
3rd Lecture (2h)

(1) H = {(eit, eiαt) | t ∈ R} is a nonregular submanifold of T2. In fact, it is a dense subset.
Is suffices to show that F−1(H) is dense in R2 where F : R2 −→ T2, F (x, y) = (eix, eiy)
and notice that F−1(H) = {t+2kπ, αt+2mπ | k,m ∈ Z}, y = αt+2mπ and x = t+2kπ
yield the line (

x, αx+ 2mπ − α2kπ
)
.

Let b ∈ R and consider ε > 0 and let n0,m0 be sufficiently large such that∣∣∣∣ n0

m0

− α
∣∣∣∣ ≤ 1

m2
0

< ε2,

then there exists a unique integer k such that k ≤ b(2π)−1(n0 −m0α)−1 < k + 1, then

0 ≤ b− k2π(n0 −m0α) < 2π(n0 −m0α) < 2πε .

Then all these lines intersect the y axis in a dense subset.

(2) Exm. Let S be a submanifold of R3 and let (U, x̂) be a chart.
(a) Then ϕ = x̂−1 : x̂(U) −→ U is differentiable and Zp =

∑
ajϕxj

(x) is a vector of R3

thought of as applied at the point p = ϕ(x) ∈ S.
(b) The vector depends on the coordinate chart!
(c) In intrinsic terms we associate a linear functional to Zp.
(d) Let Vp be the infinite dimensional linear space of differentiable functions u around p

on S, then Zp : V(p) −→ R is the linear mapping defined by

Zp(u) =
∑

aj ∂xj
(f ◦ ϕ)(x).

(3) Rmk. Zp is linear and satisfies the Leibniz rule: it is a derivation at p.

(4) Def’n of derivation at a point. Let M be a manifold and p ∈ M . L : V(p) −→ R
is a derivation at p if L is a linear mapping of vector spaces and satisfies L(uv) =
u(p)Lv + v(p)Lu

(5) If u and v coincide on a nbd of p, then by a cut-off function ψ around p, we make ψu = ψv,
then L(u) = L(v)

(6) u constant equal to one around p, then L(u2) = L(u), then Lu = 0,

(7) General Def’n of tangent space: TpM = {L : V(p) −→ R}.

(8) Thm. TmM has dimension n and ∂/∂xj is a basis of TmM .
prf. We have seen that u ∈ V(p) is of the form u = u(p) +

∑n
j=1(xj − aj)hj. Then

L(u) =
∑n

j=1 L(xj − aj)uxj
(p), namely ∂/∂xj is a basis of TpM .

(9) Cor. We can express any vector Z ∈ TpM as a linear combination Z =
∑n

j=1 a
j ∂/∂xj of

derivations ∂/∂xi. A tangent vector is a directional derivative, then a simple first order
differential operator.

(10) Defining a vector field as a smooth section of TM , it follows that locally it is defined as
Z(p) =

∑
aj(p) ∂/∂xj(p) where aj are smooth on the coordinate domain.

(11) Exm. The vector field Z(p) = x ∂x + y∂y+ z∂z is a vector field on R3 and it is classically
denoted by the vector (x, y, z). Notice Z(p)f = x∂xf(p) + y∂yf(p) + z∂zf(p)
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(12) Exm. Z(x) = (x2 − y) ∂x + (y2 + x)∂y + (x+ sin θ)∂θ is a vector field on R2 × T1 defines
a vector field on R2 × T1, but Z̃(x) = (x2 − y + θ) ∂x + (y2 + x)∂y + (x2 + sin θ)∂θ does
not define a vector field on R2 × T1 unless we specify another coordinate chart.


