6th Lecture (2h)

- (1) Geometric idea of push-forward of vector fields: picture
- (2) Def'n of f_*X and meaning reasoning with integral curves
- (3) Exm. $f : \mathbb{R} \longrightarrow] -\pi/2, \pi/2[, f(x) = \arctan(x), X(t) = a(t)\partial_t$. Then for $y \in] -\pi/2, \pi/2[$, we have $f_*X(y)...$
- (4) Rmk. $(f \circ g)_* = f_* \circ g_*$
- (5) Left as Exs. Show that X is left invariant if and only if $(L_p)_*X = X$ for every $p \in G$.
- (6) Thm. Let $X, Y \in \mathfrak{X}(M)$ and let $f: M \longrightarrow N$ be a diffeomorphism. Then

$$f_*([X,Y]) = [f_*X, f_*Y].$$

- (7) Cor. Let X, Y be left invariant. Then [X, Y] is left invariant, namely \mathcal{G} is a Lie algebra w.r.t. Lie product of vector fields.
- (8) Denote by $\mathfrak{gl}_n(\mathbb{R})$ the Lie algebra of $GL_n(\mathbb{R})$. Notice that (after some computations)

$$[X_B, X_C] = X_{[B,C]}$$

where $B, C \in M_n(\mathbb{R})$ and [B, C] = BC - CB. Then we *identify* $gl_n(\mathbb{R})$ with $(M_n(\mathbb{R}), [\cdot, \cdot])$.

(9) Denote by $\mathfrak{sl}_n(\mathbb{R})$ the Lie algebra of $SL_n(\mathbb{R})$. Then we have seen

$$\mathfrak{sl}_n(\mathbb{R}) \simeq (\{B \mid \operatorname{Tr}(B) = 0\}, [\cdot, \cdot])$$

where again [B, C] = BC - CB.

(10) Exm. Lie algebra of $\mathbb{C}^n \times \mathbb{R}$. By yesterday's computations we have know that

$$[X_j, Y_j] = -4T, \quad [X_i, T] = 0 \text{ and } [X_i, X_j] = 0 \text{ if } i \neq j.$$

by bilinearity of $[\cdot, \cdot]$ it suffices to define the Lie product on a basis!

(11) Prop'n. Let $X \in \mathfrak{X}(M)$. Then the following holds (a) $\Phi_{t+\tau}^X = \Phi_t^X \circ \Phi_\tau^X$ (b) $\Phi_{t/s}^{sX} = \Phi_t^X$. In particular, we have

$$\Phi_1^{tX}(p) = \Phi_t^X(p)$$
 and $\Phi_t^{\alpha X}(p) = \Phi_{\alpha t}^X(p)$.

(12) Prop'n. Let $f: M \longrightarrow N$ be a diffeomorphism and let $X \in \mathfrak{X}(M)$. Then

$$f(\Phi^X(q,t)) = \Phi^{f_*X}(f(q),t).$$

for every $q \in M$ and every $t \in \mathbb{R}$ such that $\Phi^X(q, t)$ is defined. prf. by uniqueness of Cauchy problem (13) Every $X \in \mathcal{G}$ is complete and also

$$y\Phi_t^X(e) = \Phi_t^X(y)$$

prf. Consider $\phi_t^X(e)$ initially defined on $] - 2\delta, 2\delta[$, hence define

$$\gamma(t) = \begin{cases} \phi_t^X(e) & -2\delta < t < 2\delta \\ y\phi_{t-\delta}^X(e) & -\delta < t < 3\delta \end{cases}$$

check that it is smooth and then repeat on the next intervals,...

- (14) Def'n. Exponential mapping $\exp : \mathcal{G} \longrightarrow G$, $\exp X = \Phi_1^X(e)$
- (15) If $G = GL_n(\mathbb{R})$, then $\exp B = e^B$. prf. notice that $\Phi_t^B(I) = e^{tB}$, since they solve the same Cauchy problem
- (16) exp: $\operatorname{Lie}(\mathbb{T}^1) \longrightarrow \mathbb{T}^1$ is not injective, $i\beta \in \operatorname{Lie}(\mathbb{T}^1)$, $\exp i\beta = e^{i\beta}$.
- (17) $\exp: \mathfrak{o}(2) \longrightarrow O(2)$ is not surjective. $\exp B = e^B, \det(e^B) = e^{\operatorname{Tr}(B)} > 0.$