

(10) Rmk. If | · |F =
√
〈·, ·〉, then we have a SR metric

(11) We defined the SF distance between p and q to be

d(p, q) = inf {length(γ) | γ is horizontal and connects p with q}
that is finite due to connectivity by horizontal curves.

(12) It is also called the Carnot-Carathéodory distance of the group V

(13) To show that d is a distance, triangle inequality and symmetry are rather simple. For
the first one, just join ”quasi geodesics”,...



(14) Lemma. For every p in V there exists cp > 0 such that for every q ∈ V we have

d(p, q) ≥ cp min{1, |p− q|E}

prf. Take any horizontal curve γ : [a, b] −→ V joining p with q. If γ([a, b]) ⊂ BE
p,1, then∫

|γ̇|γ =

∫
|dLγ(t)−1 γ̇(t)| ≥ c

∫
|γ̇(t)|E = c |p− q|E

where we have defined

cp = min
p∈BEp,1

inf
v∈TpV \{0}

{
|dLp−1v|F
|v|E

}
,

then taking the infimum, it follows that d(p, q) ≥ c |p− q|E. If γ([a, b]) " BE
p,1, then

there exists b̃ < b such that γ(b̃) ∈ ∂BE
p,1, then applying the previous argument

d(p, q) ≥ cp |γ(b̃)− p|E = cp .

(15) By this lemma, it follows immediately that d(p, q) = 0 yields p = q. The opposite being
trivial, we have shown that d is a distance on the stratified group V .

(16) Where does the stratification appear in this distance? Where does appear the choice of
the left invariant metric?

(17) We have that d is left invariant and homogeneous, namely

d(px, py) = d(x, y), d(δrx, δry) = r d(x, y)

(18) Define an auxiliary ”homogeneous norm”, define x =
(
x(1), . . . , x(ι)

)
‖x‖G =

ι∑
j=1

|x(j)|1/jE

it is homogeneous, quasi-triangle inequality,......bla bla

(19) Let K = {|p|G ≤ 1} be compact and let K∗ be its closed convex envelop, then letting
γ(t) = tp with p ∈ K, one gets

d(p) := d(p, 0) ≤
∫
|γ̇|γ ≤

(
max
p∈K∗

max
|v|E=1

|dLp−1v|F
)
|p|E ≤ c

then by homogeneity of both d and ‖ · ‖G, for every p, q ∈ V , we get

d(p, q) ≤ c‖p−1q‖G

(20) For p, q in a compact set E of V we have

γ(E)−1 |p− q|E ≤ d(p, q) ≤ γ(E) |p− q|1/ιE

prf. for the sake of simplicity in in step 2 stratified groups: we have

‖p−1q‖G = ‖ − p+ q − 1

2
[p, q]‖G

and also ∣∣(p−1q
)(2)∣∣

E
=
∣∣− p(2) + q(2) − 1

2
[p(1), q(1)]

∣∣
≤ | − p(2) + q(2)|+ c1 |q(1)| | − p(1) + q(1)| ≤ Kq |p− q|E ,



then for q running in a compact set

‖p−1q‖G ≤ K |p− q|1/2E .

the opposite inequality follows from coercivity inequality seen before.

(21) Then the topology of the SF-distance coincides with the topology of V .

(22) One one has the distance it can construct a measure!!!

(23) In some fixed graded coordinates, defining the Lebesgue measure, then it defines a left
invariant measure. This follows by the properties of Q(x, y) that make the left and right
translations a preserving volume mappings.

(24) Since the change of graded coordinates is just a linear mapping of Rn, the invariance
does not depend on the chosen coordinates. Then we have found the Haar measure of
the group.

(25) Furthermore, taking into account of the form of dilations σr in Rn, we get

µ(Bp,r) = µ(Br) = µ(δr(B1)) = rQµ(B1)

then standard covering theorems imply that the Hausdorff dimension of V with respect
to d is exactly Q (it is an exercise using Vitali’s covering theorem)

(26) This is the natural dimension of the group, that is strictly bigger than its topological
dimension and makes it a fractal object.

(27) Then problems like studying the Hausdorff dimension and Hausdorff measure of smooth
submanifolds naturally arise,....


