4rd Lecture (2h)

- (1) Def'n of differential. Let $f: M \longrightarrow N$ be differentiable, with q = f(p). Then $df(p): T_p M \longrightarrow T_q N$ is the linear mapping $\operatorname{Der}(\mathcal{V}(p)) \ni Z \longrightarrow df(Z)(u) \in \operatorname{Der}(\mathcal{V}(q))$ $u \in \mathcal{V}(q)$ and $df(Z)(u) = Z(u \circ f)$ is a derivation.
- (2) Let $(U, \hat{x}), p \in U$ and (V, \hat{y}) be charts such that $f(U) \subset V$ and consider $\hat{y} \circ f \circ \hat{x}^{-1} : \hat{x}(U) \longrightarrow \hat{y}(V),$

then we represent df(p) as the linear mapping

$$df(p) \Big(\sum_{i} a^{j} \partial/\partial x_{j}\Big) = \sum_{i} a^{j} \partial_{x_{j}} (\widehat{y}^{k} \circ f \circ \widehat{x}^{-1}) \partial/\partial y_{k}$$

Left as an exercise.

(3) The differential satisfies the chain rule

$$d(f \circ g)(p) = df(g(p)) \circ dg(p)$$

(4) Exm. $f : \mathbb{R} \longrightarrow \mathbb{T}^1$, $f(t) = e^{i(1+t^2)}$, then in local coordinates $\theta \to e^{i\theta}$, we have $\hat{\theta} \circ f(t) = 1 + t^2 + 2m\pi$ belonging to the coordinate open set of the line

$$df(t_0)(\partial_t) = 2 t \,\partial_\theta(e^{i(1+t_0^2)})$$

- (5) Left and right translations $L_p: G \longrightarrow G$ and $R_p: G \longrightarrow G$ are analytic. Furthermore, $dL_p: T_qG \longrightarrow T_{pq}G$ and $dR_p: T_qG \longrightarrow T_{qp}G$, then for every $Z_e \in T_eG$ and define define $Z(p) = dL_p(Z_e) \in T_pG$. Then Z is an analytic vector field on the Lie group G.
- (6) Def'n of left invariant vector field

$$dL_y(x)X(x) = X(L_yx)$$
 for every $x, y \in G$

- (7) Def'n. The set of all left invariant vector field of G is denoted by \mathcal{G} .
- (8) Trivial rmk. \mathcal{G} is a linear subspace of $\mathfrak{X}(M)$
- (9) Furthermore. \mathcal{G} is finite dimensional and has the same dimension of G. Precisely, there exists a linear isomorphism

$$T_eG \longrightarrow \mathcal{G}, \ Z_e \longrightarrow Z$$

- (10) Cor. Any left invariant vector field $X \in \mathcal{G}$ has the form $X(p) = dL_p Z$ for every $p \in G$.
- (11) Exm. Find left invariant vector fields in $\mathbb{H}^n = \mathbb{C}^n \times \mathbb{R}$

$$z,t)(z',t') = (z+z',t+t'+2\operatorname{Im}(\langle z,z'\rangle_{\mathbb{C}^n}).$$

Notice that $T_0(\mathbb{C}^n \times \mathbb{R}) \simeq \mathbb{R}^{2n+1}$ with basis $(\partial_{x_1}, \ldots, \partial_{x_n}, \partial_{y_1}, \ldots, \partial_{y_n}, \partial_t)$ at zero.

(12) Exm. Find left invatiant vector fields in $GL_n(\mathbb{R})$: here $T_I(GL_n(\mathbb{R})) \simeq M_n(\mathbb{R})$