$2^{\rm nd}$ Lecture (3h)

- (1) Before setting clearly the notion of vector field, we clarify the notion of smooth manifold and submanifold (crash course on differentiable manifolds).
- (2) Recall the notion of C^k atlas $\{(U_j, \psi_j)\}_{j\in J}$ for a Hausdorff second countable space M, emphasizing that
	- \bullet *J* might also be uncountable
	- $\bullet\; M=\bigcup_{j\in J}U_j$
- (3) Def'n of C^k function $f: \Omega_{open} \subset M \longrightarrow \mathbb{R}$ with respect to a C^m atlas A on M where $k \leq m$ are in $\mathbb{N} \cup \{\infty, \omega\}$ and $s \leq \infty \leq \omega$ for every $s \in \mathbb{N}$.
- (4) Exm of atlas $\mathcal{B} = \{(S, \psi)\}, \psi(0, y) = y^3$, where $f : S \longrightarrow \mathbb{R}, f(0, y) = y$ is not differentiable with respect to β .
- (5) The atlas determines the "differentiable structure" of M
- (6) Def'n of C^k compatible atlases and of C^k differentiable structure as the union of all C^k compatible atlases, namely the maximal atlas.
- (7) From Exs: taking $\mathcal{A} = (S, \psi_1), \psi_1(y) = y$, we notice that S has at least two "distinct" differentiable structures", since A is not C^k compatible with B. (S, \mathcal{A}) and (S, \mathcal{B}) are two distinct manifolds.
- (8) Rmk: an open set U belonging to a chart of a smooth manifold M is a coordinate domain. The initial topology of M can be reobtained as the smallest topology containing all possible coordinate domains.
- (9) Def'n of differentiable mapping. Let $k \leq m$ be in $\mathbb{N} \cup \{\infty, \omega\}$, where $s \leq \infty \leq \omega$ for every $s \in \mathbb{N}$. A mapping $f : M \longrightarrow N$ of C^m manifolds is of class C^k with respect to the differentiable structures A and B of M and N, respectively, if for every chart (U, ψ) of B the mapping $\psi \circ f : f^{-1}(U) \longrightarrow \psi(U)$ is C^k .
- (10) Def'n of diffeomorphism. Let $k \le m$ be in $\mathbb{N} \cup {\infty, \omega}$, where $s \le \infty \le \omega$ for every $s \in \mathbb{N}$. An invertible mapping $f: M \longrightarrow N$ of C^m manifolds is a C^k diffeomorphism if it is of class C^k along with its inverse mapping.
- (11) From Exs: Notice that $\mathbb{R}/2\pi$ has an analytic differentiable structure that makes it C^{ω} diffeomorphic to \mathbb{T}^1 .
- (12) Def'n of immersion. A differentiable mapping $f : M \longrightarrow N$ whose differential (with respect to some chart) has rank equal to the dimension of M is called an immersion (not necessarily injective).
- (13) $J : \mathbb{R} \longrightarrow \mathbb{R}^2$, $J(t) = (\sin 2t, \sin t)$ is an immersion. The image is the Eight Figure. $x(\sin 2t, \sin t) = t$ with $0 < t < 2\pi$ and $y(\sin 2t, \sin t) = t$ with $-\pi < t < \pi$ determines global charts that give a differentiable structure to E . Notice however that the topology either given to E or induced by the chart makes E homeomorphic to the open interval.

(14) Exm: $J : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, with

$$
J(t, \varphi) = \begin{pmatrix} t \cos \varphi \\ t \sin \varphi \\ \varphi \end{pmatrix}
$$

is an immersion. Computing the sum of squares of minors one gets $1 + t^2 > 0$.

- (15) Def'n. A manifold S that is also a subset of a manifold M is a *submanifold* if the injection $J: S \longrightarrow M$ is an immersion.
- (16) Exs. Show that "Eight Figure" E is a submanifold of M .
- (17) Rmk. $E \longrightarrow \mathbb{R}^2$ is an immersion with respect to $\mathcal{A} = (E, x)$ but its topology is finer then the induced topology, with respect to which E is compact!!
- (18) Def'n of regular submanifold when the two topology coincide. Then J is an homeomorphism onto the image.
- (19) Exm. $J : \mathbb{R}/2\pi \times \mathbb{R}/2\pi \longrightarrow \mathbb{R}^3$, with

$$
J(\theta, \varphi) = \begin{pmatrix} (R + r \cos \theta) \cos \varphi \\ (R + r \cos \theta) \sin \varphi \\ r \sin \theta \end{pmatrix}
$$

and $0 < r < R$ defines an immersion and J that is also open, since the domain is compact and it sends compacts sets into compact sets. $S = \text{Image}(J)$ is a regular submanifold of \mathbb{R}^3 and is also diffeomorphic to \mathbb{T}^2 .

- (20) Thm. If $f : M \longrightarrow N$ has differential with rank equal to the dimension of N in the preimage of a fixed point p, then $f^{-1}(p)$ is a regular submanifold (embedded) of M. The proof follows by the implicit function theorem.
- (21) Exm: $\mathbb{T}^1 \times \mathbb{T}^1 \times \cdots \times \mathbb{T}^1$ is a manifold since it is the level set $f^{-1}(0)$ where $f: \mathbb{C}^n \longrightarrow \mathbb{R}^n$ and $f(z) = (|z_1|^2 - 1, \ldots, |z_n|^2 - 1)/2$, seen as a mapping from \mathbb{R}^{2n} to \mathbb{R}^n has jacobian

$$
Df = \left(\begin{array}{ccccccccc} x_1 & 0 & \cdots & 0 & y_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 & 0 & y_2 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots & 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & x_n & 0 & 0 & \cdots & y_n \end{array} \right)
$$

The rank of Df is maximal on \mathbb{T}^n , then we apply the implicit function theorem at any point of \mathbb{T}^n to find the coordinate domain.

- (22) Def'n of topological group and Montgomery Zippin's Theorem.
- (23) Def'n of Lie group and of Lie subgroup.
- (24) $SL_n(\mathbb{R})$ is a Lie subgroup of $GL(\mathbb{R})$ and it is also a regular submanifold.