
5th Lecture (3h)

(1) Exm. Find left invatiant vector fields in GLn(R): here TI
(
GLn(R)

)
'Mn(R)

(2) Exm. Find left invariant vector fields of SLn(R). Notice that det(eA) = eTr(A), then etB,
with Tr(B) = 0, belongs to SLn(R),...then XB(A) = AB where A ∈ SLn(R) and Tr(B),
here TI(SLn(R)) ' {B | Tr(B) = 0}.

(3) Def’n. A derivation L : C∞(M) −→ C∞(M) is a linear function satisfying Leibniz
L(uv) = uL(v)+vL(u). Denote by Der(M) the linear space of all derivations on C∞(M).

(4) There exists a linear isomorphism between Der(M) and the space of vector fields X(M).
prf. Let L ∈ Der(M) and choose p ∈M . The “induced” derivation at p

Zp(u) := (Lu)(p)

defines a section p −→ Zp ∈ TpM and in local coordinates

x −→ Zu(x) =
∑

aj(x) ∂xj
u(x)

is smooth for every u, then take u = xk and get the smoothness of ak(x). Viceversa,
consider a vector field Z ∈ X(M) and for every u ∈ C∞(M) define

LZ : C∞(M) −→ C∞(M), (LZu)(p) = Zp(u) for every p ∈M .

Smoothness of Zp implies the smoothness of LZ(u) : M −→ R, then it is immediate
to observe that LZ ∈ Der(M) . Then Z −→ LZ is well defined and surjective. It is
clearly linear and its kernel is 0-dimensional, then it is an isomorphism.

(5) Def’n. LX denotes the derivation determined by X ∈ X(M)

(6) Given derivations L, T , then L ◦ T is no longer a derivation, since it is a second order
differential operator.

Exm. Consider L = ∂x, T = ∂y in R2 and LT = TL = ∂x∂y, that is linear but does
not satisfy Leibniz.

(7) Def’n of commutator. We define

[L, T ] = L ◦ T − T ◦ L : C∞(M) −→ C∞(M)

(8) It is immediate to check that [L, T ] is linear and satisifes Leibniz, namely it is a derivation.

(9) We denote by [X, Y ] the unique vector associated to [LX , LY ], called Lie bracket of X
and Y . Using the definition of commutator one checks immediately the “Jacobi identity”

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

is satisfied.

(10) In local coordinates the Lie bracket becomes[∑
j

aj∂xj
,
∑
s

bs∂xs

]
=
∑
s

(∑
j

aj∂xj
bs − bj∂xj

as

)
∂xs

(11) Exm. Consider Z = (x2−y) ∂x+(y2 +x)∂y+(x+sin θ)∂θ and T = (cos θ+y)∂x−∂y +∂θ
on R2 × T1 and compute [Z, T ],... remember that second order terms cancel!
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(12) Def’n of real Lie algebra g.

(13) Def’n of Heisenberg algebra hn.

(14) Def’n of flow. Let X ∈ X(M) and let p ∈M . Consider the Cauchy problem{
γ̇(p, t) = X(γ(p, t))
γ(p, 0) = p

Define ΦX(p, t) = γ(p, t). By classical results on ODEs there exists an open neigbourhood
U of M×{0} in M×R such that ΦX : U −→M and ΦX(p, τ) = γ(p, τ) and γ(p, ·) solves
the Cauchy problem above. ΦX is the flow associated to X.

(15) The flow ΦX is also denoted by ΦX
t (q) = ΦX(q, t).

(16) Def’n. A vector field on M is complete if ΦX is defined on all of M × R.

(17) Exm. Z ∈ X(R) and Z(x) = x2∂x, then Φ(x, t) = 1/(x−1 − t) if x 6= 0 and γ(0, t) = 0
otherwise. Thus, U = {(x, t) | tx < 1}

(18) Left as Exs. It is not true that commutators of complete vector fields are still complete.
Check that the complete vector fields X = x2 ∂x1 and Y = (x1)

2 ∂x2 on the plane are
complete, but their commutator [X, Y ] does not.


