$3^{\rm rd}$ Lecture (2h)

(1) $H = \{(e^{it}, e^{i\alpha t}) \mid t \in \mathbb{R}\}\$ is a nonregular submanifold of \mathbb{T}^2 . In fact, it is a dense subset. Is suffices to show that $F^{-1}(H)$ is dense in \mathbb{R}^2 where $F: \mathbb{R}^2 \longrightarrow \mathbb{T}^2$, $F(x, y) = (e^{ix}, e^{iy})$ and notice that $F^{-1}(H) = \{t + 2k\pi, \alpha t + 2m\pi \mid k, m \in \mathbb{Z}\}, y = \alpha t + 2m\pi$ and $x = t + 2k\pi$ yield the line

$$
(x, \alpha x + 2m\pi - \alpha 2k\pi).
$$

Let $b \in \mathbb{R}$ and consider $\varepsilon > 0$ and let n_0, m_0 be sufficiently large such that

$$
\left|\frac{n_0}{m_0} - \alpha\right| \le \frac{1}{m_0^2} < \varepsilon^2,
$$

then there exists a unique integer k such that $k \leq b(2\pi)^{-1}(n_0 - m_0\alpha)^{-1} < k+1$, then

$$
0\leq b-k2\pi(n_0-m_0\alpha)<2\pi(n_0-m_0\alpha)<2\pi\varepsilon.
$$

Then all these lines intersect the y axis in a dense subset.

- (2) Exm. Let S be a submanifold of \mathbb{R}^3 and let (U, \hat{x}) be a chart.
(a) Then $(2 \hat{x}^{-1} \cdot \hat{x}(U) \rightarrow U$ is differentiable and $Z = \sum$
	- (a) Then $\varphi = \hat{x}^{-1} : \hat{x}(U) \longrightarrow U$ is differentiable and $Z_p = \sum a^j \varphi_{x_j}(x)$ is a vector of \mathbb{R}^3
thought of as applied at the point $p = \varphi(x) \in S$ thought of as applied at the point $p = \varphi(x) \in S$.
	- (b) The vector depends on the coordinate chart!
	- (c) In intrinsic terms we associate a linear functional to Z_n .
	- (d) Let \mathcal{V}_p be the infinite dimensional linear space of differentiable functions u around p on S, then $Z_p : \mathcal{V}(p) \longrightarrow \mathbb{R}$ is the linear mapping defined by

$$
Z_p(u) = \sum a^j \, \partial_{x_j} (f \circ \varphi)(x).
$$

- (3) Rmk. Z_p is linear and satisfies the Leibniz rule: it is a derivation at p.
- (4) Def'n of derivation at a point. Let M be a manifold and $p \in M$. $L : \mathcal{V}(p) \longrightarrow \mathbb{R}$ is a derivation at p if L is a linear mapping of vector spaces and satisfies $L(uv)$ = $u(p)Lv + v(p)Lu$
- (5) If u and v coincide on a nbd of p, then by a cut-off function ψ around p, we make $\psi u = \psi v$, then $L(u) = L(v)$
- (6) u constant equal to one around p, then $L(u^2) = L(u)$, then $Lu = 0$,
- (7) General Def'n of tangent space: $T_pM = \{L : \mathcal{V}(p) \longrightarrow \mathbb{R}\}.$
- (8) Thm. T_mM has dimension n and $\partial/\partial x_j$ is a basis of T_mM . prf. We have seen that $u \in V(p)$ is of the form $u = u(p) + \sum_{j=1}^{n} (x_j - a_j) h_j$. Then $L(u) = \sum_{j=1}^{n} L(x_j - a_j) u_{x_j}(p)$, namely $\partial/\partial x_j$ is a basis of $T_p M$.
- (9) Cor. We can express any vector $Z \in T_pM$ as a linear combination $Z = \sum_{j=1}^n a^j \partial/\partial x_j$ of derivations $\partial/\partial x_i$. A tangent vector is a directional derivative, then a simple first order differential operator.
- (10) Defining a vector field as a smooth section of TM , it follows that locally it is defined as $Z(p) = \sum a^{j}(p) \partial/\partial x_{j}(p)$ where a^{j} are smooth on the coordinate domain.
- (11) Exm. The vector field $Z(p) = x \partial_x + y \partial y + z \partial_z$ is a vector field on \mathbb{R}^3 and it is classically denoted by the vector (x, y, z) . Notice $Z(p)f = x\partial_x f(p) + y\partial_y f(p) + z\partial_z f(p)$

(12) Exm. $Z(x) = (x^2 - y)\partial_x + (y^2 + x)\partial_y + (x + \sin \theta)\partial_\theta$ is a vector field on $\mathbb{R}^2 \times \mathbb{T}^1$ defines a vector field on $\mathbb{R}^2 \times \mathbb{T}^1$, but $\tilde{Z}(x) = (x^2 - y + \theta) \partial_x + (y^2 + x) \partial_y + (x^2 + \sin \theta) \partial_\theta$ does not define a vector field on $\mathbb{R}^2 \times \mathbb{T}^1$ unless we specify another coordinate chart.