7th Lecture (2h)

- (1) Sufficiently many iterated Lie brackets vanish,... what is the precise notion of nilpotent algebra?
- (2) Let \mathfrak{a} and \mathfrak{b} be two subsets of a Lie algebra \mathfrak{g} . Then we define the following subspace of \mathfrak{g}

$$[\mathfrak{a},\mathfrak{b}] = \left\{ \sum_{j=1}^{n} \lambda_j [X_j, Y_j] \mid \lambda_j \in \mathbb{R}, \ X_j \in \mathfrak{a}, \ Y_j \in \mathfrak{b} \text{ and } n \in \mathbb{N} \right\}.$$

(3) Exm. Let \mathfrak{h}^n be the Heisenberg algebra with basis $(U_1, \ldots, U_n, V_1, \ldots, V_n, Z)$ and non-trivial brackets $[U_j, U_j] = Z$. Then

$$[\mathfrak{h}^n, \mathfrak{h}^n] = \operatorname{span}\{z\} \text{ and } [\mathfrak{h}^n, [\mathfrak{h}^n, \mathfrak{h}^n]] = \{0\}.$$

We say that it is nilpotent of step 2.

(4) Exm. Let $\mathfrak{r} = \{U_1, U_2, U_3\}$ be the *rototranslation algebra* given by the Lie bracket relations $[U_1, U_2] = U_3, \quad [U_2, U_3] = U_1, \quad [U_1, U_3] = 0.$

- (a) Left as an exs. Check that it is a Lie algebra.
- (b) $[\mathbf{r}, \mathbf{r}] = \operatorname{span}\{U_1, U_3\}$ and $[\mathbf{r}, [\mathbf{r}, \mathbf{r}]] = \operatorname{span}\{U_1, U_3\}$ and so on ...
- (c) iterating preocess we will never get the zero space,... this algebra is not nilpotent
- (5) Def'n. Let \mathfrak{g} be a Lie algebra. We define the descending central series

$$\mathfrak{g}^{(1)} = \mathfrak{g}$$
 and $\mathfrak{g}^{(k+1)} = [\mathfrak{g}, \mathfrak{g}^{(k)}]$ for every integer $k \ge 1$.

- (6) We have the straightforward properties
 - (a) $\mathfrak{g}^{(k)} \supset \mathfrak{g}^{(k+1)}$ for every k

(b) $\mathbf{\hat{g}}^{(n)} = \mathbf{\hat{g}}^{(n+1)}$ for some *n* implies $\mathbf{g}^{(m)} = \mathbf{g}^{(n)}$ for every $m \ge n$.

- (7) Def'n. A Lie algebra \mathfrak{g} is nilpotent if there exists a positive integer ι such that $\mathfrak{g}^{(\iota)} \neq \{0\}$ and $\mathfrak{g}^{(\iota+1)} = \{0\}$.
- (8) Rmk. The Heisenberg algebra \mathfrak{h}^n is a 2-step nilpotent Lie algebra, where the descending central sequence is

$$(\mathfrak{h}^n)^{(2)} = \operatorname{span}\{z\}, \qquad (\mathfrak{h}^n)^{(3)} = \{0\}$$

- (9) Def'n. A stratified algebra is a Lie algebra \mathfrak{g} such that
 - (a) $\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_{\iota}$ (direct sum)
 - (b) $[V_1, V_j] = V_{j+1}$ for every $j = 1, \ldots, \iota 1$ (Lie bracket generating condition)

(c)
$$[V_{\iota}, V_1] = 0$$
 (nilpotence)

(10) Rmk. The descending central series of a stratified algebra is given by

$$\mathfrak{g}^{(k)} = V_k \oplus \cdots \oplus V_{\iota}$$

then \mathfrak{g} is nilpotent of step ι .

(11) Rmk. The Heisenberg algebra \mathfrak{h}^n is a 2-step stratified Lie algebra, where

 $V_1 = \operatorname{span}\{U_1, \dots, U_n, V_1, \dots, V_n\}, \quad V_2 = \operatorname{span}\{Z\} \quad \text{and} \quad \mathfrak{h}^n = V_1 \oplus V_2$

(12) Left as an exs. The Engel algebra is a four dimensional space \mathfrak{e}_4 with basis (U_1, U_2, U_3, U_4) with the only nontrivial bracket relations

$$[U_1, U_2] = U_3$$
 and $[U_1, U_3] = U_4$

(13) The Engel algebra \mathfrak{e}_4 is a stratified algebra of step three. How do we find a stratification? We start from the descending central series

$$(\mathbf{e}_4)^{(2)} = \operatorname{span}\{U_3, U_4\}, \quad (\mathbf{e}_4)^{(3)} = \operatorname{span}\{U_4\}.$$

Then we choose V_1 such that

$$\mathbf{e}_4 = V_1 \oplus (\mathbf{e}_4)^{(2)}$$
 and $(\mathbf{e}_4)^{(2)} = V_3 \oplus (\mathbf{e}_4)^{(3)}$

then for instance

$$V_1 = \text{span}\{U_1, U_2\}, \quad V_2 = \text{span}\{U_3\} \text{ and } V_3 = \text{span}\{U_4\}$$

Infinitely many other choices would be possible!!

- (14) Def'ns.
 - (a) A *nilpotent group* is any Lie group whose Lie algebra is nilpotent.
 - (b) A *stratified group* is a connected and simply connected Lie group whose Lie algebra is stratified.
- (15) The group $\mathbb{C}^n \times \mathbb{R}$ is connected and simply connected and its algebra is isomorphic to the Heisenberg algebra, then it represents the 2n + 1 dimensional Heisenberg group \mathbb{H}^n in some coordinates. It is a stratified group.
- (16) We want to relate the group operation in G with some operation in the Lie algebra \mathcal{G} .
- (17) Since $d \exp(0) = \mathrm{Id}_{\mathcal{G}}$, then the exponential mapping yields a bianalytic diffeomorphism $\exp: U_0 \longrightarrow V_e$ and for sufficiently small $X, Y \in \mathcal{G}$ we get

$$\exp^{-1}\left(\exp X \exp Y\right) = c(X,Y) \in \mathfrak{g}.$$

- (18) $X, Y \longrightarrow c(X, Y)$ is an *analytic function* of (X, Y) that is well defined for for X, Y sufficiently small. Its explicit formula is the celebrated Baker-Campbell-Hausdorff formula.
- (19) By analyticity we have

$$c(tX, tY) = \sum_{n=1}^{\infty} t^n c_n(X, Y) \,.$$

where by rescaling argument one easily sees that $c_n(tX, tY) = t^n c_n(X, Y)$.

(20) One can write down an iterative formula for $c_{n+1}(X,Y) = F(c_1, c_2, \ldots, c_{n-1})$ of rather high complexity. The first terms are

$$c_1(X,Y), \quad c_2(X,Y) = \frac{1}{2}[X,Y] \quad \text{and} \quad c_3(X,Y) = \frac{1}{12} \left([X,[X,Y]] - [Y,[X,Y]] \right)$$

in general we have

$$(n+1)c_{n+1}(X,Y) = \frac{1}{2} [X - Y, c_n(X,Y)] + \sum_{\substack{1 \le p \le n/2}} K_{2p} \sum_{\substack{j_1, \dots, j_{2p} > 0 \\ j_1 + \dots + j_{2p} = n}} [c_{j_1}(X,Y), [c_{j_2}(X,Y), [\cdots, [c_{j_{2p}}(X,Y), X + Y],], \cdots]$$

numbers K_{2p} are the coefficients of a fixed analytic function that does not depend on the group,...

- (21) Rmk. In general c_n are polynomials of degree n in the variables X and Y with respect to the Lie product
- (22) Rmk. If the group is ι -nilpotent, then

(a)
$$c(X,Y) = \sum_{n=1}^{\infty} c_j(X,Y)$$

(b) $c(\cdot,\cdot)$ is defined on all of $\mathcal{G} \times \mathcal{G}$.
(c) Set $X \odot Y = \sum_{n=1}^{\iota} c_j(X,Y)$, then \mathcal{G} is also a Lie group!!

(23) Qst. When a *nilpotent group* G is isomorphic to its Lie algebra \mathcal{G} equipped with the group operation given by BCH formula?