$6^{\rm th}$ Lecture (2h)

- (1) Geometric idea of push-forward of vector fields: picture
- (2) Def'n of f_*X and meaning reasoning with integral curves
- (3) Exm. $f : \mathbb{R} \longrightarrow]-\pi/2, \pi/2[$, $f(x) = \arctan(x), X(t) = a(t)\partial_t$. Then for $y \in]-\pi/2, \pi/2[$, we have $f_*X(y)$
- (4) Rmk. $(f \circ g)_* = f_* \circ g_*$
- (5) Left as Exs. Show that X is left invariant if and only if $(L_p)_*X = X$ for every $p \in G$.
- (6) Thm. Let $X, Y \in \mathfrak{X}(M)$ and let $f : M \longrightarrow N$ be a diffeomorphism. Then

$$
f_*([X,Y]) = [f_*X, f_*Y].
$$

- (7) Cor. Let X, Y be left invariant. Then $[X, Y]$ is left invariant, namely G is a Lie algebra w.r.t. Lie product of vector fields.
- (8) Denote by $\mathfrak{gl}_n(\mathbb{R})$ the Lie algebra of $GL_n(\mathbb{R})$. Notice that (after some computations)

$$
[X_B, X_C] = X_{[B,C]}
$$

where $B, C \in M_n(\mathbb{R})$ and $[B, C] = BC - CB$. Then we *identify* $gl_n(\mathbb{R})$ with $(M_n(\mathbb{R}), [\cdot, \cdot])$.

(9) Denote by $\mathfrak{sl}_n(\mathbb{R})$ the Lie algebra of $SL_n(\mathbb{R})$. Then we have seen

$$
\mathfrak{sl}_n(\mathbb{R}) \simeq (\{B \mid \text{Tr}(B) = 0\}, [\cdot, \cdot])
$$

where again $[B, C] = BC - CB$.

(10) Exm. Lie algebra of $\mathbb{C}^n \times \mathbb{R}$. By yesterday's computations we have know that

$$
[X_j, Y_j] = -4T
$$
, $[X_i, T] = 0$ and $[X_i, X_j] = 0$ if $i \neq j$.

by bilinearity of $[\cdot, \cdot]$ it suffices to define the Lie product on a basis!

(11) Prop'n. Let $X \in \mathfrak{X}(M)$. Then the following holds (a) $\Phi_{t+\tau}^{X} = \Phi_{t}^{X} \circ \Phi_{\tau}^{X}$

(b) $\Phi_{t/s}^{sX} = \Phi_{t}^{X}$. In particular, we have

$$
\Phi_1^{tX}(p) = \Phi_t^X(p) \quad \text{and} \quad \Phi_t^{\alpha X}(p) = \Phi_{\alpha t}^X(p) \,.
$$

(12) Prop'n. Let $f : M \longrightarrow N$ be a diffeomorphism and let $X \in \mathfrak{X}(M)$. Then

$$
f(\Phi^X(q,t)) = \Phi^{f_*X}(f(q),t).
$$

for every $q \in M$ and every $t \in \mathbb{R}$ such that $\Phi^X(q, t)$ is defined. prf. by uniqueness of Cauchy problem

(13) Every $X \in \mathcal{G}$ is complete and also

$$
y\Phi_t^X(e) = \Phi_t^X(y)
$$

prf. Consider $\phi_t^X(e)$ initially defined on $]-2\delta, 2\delta[$, hence define

$$
\gamma(t) = \begin{cases} \phi_t^X(e) & -2\delta < t < 2\delta \\ y\phi_{t-\delta}^X(e) & -\delta < t < 3\delta \end{cases}
$$

check that it is smooth and then repeat on the next intervals,..

- (14) Def'n. Exponential mapping $\exp : \mathcal{G} \longrightarrow G$, $\exp X = \Phi_1^X(e)$
- (15) If $G = GL_n(\mathbb{R})$, then $\exp B = e^B$. prf. notice that $\Phi_t^B(I) = e^{tB}$, since they solve the same Cauchy problem
- (16) exp : Lie(\mathbb{T}^1) \longrightarrow \mathbb{T}^1 is not injective, $i\beta \in \text{Lie}(\mathbb{T}^1)$, $\exp i\beta = e^{i\beta}$.
- (17) $\exp : \mathfrak{o}(2) \longrightarrow O(2)$ is not surjective. $\exp B = e^B$, $\det(e^B) = e^{\text{Tr}(B)} > 0$.