1st Lecture (2h)

- (1) Examples of groups with differentiable groups operation: \mathbb{R}^n , $GL_n(\mathbb{R})$ and $T_n^u(\mathbb{R}), \mathbb{T}^n$
- (2) Notion of C^k manifold, $k \in \{0, \omega, \infty\} \cup \mathbb{N}^+$
- (3) Handy definition of Riemannian manifold
- (4) Handy definition of tangent vector and of vector field
- (1) Initially definition of stangent vector and of vector field
 (5) Example of vector fields on T¹ \ {p} with respect to coordinate systems ψ₊ :]0, 2π[→ T¹, ψ₊(t) = e^{iθ₊} and ψ₋ :] π, π[→ T¹, ψ₋(θ₋) = e^{iθ₋}.
 (6) Sketchy idea of the fact that derivations corresponds to vector fields.

1