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Abstract

We solve the equation in the title for D = 2, 3, 5, 37 by obtaining sharp estimates on linear
forms in two logarithms in special cases. The method can in principle be extended to higher values
of D.
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1 Introduction

The aim of this paper is to study the so-called Lebesgue-Nagell equation, that is, the diophantine
equation

a2 −D = bp (1)

where a, b, p are integer unknowns, with p prime, and D is a fixed integer. This equation has attracted
an enormous amount of work, with hundreds of papers written on (1) and its variants: we refer the
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reader to the recent paper [BS23b] for the state of the art, including a discussion of the known results
and of the techniques that have been fruitfully applied to the problem. Here we will only review some
of the main points.

The results of [Bug00] imply that there is an effective algorithm for solving Equation (1) for any fixed
value of D, but so far, the algorithm is very far from being practical, and it is only through additional
ideas and techniques that it has been possible to solve Equation (1) for certain concrete values of
D. For negative D, the situation is reasonably – though not completely – well understood: several
tools, in particular the modular method, the theory of primitive divisors in recurrence sequences, and
techniques from Diophantine approximation, can be brought to bear on the problem to great effect.
These techniques are especially powerful when b is odd, but the general case is not hopeless either:
the beautiful paper [BMS06], for example, completes the solution of Equation (1) for all D < 0 with
|D| ≤ 100, while [BS23a] handles the cases D = −qα, where 2 ≤ q < 100 is a prime and α is any
positive integer, under the additional assumption (a, b) = 1.

Much less is known for positive D, and this is the case we focus on in this paper. Some small values
of D, including in particular D = 2, are widely regarded as being especially hard: see for example the
comments at the beginning of [Coh07, §15.7.1], those after [BS23a, Theorem 2], and the introduction
to [BS23b]. Two main obstacles have blocked all previous attempts at solving Equation (1) for D = 2.
One is intrinsic: the existence of the trivial solutions (a, b) = (±1,−1) obstructs the application of
many techniques, including in particular the modular method, even though Chen [Che12] has managed
to adapt ideas related to this method to solve the equation when p lies in certain congruence classes
modulo 24 (see Theorem 3.7 below). The other problem is, to a certain extent, ‘merely’ computational:
linear forms in logarithms can be used to give an absolute bound for the exponent p, which leaves us
with finitely many equations to solve. Each of these equations can be reduced to a finite number of
Thue equations, and therefore, in principle, be solved effectively. However, even the best available
estimates on linear forms in logarithms have, in the hands of experts, only led to bounds of the quality
of p ≲ 103 (see [Coh07, p. 520] for the bound p ≤ 1237), while at present it seems that – from a
computational point of view – the relevant Thue equations are solvable only for much smaller values
of p. Experiments with the well-known computer algebra system gp suggest that even p = 89 may be
out of reach, let alone p = 1237. Similar considerations apply to the next simplest positive values of D,
namely D = 3 and D = 5, since we again have the obstructive solutions 22−3 = 1p and 22−5 = (−1)p

for all odd primes p (the cases D = 2m with m ≥ 2, including in particular D = 4, have all been
solved; see [Coh07, Theorem 15.3.4] and [Sik03] for partial results, and [Ivo03] for the general case).
The situation is somewhat reminiscent of the family of Thue equations |(a + 1)xn − ayn| = 1: these
were solved for large values of n in [BdW98], which left only finitely many values of n to treat, but
solving the remaining cases required extremely substantial additional work [Ben01]. The case of the
Lebesgue-Nagell equation (1) is similar: for a fixed value of D it is not too hard to obtain an absolute
bound for p, but the finitely many remaining equations can often prove intractable.

In this paper, we bridge the gap between what is computationally accessible and what the upper
bounds can provide by obtaining refined estimates on certain linear forms in two logarithms. We
use these results to show that (1) does not have any nontrivial solutions for any prime p > 17 when
D = 2, 3, 5. Since it is not hard to solve directly the finitely many remaining Thue equations (for
D = 2, this was already done in [Coh07, §15.7.3]), this provides a complete solution of (1) for these
values of D:

Theorem 1.1. Let p ≥ 3 be a prime number and let D ∈ {2, 3, 5}. Every integral solution of the
equation a2 −D = bp satisfies b ∈ {±1}.

We will call solutions of Equation (1) with |b| = 1 the trivial solutions. Thus, Theorem 1.1 says
that Equation (1) has only trivial solutions for D ∈ {2, 3, 5} and p ≥ 3. We emphasise that, to the
best of our knowledge, this is the first time that the Lebesegue-Nagell equation is completely solved
for positive prime values of D such that (1) admits solutions for every p ≥ 3. It seems likely that the
technique we develop can also solve Equation (1) for any positive squarefree value of D that is not a
square modulo 8, provided that D is not too large: to keep the paper reasonably short, we have limited
ourselves to a few interesting values, but the computations necessary to handle other small positive D
should be feasible with current technology. As an example, in Section 4.7 we show how, at the cost
of slightly more computation than is necessary to prove Theorem 1.1, we can also solve Equation (1)
for D = 37, another prime for which the solutions of Equation (1) were not previously known. In this
case, there are also a few non-trivial solutions, and we obtain the following:
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Theorem 1.2. Let D = 37. The solutions of Equation (1) with p ≥ 3 are

(a, b, p) ∈ {(±8, 3, 3), (±3788, 35, 3), (±3788, 33, 5)},

together with the trivial solutions (a, b, p) = (±6,−1, p) for all p ≥ 3.

We note that [BS23a, Theorem 2] solves Equation (1) when D = qα is a prime power with q ≤ 100,
except for q ∈ {2, 3, 5, 17, 37, 41, 73, 89, 97}, with the primes 2, 3, 5, 17, 37 being considered particularly
hard (the main difficulties come from α = 1, that is, the values we treat). We refer the reader to
Section 4.8 for a discussion of the computational difficulties one faces when dealing with higher values
of D, the role of the assumption that D is not a square modulo 8, and the case D = 17.

Our main contribution lies in a significant improvement of the upper bound for the exponent p,
obtained as an application of the theory of linear forms in (complex) logarithms. We describe the main
observations that allow us to gain such a large factor in the upper bound, focusing for simplicity on
the case D = 2. As we will explain in Section 3, to a solution of Equation (1) we attach the linear
form in logarithms

Λ := p logα2 − logα1,

where α1 = (1+
√
2)2 is the square of the fundamental unit of the fieldQ(

√
2) and α2 is a certain element

of Q(
√
2) constructed from the solution (a, b, p). Denoting by σ the generator of Gal(Q(

√
2)/Q),

the elements α1, α2 have the property σ(αi) = 1/αi. This implies that log σ(α1) = − logα1 and
log σ(α2) = − logα2.

One can prove that – for nontrivial solutions of Equation (1) – |Λ| is exponentially small in p (see
Equation (27)), and therefore a good lower bound for |Λ| gives an upper bound for p. The property
σ(αi) = 1/αi gives us another linear form in logarithms that is extremely small, namely,

Λσ := p log σ(α2)− log σ(α1) = −p logα2 + logα1 = −Λ.

In itself, this doesn’t seem like much, since Λσ is obviously linearly dependent from Λ. However,
revisiting the technique of interpolation determinants for establishing lower bounds for linear forms in
logarithms, one sees that this extra piece of information can be used to get improved estimates. This
is perhaps not so surprising if one thinks about the subspace theorem of Schmidt and Schlickewei,
in which one considers the simultaneous smallness of several forms at once: the fact that Λ and Λσ
are both small does contain some important arithmetic information, because it tells us that a certain
number is small not just under one, but under two complex embeddings.

However, even the fact that two linear forms in logarithms are simultaneously extremely small turns
out not to be enough for our purposes. A back-of-the-envelope calculation suggests that, when D = 2,
one can use this observation – together with the fact that α1 is an algebraic unit – to prove that (1) has
no non-trivial solutions for p > 100: unfortunately, this would still leave open a few computationally
intractable cases.

The other observation that comes to our rescue is again related to the fact that α1 is an algebraic
unit. Specifically, by plugging the information that α1 is invertible into our variant of interpolation
determinants, we can remove the dependence of the final estimate on both the height and the degree
of α1, and only make it depend on its size (that is, complex absolute value). The crucial remark is
now that the same inequalities can then be applied to any fractional power of α1, because (for any

integer k ≥ 1) the algebraic number α
1/k
1 is still an algebraic unit, all of whose conjugates have only

two possible absolute values, namely α
±1/k
1 . As k tends to infinity, the absolute value of α

1/k
1 tends

to 1: since this absolute value – or rather its logarithm – is an important parameter in the estimates
for linear forms, this leads to a further significant gain in the upper bound (even though, for technical
reasons, we cannot quite take the limit k → ∞; we will take h to be a large, but finite, value). Replacing
α1 with a fractional power is usually not convenient when working with linear forms in logarithms,
because the known estimates all have rather bad dependence on the degree of the algebraic numbers
involved. Our contribution is to completely get rid of this dependence for our linear form, which gives
us one more degree of freedom – the parameter h – to play with. We believe that this idea is quite
new, and hope that it can have applications to other diophantine problems as well.

Concretely, the technical tools we use to prove Theorem 1.1 are formalised in Theorem 2.16, which
we do not repeat here due to the extensive notation that is necessary to state it. This result is a
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lower bound for linear forms in two logarithms, obtained as a variant of a well-known theorem of
Laurent [Lau08, Theorem 1]. It only applies to very special linear forms: as explained above, we
have to assume that α1 is an algebraic unit and that several linear forms are simultaneously small;
moreover, the absolute values of the conjugates of α1, α2 need to be related to one another in a simple
manner. However, when the theorem does apply, the lower bound it provides is vastly better than
any previously available estimate on linear forms in two logarithms. We state Theorem 2.16 in a way
that makes it easy to compare it with [Lau08, Theorem 1]; it will be clear that the hypotheses of our
result are much more restrictive, but the bound we obtain is much sharper. As in the work of Laurent,
it is not immediately obvious what lower bound the theorem implies for a given linear form, because
its application requires choosing the values of several parameters. By arguments similar to those in
Laurent’s paper, one could deduce explicit lower bounds for the linear form |b1 logα1 − b2 logα2| with
a simple dependence on b1, b2, α1, α2. However, due to the restrictive hypotheses and the fact that any
corollary of the main theorem would necessarily provide (much) worse bounds than a direct application
of Theorem 2.16, we do not work out such consequences here. We hope that Theorem 2.16 can be
applied directly to other diophantine problems; the present paper, and especially Section 4, should
suffice to provide a blueprint of how to deal with any concrete linear form.

The structure of the paper is as follows. In Section 2 we derive our estimates for linear forms in
logarithms. The results in this section are completely independent of their application to Equation (1).
In Section 3 we first set some useful notation and reduce the resolution of Equation (1) to the study
of a linear form in two logarithms of algebraic numbers. We then review some known results on
Equation (1) for D = 2 and show how to adapt them to the cases D = 3, 5, 37. Specifically, combining
estimates for linear forms in logarithms already available in the literature, ideas from the modular
method, arithmetic considerations related to continued fractions, and the algorithmic techniques for
the resolution of Thue equations, we show that for any non-trivial solution of Equation (1), neither b
nor p can be too small. We also prove that a certain auxiliary parameter (called r and discussed in
greater detail in Section 3) – which in principle can vary between 0 and p−1 – is uniquely determined,
or at least severely constrained, by the value of D. While some of the results concerning the special
case D = 2 have been obtained in a somewhat ad hoc manner, we develop techniques that can be
applied to any squarefree D that is not a square modulo 8 (or even any D, if we restrict to solutions
of Equation (1) in which b is odd and (a, b) = 1).

We point out that the work in this section is only necessary to solve Equation (1) for D = 3, 5 and
37, because the known results would suffice for the case D = 2. We include a discussion of the other
values of D for two main reasons: first, because it shows that the method we propose is capable of
handling Equation (1) for several values of D, including some of the most notoriously difficult ones;
second, because the material in Section 3 provides a roadmap to solving Equation (1) for any fixed
value of D, and it seems useful to gather all the necessary ingredients in one place.

In Section 4 we then deduce Theorems 1.1 and 1.2 from Theorem 2.16. This section also contains
some intermediate general lemmas which should make the application of Theorem 2.16 to other linear
forms fairly straightforward. Finally, Appendices A and B contain some elementary lemmas which we
have chosen to isolate in order to streamline the main body of the paper.

Notation. All the notation in the paper is standard. For completeness, we recall the definition of the
logarithmic height h of an algebraic number α. Let p(x) = cnx

n + · · ·+ c0 be the minimal polynomial
of α over Z, so that p(x) is irreducible, p(α) = 0, c0, . . . , cn ∈ Z, and (c0, . . . , cn) = 1. The height of α
is by definition

h(α) =
1

n

log |c0|+
∑

β∈C:p(β)=0

logmax{1, |β|}

 .

Computations. We use computer-aided calculations at several points in the paper. To allow the
reader to check these computations with minimal effort, MAGMA and GP scripts verifying them can
be found in the online repository

https://github.com/DavideLombardoMath/LebesgueNagell.

We would like to point out that the final computations of Section 4.6, i.e., those necessary to apply
Theorem 2.16, are in fact completely straightforward and would require nothing more than a pocket
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calculator. More extensive computations (that still only take minutes on a modern laptop) are required
only for the preliminary results in Section 3.

Acknowledgements. I would like to thank Angelos Koutsianas for many interesting discussions
about Equation (1) over the years. I acknowledge financial support from the University of Pisa through
grant PRA-2022-10 and fromMUR through grant PRIN-2022HPSNCR (funded by the European Union
project “Next Generation EU”). I am a member of the GNSAGA INdAM group.

2 The interpolation determinant

In this section, we prove a lower bound for certain linear forms in logarithms. The method of proof is
based on interpolation determinants, for which we follow [Lau08]. The general structure of the proof
mirrors closely the arguments in [Lau08], but the details are quite different; in particular, our lower
bound for the size of the interpolation determinant is rooted in a very different application of Liouville’s
inequality. Apart from the details of the proof, the main innovation we introduce is the observation
that assumptions like those in Condition 2.3 below can lead to significantly improved estimates on
linear forms in logarithms.

The results we obtain hold in some generality, but in this paper, we will only use them for one
specific linear form, and so we only prove an analogue in our context of [Lau08, Theorem 1], without
deriving corollaries similar to [Lau08, Corollary 1 and 2]. The main reason for this is that we need very
sharp estimates for the proof of Theorem 1.1, and in the derivation of the corollaries the sharpness
of the inequalities would necessarily deteriorate. The second, related reason is that Theorem 2.16 is
already quite easy to apply when combined with the calculations in Section 4, which we have tried to
make as general as possible.

We will use the following notation.

Notation 2.1. We fix non-zero complex algebraic numbers α1, α2 and positive integers b1, b2, and we
define

Λ := b2 logα2 − b1 logα1,

where logα1, logα2 are arbitrary determinations of the logarithms. We further fix an algebraic integer
δ ∈ Q(α1, α2) such that δ/α2 is an algebraic integer, and write log δ := maxτ | log |τ(δ)||, as τ varies
among the embeddings τ : Q(α1, α2) ↪→ C.

Remark 2.2. The final lower bound for |Λ| will depend on the quantity log δ . One can systematically
choose a δ0 such that δ0/α2 is an algebraic integer with log δ0 bounded in terms of the height of α2,
but it seems more flexible to keep the extra parameter δ free: for example, if 1/α2 is an algebraic
integer, one can simply take δ = 1, independently of the height of α2.

We assume that these data satisfy the following:

Condition 2.3. 1. α1 is an algebraic unit;

2. for every τ : Q(α1, α2) ↪→ C, there are determinations of log τ(α1) and log τ(α2) such that

Λτ := b2 log τ(α2)− b1 log τ(α1)

has the same absolute value as Λid = Λ = b2 logα2 − b1 logα1;

3. for every τ : Q(α1, α2) ↪→ C we have

| log |τ(αi)|| = | log |αi|| for i = 1, 2.

2.1 Definition of ∆

We start by introducing several parameters that we will use to define the relevant interpolation deter-
minant.

Notation 2.4. We let:

1. K,L,R1, R2, S1, S2 be positive integers with K ≥ 2;
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2. ρ, µ be real numbers with ρ > 1 and 1
3 ≤ µ ≤ 1;

3. R := R1 +R2 − 1, S := S1 + S2 − 1, N := KL, g = 1
4 − N

12RS ;

4. σ := 1+2µ−µ2

2 , γ := (R−1)b2+(S−1)b1
2

(∏K−1
k=1 k!

)−2/(K2−K)

.

Note that γ is denoted by b in [Lau08]. However, this notation would conflict with our notation for
solutions of Equation (1).

We further impose that these parameters satisfy the following conditions.

Condition 2.5. We have
#{αr1αs2 : 0 ≤ r < R1, 0 ≤ s < S1} ≥ L (2)

and
#{rb2 + sb1 : 0 ≤ r < R2, 0 ≤ s < S2} ≥ (K − 1)L. (3)

Let M be the KL×RS matrix whose entries are(
rb2 + sb1

k

)
αlr1 α

ls
2 ,

where (k, l) with 0 ≤ k < K, 0 ≤ l < L is the row index and (r, s) with 0 ≤ r < R, 0 ≤ s < S is the
column index. By [LMN95, Lemma 5], under Condition 2.5, the rank of M is N = KL.

Remark 2.6. The fact that the rank of M is KL implies that the number of its columns is at least
KL, that is, Condition 2.5 implies RS ≥ KL.

Let ∆ be a non-zero N × N minor of M. Numbering the rows and columns of the submatrix
corresponding to ∆, we can write

∆ = det

((
rjb2 + sjb1

ki

)
α
lirj
1 α

lisj
2

)
(4)

for certain sequences (ki, li)1≤i≤N and (rj , sj)1≤j≤N . We will need upper and lower bounds for |∆|. For
the upper bound, we will use a modification of [Lau08, Lemma 2] that we will discuss in Section 2.3
below. In the next section we discuss instead our lower bound, which is rather different in nature
than the corresponding lower bound in [Lau08, Lemma 1] (itself simply a restatement of [LMN95,
Lemma 6]). Specifically, we do not give a lower bound for |∆| itself, but rather for |τ(∆)| for some
(unspecified) embedding τ : Q(α1, α2) ↪→ C. The assumptions of Condition 2.3 will then be used to
show that (independently of τ) one can obtain a good upper bound for |τ(∆)|: combining these bounds
will lead to the desired estimate for |Λ|.

To state and prove both the upper and the lower bound we need a final piece of notation:

Notation 2.7. We set
G1 = gLRN/2, G2 = gLSN/2

M1 = (L− 1)(r1 + · · ·+ rN )/2, M2 = (L− 1)(s1 + · · ·+ sN )/2.

We further let V1 = ⌊M1 +G1⌋ (resp. V2 = ⌊M2 +G2⌋) and U1 = ⌈M1 −G1⌉ (resp. U2 = ⌈M2 −G2⌉).

2.2 Lower bound for ∆

We continue with the notation of the previous section. In particular, (ki, li) and (rj , sj) are sequences
of pairs of positive integers that index the rows and columns of M giving the minor ∆. Consider the
polynomial [LMN95, page 297]

P (X,Y ) :=
∑
σ∈SN

(−1)σ
N∏
i=1

(
rσ(i)b2 + sσ(i)b1

ki

)
X

∑N
i=1 lirσ(i)Y

∑N
i=1 lisσ(i) .

By [LMN95, page 298] we have

∆ = P (α1, α2) = αV1
1 αV2

2 P̃

(
1

α1
,
1

α2

)
,
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where P̃ (X,Y ) is a polynomial with integral coefficients whose degrees in X and Y are bounded above
by V1 − U1 and V2 − U2 respectively. Let

dY := exact degree in Y of the polynomial P̃ . (5)

Write

P̃ (X,Y ) =

dY∑
q=0

P̃q(X)Y q,

where each P̃q(X) is a polynomial with integer coefficients. From this expression, it is clear that

ω := δdY P̃

(
1

α1
,
1

α2

)
= δdY

dY∑
q=0

P̃q

(
1

α1

)
·
(

1

α2

)q
=

dY∑
q=0

P̃q

(
1

α1

)
(δ/α2)

q · δdY −q (6)

is an algebraic integer, because α1 is an algebraic unit, P̃q has integer coefficients, and δ, δ/α2 are
algebraic integers by assumption. We now use the following obvious fact:

Lemma 2.8. Let ω ∈ Z be an algebraic integer and let L = Q(ω). Suppose that ω ̸= 0. There exists
an embedding τ : L ↪→ C such that |τ(ω)| ≥ 1.

Proof. The quantity |NL/Q(ω)| is an algebraic integer which lies in Q and is non-negative and non-zero,
hence it is ≥ 1. Since

1 ≤ |NL/Q(ω)| =
∏

τ :L↪→C
|τ(ω)|,

at least one factor |τ(ω)| must be greater than or equal to 1.

Fix a τ such that |τ(ω)| ≥ 1, as in Lemma 2.8 (which applies, because ω is nonzero; in turn, this is
a consequence of the fact that ∆ ̸= 0). We also extend τ to an embedding Q(α1, α2) ↪→ C (note that
ω ∈ Q(α1, α2)). We then obtain

τ(∆) = τ det

((
rjb2 + sjb1

ki

)
α
lirj
1 α

lisj
2

)
= det

((
rjb2 + sjb1

ki

)
τ(α1)

lirjτ(α2)
lisj

)
and at the same time

τ(∆) = τ(P (α1, α2)) = τ(α1)
V1τ(α2)

V2 P̃ (τ(1/α1), τ(1/α2)) = τ(α1)
V1τ(α2)

V2τ
(
δ−dY ω

)
.

The second of these equations implies

|τ(∆)| = |τ(α1)|V1 |τ(α2)|V2 |τ(δ)|−dY |τ(ω)| ≥ |τ(α1)|V1 |τ(α2)|V2 |τ(δ)|−dY ,

and we have therefore proved the following lemma:

Lemma 2.9. Using Notations 2.1, 2.4, and 2.7, assume that Conditions 2.3 and 2.5 are satisfied.
There is an embedding τ : Q(α1, α2) ↪→ C such that

log |τ(∆)| ≥ V1 log |τ(α1)|+ V2 log |τ(α2)| − dY log |τ(δ)|,

for some dY ≤ V2 − U2.

Remark 2.10. This statement should be contrasted with [Lau08, Lemma 1] and [LMN95, Lemma 5].
By definition, Vi ≤Mi+Gi and dY ≤ V2−U2 ≤ 2G2, so – if log |τ(αi)| ≥ 1 – the estimate in Lemma 2.9
can also be written as log |∆| ≥ (M1 + G1) log |τ(α1)| + (M2 + G2) log |τ(α2)| − 2G2 log |τ(δ)|. If we
further suppose that δ is roughly of the same height as α2 – which for generic α2 is reasonable – then
one can bound log |τ(δ)| ≤ [Q(δ) : Q]h(δ) ≈ [Q(α2) : Q]h(α2). Comparing with [Lau08, Lemma 1] we
then see that – at the price of an unspecified embedding τ – we have completely removed the term
−2DG1h(α1), that is, we have removed the dependence on the degree and height of α1.
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2.3 Upper bound for ∆

We keep all the symbols introduced in Notations 2.4 and 2.7. We will apply [Lau08, Lemma 2]. Since
that lemma is stated in a slightly less general context than what we need, we find it useful to state
and prove precisely the version we will use, even at the cost of repeating some arguments already in
the literature.

As in the whole section, we let α1, α2 be arbitrary nonzero complex numbers and b1, b2 be non-
negative integers. In particular, α1, α2 need not be real, nor have absolute value greater than 1. We
will eventually apply the result to τ(α1), τ(α2), where τ is the embedding of Lemma 2.8, but since τ
plays no role here, for simplicity we state and prove the lemma for general values α1, α2 ∈ C \ {0}.

As above, we consider the determinant ∆ of a non-zero N×N minor of the KL×RS matrix whose
entries are (

rb2 + sb1
k

)
αlr1 α

ls
2 .

We denote again by (ki, li)1≤i≤N and (rj , sj)1≤j≤N the sequences indexing the rows and columns of
∆. Since we have assumed RS ≥ KL (see Remark 2.6), the pairs (ki, ℓi) are a permutation of the
N = KL pairs (k, ℓ) with 0 ≤ k < K and 0 ≤ ℓ < L. In particular, we can assume li = ⌊ iK ⌋ and
(independently of the numbering) we have

N∑
i=1

ki = L

K−1∑
k=0

k = (K − 1)K/2 · L = N(K − 1)/2. (7)

The following is essentially [Lau08, Lemma 2].

Lemma 2.11. Recall Notations 2.4 and 2.7. Let Λ be the linear form in logarithms

Λ = b2 logα2 − b1 logα1,

for certain determinations of logα1, logα2. Assume that

|Λ′| ≤ ρ−µN , (8)

where

Λ′ := Λmax

{
LSeLS|Λ|/2b2

2b2
,
LReLR|Λ|/2b1

2b1

}
. (9)

We have
|∆| ≤ρ−(σN2−N)/2N(eN + (e− 1)N ) ·N ! · (ργ)(K−1)N/2

× |α1|M1 |α2|M2eρ(G1| log |α1||+G2| log |α2||).

The rest of this subsection is dedicated to proving Lemma 2.11. As already pointed out, the proof
only requires minor modifications with respect to [Lau08], so we only give limited details. We set

λi := ℓi −
L− 1

2
, (10)

so that the λi sum to 0. We further introduce

β = b1/b2 and η :=
(R− 1) + β(S − 1)

2
. (11)

Since the statement of Lemma 2.11 is clearly symmetric in (α1, b1) and (α2, b2), up to exchanging α1

with α2 and b1 with b2, we may assume

b1| log |α1|| ≤ b2| log |α2||. (12)

It is then certainly enough to prove the desired upper bound assuming

Λ′′ ≤ ρ−µN ,

8



where Λ′′ :=
(
LSΛ
2b2

)
eLS|Λ|/(2b2). As in [Lau94, p. 191, next to last displayed equation] or [Lau08,

p. 331, next to last displayed equation] we have

∆ = αM1
1 αM2

2 det

(
bki2
ki!

(rj + sjβ − η)kiα
ℓirj
1 α

ℓisj
2

)
. (13)

By definition of Λ we have logα2 = β logα1 + Λ/b2 and we may therefore write

α
λirj
1 α

λisj
2 = α

λi(rj+sjβ−η)
1 αλiη1 eλisjΛ/b2 , (14)

where for x ∈ C the exponentiation αx1 is defined to be exp(x logα1) for the given determination of
logα1.

Remark 2.12. Notice that this convention is irrelevant for the left-hand side of the above equality,
which only involves integral exponents. It is however essential to make sense of the right-hand side.
This point is not stressed in [Lau08, last formula on p. 331], where one finds the same identity. We
also remark that, since the exponents λi(rj + sjβ−η) and λiη are real numbers, we have the equalities

|αλi(rj+sjβ−η)1 | = |α1|λi(rj+sjβ−η), |αλiη1 | = |α1|λiη.

Replacing (14) in (13) and factoring out of the determinant the product
∏N
i=1 α

λiη
1 = α

η
∑N
i=1 λi

1 =
α0
1 = 1, we find

∆ = αM1
1 αM2

2 det
(
φi(zj)e

λisjΛ/b2
)
,

where

φi(x) =
bki2
ki!
xkiαλix1 and zj = rj + sjβ − η,

see [Lau08, p. 332, first displayed equation]. Still following [Lau08, p. 332], we develop the determinant
∆ as

∆ = αM1
1 αM2

2

∑
n1≥0

· · ·
∑
nN≥0

∆n,

where n = (n1, . . . , nN ) and

∆n = det

(
φi(zj)

(λisjΛ/b2)
ni

ni!

)
.

Now fix a tuple n and let m1, . . . ,ml be the distinct values taken by the ni in the N -tuple n. Arrange
these values in ascending order as m1 < m2 < · · · < ml. For each integer t with 1 ≤ t ≤ l we denote
by It the subset of indices i for which ni = mt and by νt = #It the number of occurrences of the value
mt in the sequence n.

Our next two lemmas are slight variants of the arguments in [Lau94, Lemma 8] (see also [LMN95,
Lemme 7]) and [Lau08, Lemma 4] respectively. Notice however that in our statements we have | log |αi||
where [Lau08] has | logαi|. This difference will be crucial for us.

Lemma 2.13 (cf. the proof of [Lau94, Lemma 8]). Let ψ be any permutation of {1, . . . , N}. We have

N∏
i=1

|φi(xzψ(i))| ≤ (|x|γ)(K−1)N/2 exp (|x|(G1| log |α1||+G2| log |α2||)) .

Proof. By definition and Remark 2.12 we have

N∏
i=1

|φi(xzψ(i))| =
N∏
i=1

∣∣∣∣∣ (b2xzψ(i))kiki!

∣∣∣∣∣ |α1|(
∑N
i=1 λizψ(i))x,
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and using
∑N
i=1 λi = 0 we obtain

N∑
i=1

λizψ(i) =

N∑
i=1

λi(rψ(i) + βsψ(i) − η)

=

N∑
i=1

λirψ(i) + β

N∑
i=1

λisψ(i) − η

N∑
i=1

λi

=

N∑
i=1

λirψ(i) + β

N∑
i=1

λisψ(i).

By [LMN95, Lemma 4] we have

|
N∑
i=1

λirψ(i)| ≤ G1, β|
N∑
i=1

λisψ(i)| ≤ βG2,

and therefore (independently of whether |α1| ≥ 1 or |α1| < 1) we obtain∣∣∣α(
∑N
i=1 λizψ(i))x

1

∣∣∣ = |α1|(
∑N
i=1 λizψ(i))x ≤ exp(| log |α1||(G1 + βG2)|x|).

Assumption (12) gives β| log |α1|| ≤ | log |α2||, and therefore∣∣∣α(
∑N
i=1 λizψ(i))x

1

∣∣∣ ≤ exp(| log |α1||(G1 + βG2)|x|) ≤ exp((G1| log |α1||+G2| log |α2||)|x|).

It remains to treat the product
N∏
i=1

∣∣∣∣∣ (b2xzψ(i))kiki!

∣∣∣∣∣ .
We bound this from above using the trivial estimate

|b2zψ(i)| = |b2(rψ(i) + βsψ(i) − η)|

= |b2rψ(i) + b1sψ(i) −
b2(R− 1) + b1(S − 1)

2
|

=

∣∣∣∣b2(rψ(i) − R− 1

2

)
+ b1

(
sψ(i) −

S − 1

2

)∣∣∣∣
≤ b2(R− 1) + b1(S − 1)

2
,

which gives

N∏
i=1

∣∣∣∣∣ (b2xzψ(i))kiki!

∣∣∣∣∣ ≤
(
b2(R− 1) + b1(S − 1)

2

)∑N
i=1 ki

|x|
∑N
i=1 ki

(
N∏
i=1

ki!

)−1

.

It now suffices to use the identities
∑N
i=1 ki = (K − 1)N/2 (see (7)) and

(
N∏
i=1

ki!

)−1

=

(
K∏
k=1

k!

)−L

=

(
K∏
k=1

k!

)N(K−1)
2 · −2

K2−K

to obtain

N∏
i=1

∣∣∣∣∣ (b2xzψ(i))kiki!

∣∣∣∣∣ ≤ |x|(K−1)N/2

b2(R− 1) + b1(S − 1)

2
·

(
K∏
k=1

k!

)− 2
K2−K

(K−1)N/2

= (|x|γ)(K−1)N/2.

This concludes the proof.
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Lemma 2.14 (cf. [Lau08, Lemma 4]). For any N -tuple n = (n1, . . . , nN ) of non-negative integers and
any real number ρ > 1, we have the upper bound

|∆n| ≤ Ωρ−
∑ℓ
t=1 (

νt
2 )
(
LS|Λ|
2b2

)∑N
i=1 ni

(
N∏
i=1

ni!

)−1

with
Ω = N !(ργ)(K−1)N/2eρ(G1| log |α1||+G2| log |α2||).

Proof. The proof is virtually identical to that of [Lau08, Lemma 4], simply replacing [Lau94, Lemma
8] with Lemma 2.13.

At this point, the rest of the proof of [Lau08, Lemma 2] goes through and shows Lemma 2.11: one
simply needs to apply Lemma 2.14 instead of [Lau08, Lemma 4].

2.4 The linear form in logarithms

We now have all the tools to prove our lower bound for linear forms in logarithms.

Proposition 2.15. Using Notations 2.1, 2.4, and 2.7, assume that Conditions 2.3 and 2.5 are satisfied.
Let τ be the embedding of Lemma 2.9. Set

Λ′ := Λmax

{
LSeLS|Λ|/2b2

2b2
,
LReLR|Λ|/2b1

2b1

}
. (15)

At least one of the following holds (recall that dY has been introduced in Equation (5)):

1. |Λ′| > ρ−µN ;

2. V1 log |τ(α1)|+ V2 log |τ(α2)| − dY log |τ(δ)| ≤ log |τ(∆)| and simultaneously

log |τ(∆)| ≤ − σN2 −N

2
log ρ+ log

(
N(eN + (e− 1)N )N !

)
+

(K − 1)N

2
log(ργ)

+M1 log |τ(α1)|+M2 log |τ(α2)|+ ρ(G1| log |τ(α1)||+G2| log |τ(α2)||).

Proof. The lower bound in (2) always holds, by Lemma 2.9. Suppose that the inequality in (1) does
not hold: then the upper bound in (2) follows from Lemma 2.11, applied to τ(α1), τ(α2) in place of
α1, α2. We note explicitly that here we use the second part of Condition 2.3 to deduce the equality
between

|Λ′
τ | := |Λτ |max

{
LSeLS|Λτ |/2b2

2b2
,
LReLR|Λτ |/2b1

2b1

}
,

which is the quantity appearing in the hypothesis of Lemma 2.11, and the original linear form |Λ′|.

We now manipulate the inequalities in case (2) of this statement. More precisely, we show that
they imply a slightly less sharp, but more manageable, inequality. Assume that both inequalities in
case (2) of Proposition 2.15 hold. Then we have

V1 log |τ(α1)|+ V2 log |τ(α2)| − dY | log |τ(δ)|| ≤ V1 log |τ(α1)|+ V2 log |τ(α2)| − dY log |τ(δ)|
≤ log |τ(∆)|

≤ −σN
2 −N

2
log ρ+ log

(
N(eN + (e− 1)N )N !

)
+

(K − 1)N

2
log(ργ)

+M1 log |τ(α1)|+M2 log |τ(α2)|+ ρ(G1| log |τ(α1)||+G2| log |τ(α2)||);

rearranging we get(
σN2 −N

2
− N(K − 1)

2

)
log ρ ≤ dY | log |τ(δ)||+ log

(
N(eN + (e− 1)N )N !

)
+

(K − 1)N

2
log γ

+ (M1 − V1) log |τ(α1)|+ (M2 − V2) log |τ(α2)|
+ ρ(G1| log |τ(α1)||+G2| log |τ(α2)||).

(16)
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Now we recall that by definition (see Notation 2.7) we have Vi = ⌊Mi +Gi⌋, Ui = ⌈Mi −Gi⌉, and by
construction dY ≤ V2 − U2 ≤ 2G2. In particular, for i = 1, 2 we have the following trivial estimates
for Mi − Vi:

−Gi ≤Mi − (Mi +Gi) ≤Mi − Vi ≤Mi − (Mi +Gi − 1) = −Gi + 1.

It follows that |Mi − Vi| ≤ Gi. Plugging these estimates into (16) and using Condition 2.3 to replace
| log |τ(α1)|| with | log |α1||, we arrive at(

σN2 −NK

2

)
log ρ ≤ 2G2| log |τ(δ)||+ log

(
N(eN + (e− 1)N )N !

)
+

(K − 1)N

2
log γ

+G1| log |τ(α1)||+G2| log |τ(α2)||+ ρ(G1| log |τ(α1)||+G2| log |τ(α2)||)

= 2G2| log |τ(δ)||+ log
(
N(eN + (e− 1)N )N !

)
+

(K − 1)N

2
log γ

+ (ρ+ 1)(G1| log |α1||+G2| log |α2||).

We now replace G1, G2, as well as the first occurrence of N , with their definitions (see Notations 2.4
and 2.7) and divide by N/2 to get

K (σL− 1) log ρ ≤ 2gLS| log |τ(δ)||+ 2

N
log
(
N(eN + (e− 1)N )N !

)
+ (K − 1) log γ

+ (ρ+ 1)gL(R| log |α1||+ S| log |α2||).

We finally use the trivial bound | log |τ(δ)|| ≤ log δ to arrive at the final form of our inequality:

Theorem 2.16. Notations and assumptions as in Proposition 2.15. Set for simplicity a1 := (ρ +
1)| log |α1||, a2 := (ρ+ 1)| log |α2||+ 2 log δ . At least one of the following holds:

1. |Λ′| > ρ−µN ;

2.
K (σL− 1) log ρ ≤ h(N) + (K − 1) log γ + gL(Ra1 + Sa2), (17)

where

h(N) =
2

N
log
(
N(eN + (e− 1)N )N !

)
.

As already pointed out, this result should be compared with [Lau08, Theorem]. If we assume that
(2) in the theorem does not hold, then (1) does, so Theorem 2.16 is indeed a lower bound for linear
forms in logarithms. The assumptions we listed as Condition 2.5 are very similar to those of [Lau08,
Theorem], but it is quite apparent that (the negation of) inequality (2) is a much weaker condition
than the corresponding inequality (2) in [Lau08, Theorem]. On the other hand, this gain comes at the
cost of the very restrictive extra assumptions of Condition 2.3.

To prove Theorem 1.1, we will apply Theorem 2.16 to bound the exponent p in a putative non-
trivial solution to Equation (1). The main task will be to choose parameters K,L,R, S such that the
inequality (2) is not satisfied: this implies that (1) holds, which will provide us with the desired sharp
lower bound for the linear form in logarithms |Λ|. We will carry out this program in Section 4; in the
next section we start instead with more algebraic considerations about the solutions of Equation (1).

3 Estimates for solutions of Equation (1)

In this section, we obtain some preliminary results on the non-trivial solutions of Equation (1), in-
cluding in particular an upper bound for the values of p for which Equation (1) admits non-trivial
solutions, and a lower bound for |b| for any non-trivial solution (a, b). These are the two main inputs
needed to apply Theorem 2.16 to the resolution of Equation (1).

We start with some algebraic considerations about the solutions of Equation (1). Solving (1) for
p = 2 (and any value of D) is an easy exercise, so we will assume that p ≥ 3 throughout. The following
is [Bug97b, Lemma 3]:
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Lemma 3.1. Let D > 1 be a squarefree integer and let k be a positive odd integer coprime to D.
Denote by η > 1 the fundamental unit of the real quadratic field Q(

√
D). Let X,Y, Z be positive

integers satisfying
X2 −DY 2 = ±kZ .

There exist positive integers t and v and an algebraic integer π ∈ OQ(
√
D) such that

X + Y
√
D = η−tπv.

Moreover, 0 < t ≤ v and the integer Z/v divides hD, the class number of Q(
√
D).

To apply this lemma (with X = a, Y = 1, k = b, Z = p), we note that if (a, b) is a solution of
Equation (1) for some D ∈ {2, 3, 5} and p ≥ 3, then b is odd, for otherwise – taking (1) modulo 8 –
we get a2 ≡ D (mod 8), which is impossible for all the values of D under consideration. Moreover,
suppose (k,D) = (b,D) is divisible by some prime q. Then we have q | X = a, and considering the
equation modulo q2 we get 0−D ≡ 0 (mod q2), contradicting the fact that D is squarefree.

Remark 3.2. The same argument shows that Lemma 3.1 can be applied whenever D is squarefree and
not a square modulo 8.

Let (a, b) be a solution of Equation (1) for certain values of D and p. For the rest of this discussion,
we will assume that the exponent p does not divide the class number hD of Q(

√
D): in practice,

this is a very mild constraint (and for D ∈ {2, 3, 5} it only excludes p = 2). Under this assumption,
Lemma 3.1, applied to the identity a2 −D · 12 = bp with b odd, yields

a+
√
D = ηtπp

for some π ∈ O√
D, because the condition

p
v | hD implies p | v under our assumption p ∤ hD. Multiplying

π by (powers of) η−1 if necessary, we can then assume that

a+
√
D = ηrπp (18)

with −p−1
2 ≤ r ≤ p−1

2 .

We denote by σ the generator of the group Gal(Q(
√
D)/Q) and write π = σ(π), η = σ(η). Note

that ηη = NK/Q(η) = ±1, hence η = ±η−1. We denote the sign appearing in this equation by ±D.
Our next remarks are well-known, see for example the beginning of [Coh07, §15.7.1]. Applying σ to
(18) we get

a−
√
D = ηrπp, (19)

which implies

bp = a2 −D = (a+
√
D)(a−

√
D) = ηrπp · ±Dη−rπp = ±D(ππ)p,

hence (since p is odd)
ππ = (±D1)rb. (20)

Subtracting (19) from (18) we get

2
√
D = (a+

√
D)− (a−

√
D) = ηrπp − ηrπp, (21)

and dividing by ηrπp = η−r(±D1)r · πp we obtain

(±D1)r
2
√
Dηr

|π|p
= (±D1)rη2r

(π
π

)p
− 1. (22)

Remark 3.3. If (a, b) is a solution of Equation (1) with a certain exponent r = −r0, that is,

a+
√
D = η−r0πp,

then conjugating we find

a−
√
D = η−r0πp =

(
(±D1)η−1

)−r0
πp = ηr0((±D1)r0π)p,
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and therefore
−a+

√
D = −(a−

√
D) = ηr0((∓D1)r0π)p,

which means that (−a, b) is a solution with the opposite value of r = r0. Thus, we may (and usually
will) assume that r satisfies 0 ≤ r ≤ p−1

2 . When r = 0, changing a into −a if necessary (which in
this case does not alter the value of r), we can assume |π| ≥ |π|. This inequality is strict if D is not a
perfect p-th power: to see this, notice that |π| = |π| with r = 0 implies |a +

√
D| = |a −

√
D|, hence

a = 0, which is not a solution of Equation (1) unless D = bp for some b.

Note that for fixed D there are only finitely many solutions to Equation (1) with b ≤ 0, and these
can be trivially enumerated. This is obvious if D < 0, in which case there are no solutions at all, while
if D > 0 we have a2 −D = bp ≤ 0, hence a ≤

√
D and |bp| ≤ |D|. At least for moderate values of D,

such solutions can easily be found (this is certainly the case for the small values of D we are interested
in: for D ∈ {2, 3, 5}, the only solutions with b < 0 are the trivial ones for D = 2, 5). The case b = 1
is equally easy. Suppose now that b > 1. In this case, Equation (20) implies that the sign of π/π is
(±D1)r, hence from (22) we obtain

1 + (±D1)r
2
√
Dηr

|π|p
= η2r

(
|π|
|π|

)p
. (23)

Set β1 = η and β2 = |π|/|π|. Suppose first that∣∣∣∣∣(±1)r
2
√
Dηr

|π|p

∣∣∣∣∣ ≥ 1

2
:

this implies
|π|p/ηr ≤ 4

√
D,

and hence |a−
√
D| = |πp/ηr| ≤ 4

√
Dη, which gives an absolute (and quite manageable) upper bound

for a.

Remark 3.4. For D ∈ {2, 3, 5}, the values of a in this range only lead to trivial solutions.

We may therefore assume
∣∣∣(±1)r 2

√
Dηr

|π|p

∣∣∣ < 1
2 : Equation (23), together with the fact that | log(1 +

x)| ≤ 2|x| for |x| < 1
2 , then yields the following. Let Λβ be the linear form in logarithms

Λβ := 2r log β1 − p log β2 : (24)

then we have

|Λβ | ≤
4
√
Dηr

|π|p
. (25)

Most of the rest of the paper is dedicated to obtaining good lower bounds on |Λβ |. We now set the
following notation.

Notation 3.5. We set

α1 := β
2/k
1 = η2/k, α2 := β2 =

|π|
|π|

> 0,

b1 = kr, b2 := p,

Λ := b2 logα2 − b1 logα1 = p log β2 − 2r log β1,

(26)

where k ≥ 1 is in principle any positive integer (we will fix its value at the very end). Note that we
define η2/k to be exp

(
2
k logR(η)

)
, where logR is the usual real logarithm.

The form |Λ| coincides with the linear form |Λβ | considered above, and we will write (25) as

|Λ| ≤ ε :=
4
√
Dηr

|π|p
. (27)
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Remark 3.6. Consider Equation (21) for fixed values of D, p and r. Suppose for simplicity D ≡ 2, 3
(mod 4), so that {1,

√
D} is a Z-basis of OQ(

√
D). Writing π = u+ v

√
D, π = u− v

√
D with u, v ∈ Z,

expanding both sides of (21), and matching coefficients of
√
D on both sides, we get a Thue equation of

degree p. Thus, for every fixed value of p ≥ 3 one can (in principle) solve Equation (21) and therefore
Equation (1) (note that for fixed p there are only finitely many values of r to consider). The same
applies, with minimal changes, also for D = 5 (and other values congruent to 1 modulo 4): simply

write π = u+ v 1+
√
5

2 , π = u+ v 1−
√
5

2 .

In the rest of the paper, although we will try to frame the discussion in the most general way
possible, we focus in particular on the cases D = 2, 3, 5. It therefore seems useful to recall that for
these values of D the fundamental unit η = ηD > 1 of the ring of integers of Q(

√
D) is given by

η2 = 1 +
√
2, η3 = 2 +

√
3, η5 =

1 +
√
5

2
.

To motivate the rest of this section, we now briefly review some partial results towards the resolution
of Equation (1) for D = 2. Our objective will then be to obtain analogues of these results also for
D = 3, 5. We start with a result by Chen which, although we will not use it, shows what can be
achieved with the modular method:

Theorem 3.7 ([Che12, Theorem 5]). The equation a2 − 2 = bp has no non-trivial solutions for
p ≡ 1, 5, 7, 11 (mod 24) and p ̸= 5, 7.

We will, on the other hand, make use of the following estimate, again obtained by the modular
method (much weaker estimates would suffice, and later in Section 3.5 we explain how to obtain even
stronger lower bounds on b using different techniques):

Lemma 3.8 ([Che12, Corollary 25]). For every non-trivial solution (a, b) of Equation (1) with D = 2
we have b > 10102.

Other partial results have been obtained by Bugeaud, Mignotte, and Siksek by combining linear
forms in logarithms, ideas related to the modular method, and the computational resolution of Thue
equations. Specifically, they prove:

Theorem 3.9 (Bugeaud, Mignotte, Siksek). The following hold:

1. For p > 1237, Equation (1) has no non-trivial solutions for D = 2 [Coh07, p. 520].

2. For p ≤ 106, if (a, b) is a non-trivial solution of Equation (1) for D = 2, then – in the notation
of Equation (18) – we have r = ±1 [Coh07, Proposition 15.7.1].

3. For 5 ≤ p ≤ 37, Equation (1) has no non-trivial solutions for D = 2 [Coh07, Lemma 15.7.3].

In the next subsections, we will derive similar results for D = 3 and 5. Since the details of the
proof of part 1 of Theorem 3.9 do not seem to appear in print, we will derive a (much weaker) upper
bound for p also for D = 2, sufficient to allow us to apply Theorem 3.9 (2). Specifically, in Section 3.1
we prove an analogue of Theorem 3.9 (1) for D = 3, 5 using linear forms in logarithms. In the next two
sections, we first recall some facts about the theory of Frey curves, and then (Section 3.3) apply ideas
from the modular method to extend Theorem 3.9 (2) to the cases D = 3, 5. In Section 3.4 we explain
a variant of the same idea that avoids computations with modular forms, at the cost of slightly less
precise results. In Section 3.5 we discuss a technique, based on continued fractions, to obtain good
lower bounds on the size of non-trivial solutions (a, b) of Equation (1). Finally, in Proposition 3.18
we explain how to solve Equation (1) for a fixed (small) value of p, thus extending Theorem 3.9 (3)
to D = 3, 5, in the slightly larger range 3 ≤ p ≤ 43 (we solve the Thue equations in this range as an
extra check, but we would only need p ≤ 23).

We point out that – if we only wanted to solve Equation (1) forD = 2 – Lemma 3.8 and Theorem 3.9
would be more than sufficient, but we have decided to also treat D = 3, 5 to show that our method
can handle Equation (1) in a certain generality. The rest of this section is therefore intended as a
guide to the steps necessary to solve Equation (1) for any given value of D: one needs an upper bound
for p (which can be obtained using linear forms in logarithms), some control over the parameter r of
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Equation (18) (provided by the modular method), and a lower bound for b (which, as we shall see, can
be obtained by Diophantine approximation techniques). We point out that the determination of the
parameter r is useful to speed up later calculations, but not strictly necessary, especially if the bound
for p is good enough. The material in this section is largely based on known ideas, but it still seems
useful to collect all the details in one place and have statements that are adapted to the resolution of
Equation (1).

3.1 A preliminary bound for p

We will need an absolute upper bound p ≤ p0 on the exponent p for a non-trivial solution of Equa-
tion (1). It is well-known that linear forms in logarithms can be used to provide such a bound. In
fact, Theorems 1 and 2 in [Bug97b] and the main result of [Bug97a] would give us an absolute upper
bound for p, but one that is a bit too large for our purposes (especially for use in Section 3.3). We will
instead prove the following estimate, which, while still quite weak, will be enough for us. We focus in
particular on the cases D ∈ {2, 3, 5}, but, with a view towards future applications, we also obtain a
reasonable upper bound for other squarefree values of D > 0.

Proposition 3.10. Let D = 2, 3 or 5. Equation (1) has no non-trivial solution with p > p0(D), where

p0(D) =


2.4 · 104, if D = 2

8.5 · 104, if D = 3

3.1 · 104, if D = 5.

For general squarefree D > 0 such that D is not a square modulo 8, Equation (1) has no solutions with

|b| > 1 for p > p0(D) = max{hD, 3950(log η)2 · log
(
1411(log η)2

)2}, where hD is the class number of

Q(
√
D).

Remark 3.11. Note that log η, being the regulator of Q(
√
D), is ≪ D1/2+ε, and we also have hD ≪

D1/2+ε. The value of p0(D) given in Proposition 3.10 is thus ≪ D1+ε, while the (more general) results
of [Bug97b] give p0(D) ≪ D2+ε when D = p is prime.

As recalled above, in the case D = 2, Bugeaud, Mignotte, and Siksek, in [Coh07, Chapter 15], give
the bounds p < 8200 [Coh07, Proof of Proposition 15.7.1] and even p < 1237 [Coh07, p. 520], but – to
the best of our knowledge – the details of the proofs have not appeared in print. Since we will only
need a much looser upper bound for p, and also need it for D = 3, 5, we prefer to provide details on
how to obtain this weaker bound to make the exposition as self-contained as possible. Before proving
Proposition 3.10, we make the following elementary observation.

Lemma 3.12. Let D ∈ {2, 3, 5}. For every non-trivial solution of Equation (1) with p ≥ 3 we have
b ≥ 11. If D = 2, we even have b ≥ exp(234).

Proof. The case D = 2 is covered by Lemma 3.8, so assume D ∈ {3, 5}. Clearly there are no solutions
of Equation (1) with b ≤ −2, because this would contradict bp +D = a2 ≥ 0, and the solutions with
|b| ≤ 1 are trivial by definition. Suppose then b > 1 and let q be a prime dividing b. Since p ≥ 3,
considering Equation (1) modulo q3 we find a2 − D ≡ 0 (mod q3), hence D is a square modulo q3.
Since neither 3 nor 5 are squares modulo 23, 33, 53, or 73, we deduce b ≥ q ≥ 11.

Proof of Proposition 3.10. We consider again the linear form in logarithms

Λβ := 2r log β1 − p log β2 (28)

and the inequality (25). We assume 0 ≤ r ≤ p−1
2 and, if r = 0, log |π| ≥ log |π|, see Remark 3.3. We

first treat the case D ∈ {2, 3, 5}. Lemma A.2 implies that β1, β2 are multiplicatively independent. We
can therefore apply [Lau08, Corollary 1]. We set

d = [Q(β1, β2) : R(β1, β2)] = 2,

logA1 = max{h(β1), | log β1|/2, 1/2} and logA2 = max{h(β2), | log β2|/2, 1/2}.
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By Lemma A.4 we have

logA1 =

{
1
2 , for D = 2, 5
1
2 log η, for D = 3.

As for logA2, note first that Lemma A.4 gives h(β2) = log |π|. We claim that this realises the maximum.
If log |π| ≤ 1/2, then by Lemma A.3 we get log |π| ≤ 1/2, and Equation (20) implies |b| ≤ exp(1),
which contradicts Lemma 3.12. If log |π| ≤ 1

2 | log β2|, then using log β2 ≥ 0 (Lemma A.3) and |b| = |ππ|
(Equation (20)) we obtain

2 log |π| ≤ log |π| − log |π| ⇐⇒ log |b| = log |π|+ log |π| ≤ 0,

hence |b| = 1 and we again have a trivial solution. We further set

b′ =
2r

d logA2
+

p

d logA1
≤ 2r

2 log |π|
+ p <

3

2
p,

where the last inequality follows immediately from r ≤ p−1
2 together with log |π| ≥ 1

2 log b (Lemma A.3)
and log b ≥ log(11) (Lemma 3.12). We can then apply [Lau08, Corollary 1] with m = 20 and C1(m) =
25.2 (see [Lau08, Table 1]): it gives

log |Λβ | ≥ −25.2 · 24 · (max{log b′ + 0.21, 10})2 · logA1 · logA2.

We distinguish two cases: if the maximum in the above formula is 10, then log b′ + 0.21 ≤ 10, hence

p

max{1, log η}
≤ b′ ≤ exp(10− 0.21) ≤ 1.8 · 104 ⇒ p ≤ 1.8 · 104 ·max{1, log η} < p0(D).

Otherwise, we obtain

log |Λβ | ≥ −25.2 · 24 · (log b′ + 0.21)
2 · logA1 · log |π|

≥ −201.6 ·max{1, log η} ·
(
log

(
3

2
p

)
+ 0.21

)2

· log |π|.

Comparing with Equation (25) we then obtain

−201.6 · (log p+ 0.62)2 ·max{1, log η} · log |π| < log |Λβ | ≤ −p(log |π| − 1

2
log η) + log(4

√
D),

that is,

p <
log(4

√
D)

log |π| − 1
2 log η

+ 201.6 · (log p+ 0.62)2 ·max{1, log η} · log |π|
log |π| − 1

2 log η
.

Using the lower bound for log |π| provided by Lemma 3.12, and plugging in the values of D and η, we
immediately obtain the inequalities in the statement.

In the general case, we proceed similarly. Suppose first that a ≤ (4η+1)
√
D. Then |bp| = |a2−D| ≤

(16η2+8η)D, hence p ≤ log |a2−D|
log 2 ≤ log((16η2+8η)D)

log 2 . Since η = u+v
√
D

2 ≥ 1+
√
D

2 (here u, v are positive),

it is easy to see that log((16η2+8η)D)
log 2 is much smaller than the bound given in the statement. We can

then suppose a > (4η + 1)
√
D.

Since D is not a square modulo 8, every solution of a2 −D = bp has b odd, so Lemma 3.1 applies
and we can repeat the discussion at the beginning of Section 3. The assumptions p ∤ hD (which follows
from p > p0(D)) and a > (4η + 1)

√
D then imply that inequality (25) holds. We consider again the

linear form Λβ and the numbers

logA1 = max{h(β1), | log β1|/2, 1/2} and logA2 = max{log |π|, | log β2|/2, 1/2}.

By Lemma A.4 we have log |π| ≥ h(β2) and logA1 = 1
2 max(1, log η). As above, we can easily show

log |π| > 1
2 | log β2|. Note that the assumption a > (4η + 1)

√
D ≥

√
D + 4 + 2 implies that β1, β2 are

multiplicatively independent (Lemma A.2) and also b = (a2 −D)1/p ≥ 41/p > 1, hence b ≥ 2.
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Since logA2 ≥ 1
2 ,we have

b′ =
2r

d logA2
+

p

d logA1
≤ p− 1 +

p

max{1, η}
≤ 2p.

We apply [Lau08, Corollary 1] as above. If max{log b′ + 0.21, 10} = 10, then exactly as before we
obtain p ≤ 1.8 · 104 ·max{1, log η} < p0(D). Otherwise, comparing with Equation (25) we obtain

−201.6 · (log 2p+ 0.21)2 ·max{1, log η} · log |π| < log |Λβ | ≤ −p
(
log |π| − r

p
log η

)
+ log(4

√
D). (29)

We distinguish two cases: if log |π| ≥ 2 log η, we have log |π| − r
p log η ≥ 3

4 log |π|, and dividing by

log |π| ≥ 2 log η the above inequality we get

−201.6 · (log 2p+ 0.21)2 ·max{1, log η} < −3

4
p+

log(4
√
D)

2 log η
. (30)

Otherwise, suppose log |π| < 2 log η. The equality a2−D = bp gives a ≥
√
bp +D ≥ bp/2, and therefore

(using (19), a ≥ 2
√
D and b ≥ 2) we have

p log |π| − r log η = log
(
a−

√
D
)
≥ log(a/2) = log a− log 2 ≥ p

2
log b− log 2 ≥

(p
2
− 1
)
log 2,

which implies log |π| − r
p log η ≥

(
1
2 − 1

p

)
log 2. Since we can assume p > 104 (otherwise, the upper

bound in the statement is obviously satisfied), we get log |π| − r
p log η ≥ 0.346. Using this inequality

and log |π| < 2 log η in Equation (29) we obtain

−201.6 · (log 2p+ 0.21)2 ·max{1, log η} < − 0.346

2 log η
p+

log(4
√
D)

2 log η
. (31)

This inequality is weaker than (30), so in every case we get that Equation (31) is satisfied. Rearranging,
we arrive at the inequality

p < 1165.4 · (log p+ 0.91)2 ·max{1, log η} · log η + 2.9 log(4
√
D). (32)

Since we can assume p ≥ 104, we have log p+0.91 ≤ 1.1 log p. Moreover, it is easy to see that log η ≤ 1
only for D = 2, 5, which we have already treated, so we can also assume max{1, log η} = log η.

Moreover, since η = u+
√
D

2 with u, v positive integers, we have η ≥ 1
2

√
D, which also allows us to

absorb 2.9 log(4
√
D) ≤ 2.9 log(8η) < 0.1(log p)2 log η into the first term. Thus, we get the inequality

p < 1410.24 · (log η)2 · (log p)2. (33)

Note that log η ≥ log
(

3+
√
13

2

)
, hence 1410.24 · (log η)2 ≥ 2000. Lemma B.2, applied with A =

1410.24(log η)2, yields p < 2.8 · 1410.24(log η)2 · log
(
1410.24(log η)2

)2
, which concludes the proof.

3.2 Frey curves

We briefly review some relevant theory of Frey curves, for use in the next section. Given a solution
(a, b) of Equation (1) for a prime p ≥ 7 and D = 3, we consider the following elliptic curve over Q (see
[BS23a, Equation (69)], and [BS23a, §3] and [BS04] for general background on Frey curves for ternary
diophantine equations of signature (n, n, 2))

E : Y 2 = X3 + 2aX2 +DX. (34)

Let NE be the conductor of E. By [BS04, Lemma 2.1] (see also [BS23a, p. 1821]) we have NE =
25
∏
q|bD q = 25 rad(3b). By standard level-lowering arguments, the modulo-p representation attached

to E arises from a weight 2 newform f of level N := 25 · D = 96 and trivial Nebentypus ([BS04,
Lemmas 3.2 and 3.3] and [BS23a, p. 1821]). The situation is very similar, though not identical, for
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D = 5; the difference arises because of the different congruence class of D modulo 4. In this case, the
Frey curve we take is (see [BS23a, Equation (70)])

E : Y 2 = X3 + 2aX2 + bpX = X3 + 2aX2 + (a2 − 5)X, (35)

which – again by [BS04, Lemma 2.1] – has conductor NE = 25
∏
q|bD q = 25 rad(5b). The results of

[BS04] show that the mod-p representation attached to E arises from a weight 2 eigenform f of level
N := 25 ·D = 160. We will write E ∼p f to denote this fact. The implications of the property E ∼p f
that we need are summarised in Proposition 3.13. Both in the case D = 3 and D = 5, write

f = q +

∞∑
m=2

am(f)qm

for the normalised q-expansion of the eigenform f introduced above and let Kf = Q(a2(f), a3(f), . . .)
be its Hecke eigenfield. The condition E ∼p f implies in particular the following (see [KO92], [Sik12]
or [BS23a, Lemma 7.1]):

Proposition 3.13. There is a prime p of the ring of integers Of of Kf , lying over p, such that the
following holds. Let ℓ ̸= p be a rational prime and denote by aℓ(E) the ℓ-th coefficient of the L-function
of E/Q.

1. If ℓ ∤ NEN , then aℓ(E) ≡ aℓ(f) (mod p);

2. If ℓ ∤ N but ℓ || NE, then ℓ+ 1 ≡ ±aℓ(f) (mod p).

Furthermore, if Kf = Q, then these properties also hold for ℓ = p.

Remark 3.14. We note a consequence of part 2 of this proposition and the fact that NE = 25
∏
q|bD q:

if ℓ is a prime different from 2, D, and p, and aℓ(f) ̸≡ ±(ℓ + 1) (mod p), then ℓ ∤ NE , hence ℓ ∤ b. If
Kf = Q, the same conclusion holds also for ℓ = p.

From the LMFDB [LMF24], we find that there are two weight-2 normalised eigenforms at level
96 and four at level 160. The forms at level 160 form three Galois orbits. We give some information
about these newform that we will need in what follows.

1. Level 96: let F1 = q − q3 + 2q5 + 4q7 + · · · be the form [LMF24, Newform orbit 96.2.a.a] and
F2 = q+ q3 +2q5 − 4q7 + · · · be the form [LMF24, Newform orbit 96.2.a.b]. They are quadratic
twists of each other, and they both have Hecke eigenfield equal to Q, hence they correspond to
(isogeny classes of) elliptic curves over Q. We can take as representatives of the isogeny classes
respectively the curves y2 = x3 − x2 − 32x− 60 and its quadratic twist y2 = x3 + x2 − 32x+ 60.

2. Level 160: let G1 = q − 2q3 − q5 − 2q7 + · · · be the form [LMF24, Newform orbit 160.2.a.a],
G2 = q + 2q3 − q5 + 2q7 + · · · be the form [LMF24, Newform orbit 160.2.a.b], and G3 =
q + βq3 + q5 − βq7 + · · · , where β = 2

√
2, be the form [LMF24, Newform orbit 160.2.a.c]. The

forms G1 and G2 are quadratic twists of each other and have Hecke eigenfield equal to Q, hence
they correspond to (isogeny classes of) elliptic curves over Q. We can take as representatives
of the isogeny classes respectively the curves y2 = x3 + x2 − 6x + 4 and its quadratic twist
y2 = x3 − x2 − 6x − 4. The form G3 has Hecke eigenfield Q(

√
2). One knows that GL2-type

varieties are modular (this follows from [Rib92], since Serre’s conjecture is a theorem by work
of Khare and Wintenberger [KW09a, KW09b]), hence one can show unconditionally that the
L-function of the Jacobian of the genus-2 curve y2 = 2x5 − 5x4 − x3 + 5x2 + 2x [LMF24, Curve
25600.f.512000.1] agrees with the product of the L-functions of G3 and of its Galois conjugate.

3.3 The value of r

We now explain how we can prove (computationally) that – for any non-trivial solution of Equation (1)
for D ∈ {2, 3} (resp. D = 5) – we have r = ±1 in Equation (18) (resp. r = ±3). For D = 2 this
is the statement of [Coh07, Proposition 15.7.1]. For D = 3, 5 one can generalise the argument of
that proposition; we give some details for completeness, and because the computation is slightly more
involved for D = 5. Let D = 3 and let (a, b) be a solution of Equation (1), for some prime p. Suppose
that the modulo p representation attached to the Frey curve of Equation (34) arises from the newform
f . Note that, thanks to Proposition 3.10, we only have finitely many primes p to consider. We can
therefore assume that p is fixed. Let ℓ > 2 be a prime that satisfies all of the following conditions:
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Condition 3.15. 1. ℓ = np+ 1 for some positive integer n;

2. D is a square modulo ℓ, say D ≡ θ2 (mod ℓ);

3. aℓ(f) ̸≡ ±(ℓ+ 1) (mod p);

4. (2 + θ)n ̸≡ 1 (mod ℓ).

Denote by x 7→ x reduction modulo ℓ. Condition (3) implies that ℓ ∤ b (see Remark 3.14). Thus,
bp reduces modulo ℓ to a non-zero p-th power, which is in particular an n-th root of unity in Fℓ. Let
µn(Fℓ) = {δ ∈ Fℓ

∣∣ δn = 1}, so that b
p ∈ µn(Fℓ). Setting

X ′
ℓ = {δ ∈ Fℓ : δ2 −D ∈ µn(Fℓ)}, (36)

it is clear that a belongs to X ′
ℓ . For δ ∈ X ′

ℓ let Eδ be the elliptic curve over Fℓ with equation

Eδ : Y
2 = X(X2 + 2δX +D).

Further let
Xℓ = {δ ∈ X ′

ℓ

∣∣ aℓ(Eδ) ≡ aℓ(f) (mod p)}.

By the fact that E ∼p f , we have aℓ(E) ≡ aℓ(f) (mod p) (see Proposition 3.13 (1)), hence a belongs
to Xℓ (because for δ = a we have aℓ(Eδ) = aℓ(E) ≡ aℓ(f) (mod p)). Finally, let l be the prime
(ℓ,

√
D − ϑ) of OQ(

√
D). Reducing Equation (18) modulo l we obtain

a+ θ ≡ ηrπp ≡ (2 + θ)
r
πp (mod l).

Let Φ : F×
ℓ → Z/pZ be the map obtained as the composition of the discrete logarithm F×

ℓ → Z/(ℓ−1)Z
(with respect to any fixed generator g of F×

ℓ ) and of the natural projection Z/(ℓ − 1)Z → Z/pZ.
Note that Φ(2 + θ) ̸= 0, since otherwise 2 + θ would be of the form gpk for some k, and therefore
(2+θ)n ≡ gnpk ≡ 1 (mod ℓ), contradicting assumption 4. Applying Φ to the identity a+θ ≡ (2 + θ)

r
πp

(mod l) we obtain
Φ(a+ θ) ≡ rΦ (2 + θ) (mod p).

This implies that

r mod p ∈
{
Φ(δ + θ)

Φ(2 + θ)
: δ ∈ Xℓ

}
=: Rℓ(f).

Note that since |r| < p/2 the equality r = ±1 is equivalent to the congruence r ≡ ±1 (mod p). Thus,
if, for a fixed newform f , we find a collection of primes ℓ1, . . . , ℓk satisfying the above assumptions
and such that

⋂k
i=1 Rℓi(f) ⊆ {±1}, then we have proved that for that specific f we can only have

r = ±1. If we do this for all newforms f of weight 2 and level 25 · 3, then we have proven r = ±1. As
we saw above, there are only two weight-2 newforms at level 96, and both have rational coefficients.
A simple MAGMA script (which can be found in the repository associated with this paper) finds, for
every p ≤ 105 and every relevant newform of level 25 · 3, a collection of primes {ℓj} as above.

The same argument extends with trivial modifications also to D = 5: in this case, we replace 2+ θ
by 1+θ

2 (this plays the role of η), we use the Frey curve of Equation (35), and we obtain r = ±3.
Conceptually, this is all that is needed. However, computationally there is a small hiccup which

we will now explain how to overcome. Specifically, the approach outlined above requires the ability
to compute the coefficients aℓ(f) with reasonable efficiency. This is not completely straightforward,
especially at level 25 · 5, where we also find the non-rational newform G3 with Hecke eigenfield Q(

√
2).

In all cases, what we do is work with elliptic curves instead: if f ∈ {F1, F2, G1, G2} is a rational
newform, then by modularity we know that there is an associated elliptic curve Ef/Q that satisfies
aℓ(f) = aℓ(Ef ). We have explicit representatives for these elliptic curves, given in Section 3.2. Since
point-counting on elliptic curves over finite fields is very fast, this allows us to quickly compute aℓ(f)
when f is a rational newform.

For the unique non-rational newform G3, we consider the genus-2 curve C/Q with equation y2 =
2x5 − 5x4 − x3 + 5x2 + 2x. As already explained, the L-function of JacC agrees with the product of
the L-functions of G3 and of its Galois conjugate. Moreover, over the field Q(i), the Jacobian of C
splits as the square of the Q-curve EG3

: y2 = x3 + (i− 1)x2 + (6i+ 3)x − i + 5 [LMF24, Elliptic
curve 1600.2-b3]. As a consequence, for ℓ ≡ 1 (mod 4) (that is, for the primes that split in Q(i)), the
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trace aℓ(G3) is equal to the Frobenius trace of the reduction of EG3 modulo l, where l is any prime
of Z[i] lying over ℓ (since EG3 is a Q-curve, hence it has the same L-function as its Galois conjugate,
it does not matter which prime above ℓ we take). Note that this implies in particular aℓ(G3) ∈ Z, so
that the congruence aℓ(G3) ≡ aℓ(Eδ) (mod p) of Proposition 3.13 (1) is actually a congruence modulo
p (again when ℓ ≡ 1 (mod 4)). Thus, for primes ℓ ≡ 1 (mod 4) we can again compute aℓ(G3) by
counting points on elliptic curves, which gives a much faster method than computing the coefficients
of the modular form directly. In particular, for the unique irrational newform G3, we limit ourselves
to using primes ℓ that are congruent to 1 modulo 4.

The above discussion, together with the corresponding computation, shows:

Proposition 3.16. Let (a, b) be a solution of Equation (1) for D = 2 or 3 (resp. D = 5) and for
11 ≤ p < 105. In the notation of Equation (18) we have r = ±1 (resp. r = ±3).

Combining Remark 3.3, Proposition 3.10 and Proposition 3.16, we see that it suffices to solve
Equation (1) under the further assumption that r = 1 or 3 in Equation (18):

Corollary 3.17. Suppose that for some D ∈ {2, 3} (resp. for D = 5) and some prime p ≥ 11
Equation (1) admits a non-trivial solution. Then it also admits a non-trivial solution (for the same
prime p and the same value of D) such that, in the notation of Equation (18), we have r = 1 (resp. r =
3).

We also note that a direct computation allows us to handle the cases when p is sufficiently small
(this takes care in particular of the cases p < 11 that are not covered by the previous corollary). We
will only use the result of the next proposition for p ≤ 17.

Proposition 3.18. Equation (1) has no non-trivial solutions for D ∈ {2, 3, 5} and 3 ≤ p ≤ 43.

Proof. As in Remark 3.6, each of the finitely many equations to be considered reduces to a Thue
equation. These can easily be handled by gp’s Thue equation solver. Note that, using Corollary 3.17,
for a fixed value of D we only need to consider a single value of r, unless p ≤ 7, in which case we test
all r ∈ {0, . . . , p−1

2 }.

3.4 The value of r: a variant without modular forms

In this section, we discuss a slightly different method to determine the value of r for given D and p.
The procedure of the previous section is very effective, but it relies on the ability to quickly compute
coefficients of modular forms. This has already caused some difficulties for D = 5, and one can only
assume matters get worse for larger D. We now explain how we can obtain weaker, but still very
useful, results using only arithmetic in finite fields.

Suppose that (a, b, p) is a solution of Equation (1) and use the notation of Equations (18) and (19).

Write the fundamental unit of Q(
√
D) as η = u+v

√
D

2 , where u, v are integers (possibly both even).
Let ℓ be a prime that satisfies the following conditions (cf. Condition 3.15):

1. ℓ = np+ 1 for some positive integer n;

2. D is a square modulo ℓ, say D ≡ θ2 (mod ℓ);

3. ℓ ∤ 2D;

4.
(
u+vθ

2

)n ̸≡ 1 (mod ℓ).

Define X ′
ℓ as in Equation (36) and let Φ be the same map as in the previous section (discrete logarithm

F×
ℓ → Z/(ℓ − 1)Z composed with the projection Z/(ℓ − 1)Z → Z/pZ). We set by definition Φ(η) =

Φ
(
u+vθ

2

)
; note that by definition ℓ > 2, so it makes sense to divide by 2 in Fℓ. As in the previous section,

assumption 4 implies that Φ(η) ̸≡ 0 (mod p). We point out that – having replaced Condition 3.15 (3)
with the condition ℓ ∤ D – we no longer know that ℓ ∤ b.

We claim that r mod p belongs to the set{
Φ(δ + θ)

Φ (η)
: δ ∈ X ′

ℓ

}
∪
{
Φ(2θ)

Φ(η)
,−Φ(−2θ)

Φ(η)

}
.
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To see this, consider the prime l = (ℓ,
√
D − θ) of OQ(

√
D), write π = c+d

√
D

2 , π = c−d
√
D

2 , and reduce

Equations (18) and (19) modulo l. We obtain

a+ θ =

(
u+ vθ

2

)r
·
(
c+ dθ

2

)p
, a− θ =

(
u− vθ

2

)r
·
(
c− dθ

2

)p
.

We now distinguish two cases. If a is not congruent to θ, nor to −θ, modulo ℓ, then we can apply

Φ to the first equation to obtain (as in the previous section) r ≡ Φ(a+θ)
Φ(η) mod p. Note that in this

case we have ℓ ∤ a2 − θ2 ≡ a2 − D, hence ℓ ∤ b, and therefore we deduce that a ∈ X ′
ℓ . On the other

hand, if a ≡ θ (mod ℓ), then we cannot have a ≡ −θ (mod ℓ), for otherwise we would get 2θ ≡ 0
(mod ℓ) and hence 4D ≡ (2θ)2 ≡ 0 (mod ℓ), which contradicts ℓ ∤ 2D. Applying Φ to the equation

a + θ =
(
u+vθ

2

)r · ( c+dθ2

)p
we then get r ≡ Φ(a+θ)

Φ(η) ≡ Φ(2θ)
Φ(η) (mod p). The case a ≡ −θ (mod ℓ) is

completely analogous.
As in the previous section, given p we can then loop over a few primes ℓ that satisfy the above

conditions. This restricts the list of exponents r that are possible for a given prime p.

Remark 3.19. Note that #X ′
ℓ ≤ 2n and that (for a given prime ℓ) the above procedure restricts the

list of possible r to at most 2n+ 2 candidates. In practice, we expect to find a prime ℓ = np+ 1 with
n not too large (in particular, much smaller than p, if p is large), so even after testing just the first
prime ℓ that satisfies the conditions given above, we expect to have much fewer than p− 1 candidate
values of r.

As we will see in Section 4.7, this procedure is less precise than that of the previous section, in the
sense that (especially for small primes p) it tends to leave us with several possibilities for r. On the
other hand, when p gets large, it seems to be equally effective as the approach of the previous section,
with the advantage that it avoids computing coefficients of modular forms.

Remark 3.20. When Equation (1) does not have solutions for a certain p, the method of this section
can often be used to prove this fact. For example, for D = 6, a relatively short computation with
the above method shows that Equation (1) has no solutions for 59 < p < 1.5 · 105. By the method
of Proposition 3.10, one can show that there are no solutions for p > 1.5 · 105. Together, we get the
excellent absolute upper bound p ≤ 59 for solutions of Equation (1) with D = 6.

Remark 3.21. We could have used the technique in this section to prove a weaker version of Proposi-
tion 3.16: for example, for D = 5 we would get the result for all primes p > 61. This weaker version,
apart from being less clean, would also make it much harder to solve the Thue equations that lead to
Proposition 3.18. On the other hand, one can fruitfully combine the two approaches: use the algorithm
in this section to (hopefully) determine the value of r when p is sufficiently large, and only use the
more precise – but more computationally expensive – algorithm of Section 3.3 for the remaining small
primes.

3.5 A lower bound for b via continued fractions

We now describe a way to obtain a good lower bound for b. The basic observation is that – by

Remark 3.6 – the coefficients u, v in a basis representation π = u+v
√
D

2 are solutions of a Thue equation
F (u, v) = 2. As is well known, this implies that (for u large enough) the fraction v/u is a convergent
of the continued fraction of a root of the polynomial F (1, x). By testing the first convergents of the
continued fraction, one can show that any solution of the Thue equation must have u very large, and
from this, it follows that b itself must be very large. We now make this observation quantitative.

As a preliminary observation, note that – for a fixed value of p – it is easy to test if b corresponds
to a solution of Equation (1), even if b is very large: if we suspect that bp+D is not a square (which is
usually the case), this can be shown by finding an auxiliary prime q such that bp +D is not a square
in Fq. Chebotarev’s theorem tells us that the density of such primes q is 1

2 , so one can quickly rule
out any given value of b (such that bp +D is not a square) with this technique. This is what we will
mean when we say that we test a value of b.

Fix both a prime p ≥ 3 and an exponent r ∈ {0, . . . , p−1
2 } (in the sense of Equation (18)). By the

method of the previous section, for every prime p we typically only have one value of r to consider (by
Corollary 3.17, this is the case for D ∈ {2, 3, 5}), but in principle, one could also loop over all possible
values of r for a given p. We explain how to use continued fractions to quickly compute a lower bound
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for the values of b in a non-trivial solution of Equation (1) with exponent p and with the given value
of r. We assume as usual 0 ≤ r ≤ p−1

2 and |π| ≥ |π| (Remark 3.3).
We start from Equation (21) and divide both sides by ηrπp to obtain(

η

η

)r
−
(
π

π

)p
=

2
√
D

ηrπp
.

Thanks to Equation (20), the real numbers η
η and π

π have the same sign (equal to ±D), so we have∣∣∣∣∣∣∣∣ηη
∣∣∣∣r − ∣∣∣∣ππ

∣∣∣∣p∣∣∣∣ = 2
√
D

|η|r|π|p
.

Let x := |η/η|r/p = η2r/p ≥ 1 and y := |π/π| ≥ 1. Using the identity xp − yp = (x− y)
∑p−1
i=0 x

iyp−1−i

and x ≥ 1, y ≥ 1 we obtain

2
√
Dηr

|π|p
= |xp − yp| = |x− y|

p−1∑
i=0

xiyp−1−i ≥ p|x− y|.

Multiplying by |π| and taking into account that the sign of ππ is (−1)r, we arrive at

|πx− (−1)rπ| = ||π|x− |π|| = ||π|x− |π|y| ≤ 2
√
Dηr

p|π|p−1
. (37)

We now write π = u+v
√
D

2 , π = u−v
√
D

2 with u, v ∈ Z. Note that, with this notation, the equation we
are trying to solve is

ηr

(
u+ v

√
D

2

)p
− ηr

(
u− v

√
D

2

)p
= 2

√
D. (38)

We can then rewrite (37) as

|u(x− (−1)r) + v
√
D(x+ (−1)r)| = |(u+ v

√
D)x− (−1)r(u− v

√
D)| ≤ 4

√
Dηr

p|π|p−1
.

Dividing both sides by |
√
Du(x+ (−1)r)| we obtain∣∣∣∣ x− (−1)r

(x+ (−1)r)
√
D

+
v

u

∣∣∣∣ ≤ 4ηr

p|π|p−1(x+ (−1)r)|u|
. (39)

The idea is now that v/u is an excellent rational approximation of the real number τ := − x−(−1)r

(x+(−1)r)
√
D
,

and therefore we expect −v/u to be a convergent of the continued fraction of τ . To exploit this
connection, we need to compare |π| with |u|. We have

|u| = |π + π| ≤ 2|π| = 2y|π| and |v| = 1√
D
|π − π| ≤ 2√

D
|π| = 2√

D
y|π|. (40)

We note for later use that we also have |b| = |ππ| = |π|2/y ≥ |u|2/4y. Using (40) in (39) we obtain∣∣∣∣ x− (−1)r

(x+ (−1)r)
√
D

+
v

u

∣∣∣∣ ≤ 4ηr(2y)p−1

p(x+ (−1)r)|u|p
. (41)

Before continuing, we observe that (at the cost of a short computation) we can obtain good bounds
on y.

Lemma 3.22. Let (a, b) be a solution of Equation (1) for some prime p. If |b| > (4
√
D)2/pη, then

y ≤ η2r/p · 21/p ≤ η · 21/p.
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Proof. Start again from Equation (21) and divide both sides by ηrπp. We get

(π/π)p − (η/η)r =
2
√
D

ηrπp
⇒ (π/π)p = (η/η)r

(
1 +

2
√
D

πpηr

)
.

Since |π|p > bp/2 > (4
√
D)ηp/2 ≥ 2 · 2

√
D/|ηr| (see Lemma A.3 for the inequality |π| ≥ b1/2), in the

above equality we have
∣∣∣1 + 2

√
D

πpηr

∣∣∣ ≥ 1
2 , and therefore

|π/π| ≥ |η/η|r/p2−1/p ⇒ y = |π/π|−1 ≤ η2r/p21/p ≤ η21/p.

We can easily test all values of b with |b| ≤
(
4
√
Dηr

)2/p
. As p is fixed, this is trivial, especially

given that the upper bound (4
√
Dηr)2/p will usually be quite small (and when it is < 2, there is

nothing to test). Also note that, if r is fixed and p tends to infinity, the upper bound in the lemma
tends to 1, while y ≥ 1 holds by assumption. Now we distinguish two complementary cases, depending
on the size of the right-hand side of Equation (41):

1. We first assume 4ηr

p|π|p−1(x+(−1)r)|u| ≥
1

2|u|2 . Rearranging and using (40) we get

8ηr

p|π|p−1(x+ (−1)r)
≥ 1

|u|
≥ 1

2y|π|
⇒ |π| ≤

(
16ηry

p(x+ (−1)r)

)1/(p−2)

.

Using (40) again, this leads to |b| = |ππ| = |u
2−Dv2

4 | ≤ max{|u|2,D|v|2}
4 ≤ max{4y2|π|2,4y2|π|2}

4 =
y2|π|2. Since we have upper bounds on both y and |π|, we have thus obtained an upper bound for
b, and we can simply test all b up to this bound to see if they lead to solutions of Equation (1).
In practice, this will be quite fast if D is not too large. Once these values of b have been tested,
we can assume that we are in the next case.

2. We now assume the opposite inequality,

4ηr

p|π|p−1(x+ (−1)r)|u|
<

1

2|u|2
: (42)

by Legendre’s theorem on continued fractions, this inequality – together with (41) – implies that
v
u is a convergent of the continued fraction of τ . Let vk/uk be the sequence of convergents of
τ . Note that if (u, v) is a solution of Equation (38), then (u, v) | 2, because we know from

Lemma A.1 that π = u+v
√
D

2 , π = u−v
√
D

2 are relatively prime. Hence, writing the fraction v/u
in reduced form as v′/u′, we have either (u, v) = (u′, v′) or (u, v) = (2u′, 2v′).

For each pair (uk, vk), we can test whether b =
u2
k−Dv

2
k

4 or b = (2uk)
2−D(2vk)

2

4 is a solution
to Equation (1). If we test the pairs (u1, v1), . . . , (un, vn), we will have shown that all other
solutions of Equation (38) that satisfy (42) have |u| ≥ |un|. As remarked above, |u| ≥ |un|
implies |b| ≥ |u|2/4y ≥ |un|2/4y, which – using the upper bound for y obtained above – gives an
explicit lower bound for |b|.

Since the convergents of the continued fraction of τ grow exponentially fast, the above procedure gives
a quick way to prove good lower bounds on b for fixed p. Combined with an absolute upper bound for
p, this leads to a small list of solutions together with an absolute lower bound for b for the remaining
solutions of Equation (1).

Applying this strategy for D ∈ {2, 3, 5} and for all 5 ≤ p ≤ p0(D) (see Proposition 3.10), we obtain:

Proposition 3.23. Let D ∈ {2, 3, 5}, let p ≥ 5, and let (a, b) be a non-trivial solution of Equation (1).
We have b > b0 = exp(400).

Remark 3.24. We briefly discuss other possible strategies for obtaining lower bounds on b, which – as
we will see in Section 4 – are quite important for the application of our method. First of all, suppose
that we already know that the exponent p is bounded above by some pmax: then we can simply test
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all pairs (b, p) where b ≤ b0 and p ≤ pmax; all remaining solutions will have b > b0. Of course, as b0
grows, this approach quickly becomes impractical. Another possible technique is the argument in the
proof of [Che12, Corollary 25], which is based on the modular method. Finally, the idea of [Coh07,
Lemma 15.7.2] (which is similar to [BS23a, Lemma 15.3]) can often be used to show that b must grow
with the exponent p.

4 Proof of Theorems 1.1 and 1.2

Suppose now that (a, b) is a non-trivial solution of (1) for some D ∈ {2, 3} (resp. D = 5). By
Corollary 3.17 we may assume that r = 1 (resp. r = 3) in Equation (18), and by Proposition 3.18 we
may also assume p > 43 (in fact, p > 17 will suffice). We aim to use Theorem 2.16 to find a good lower
bound for the form Λ introduced in Notation 3.5. By Remark 3.4, we may assume that the inequality
in (27) holds.

The next subsections are organised as follows. First of all, in Section 4.1 we fix the values of most
parameters in Theorem 2.16 in terms of a single free variable, called K̃. Then, in Sections 4.2 and 4.3
we check that these parameters satisfy the hypotheses of Theorem 2.16. In Section 4.4 we estimate
the size of various terms in inequality (17). This gives an easily testable criterion on K̃ that ensures
that (17) is not satisfied. When this is the case, the first inequality in Theorem 2.16 holds, and this
implies an upper bound for p. We work out this upper bound in Section 4.5. Finally, in Section 4.6
we apply this upper bound to show that Equation (1) has no solutions for p > 17. Combined with
Proposition 3.18, this concludes the proof of Theorem 1.1. In Section 4.7 we then prove Theorem 1.2
by a similar method, and in Section 4.8 we highlight some strengths and weaknesses of our approach.

4.1 Choice of parameters

We could proceed analytically, estimating the optimal parameters for Theorem 2.16 in terms of the
data, but – since we are dealing with a specific linear form in logarithms – it is both easier and more
effective to apply Theorem 2.16 with fixed parameters. Specifically, we take the following values, where
K̃ ≥ 0.1 will be fixed below.

1. b1 = kr = k or 3k, where k = 2t for some t ∈ N (we take t = 10), b2 = p, α1 = η2/k, α2 = |π|
|π| ,

δ = |π| (note that δ = |π| is an algebraic integer, and so is δ/α2 = |π|);

2. R1 = 3, S1 = 2, L = R1S1, µ = 1 (hence σ = 1), ρ = 35;

3. K = ⌊K̃ · a2⌋, R2 = ⌈
√
K̃L/a1 · a2⌉, S2 = ⌈

√
K̃La1⌉.

Even though we have fixed some relations among these values, we will keep using the symbols
R1, R2, S1, etc., to keep the discussion more general. Notice in particular that these choices fix the
value of the number a1 appearing in the statement of Theorem 2.16. We also remark explicitly that
with this choice of parameters the linear form Λ of Notation 2.1 is obviously the same as the form Λ
of Notation 3.5.

We further assume to know that a2 = (ρ+ 1) logα2 + 2 log π is not too small. Specifically, we fix
a2,min ≥ e and assume

log |π| ≥ 1

2
a2,min ⇒ a2 ≥ a2,min. (43)

The condition a2,min ≥ e ensures that the function x 7→ log x
x is decreasing for x ≥ a2,min. The bound

a2,min we will use is provided by Lemma A.3 and Proposition 3.23: together, these results imply
a2 ≥ log 2|π| ≥ log b ≥ 400. We will also choose k = 2t large enough that

a1 = (ρ+ 1) log η2/k =
2

k
(ρ+ 1) log η ≤ 1. (44)

This implies in particular S2 ≤ R2 and S ≤ R. It is also useful to introduce the parameter λ defined
by the equality

K − 1 = ⌊K̃a2⌋ − 1 = λK̃a2.

As a2 (hence K) tends to infinity, λ obviously tends to 1, and we always have λ = ⌊K̃a2⌋−1

K̃a2
≥ K̃a2−2

K̃a2
≥

1− 2
K̃a2,min

.
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Remark 4.1. The definitions imply
K − 1 = λK̃a2,

R = R1 +R2 − 1 ≤ R1 +

√
K̃L/a1a2 ≤

(√
K̃L/a1 +

R1

a2,min

)
a2,

S = S1 + S2 − 1 ≤
√
K̃La1 + S1.

4.2 Checking Condition 2.3

It is clear that α1 = η2/k is an algebraic unit, because αk1 = η2 is an algebraic unit by definition. The
following lemma implies parts (2) and (3) of Condition 2.3:

Lemma 4.2. Let (a, b) be a non-trivial solution of Equation (1) and assume that in the notation of
Equation (18) we have 0 ≤ r ≤ p−1

2 and log |π| ≤ log |π| (see Remark 3.3). The following hold.

1. The quantities | log |τ(αi)|| for i = 1, 2 are independent of the embedding τ : Q(α1, α2) ↪→ C (this
is Condition 2.3 (3));

2. For suitable determinations of the various logarithms, the quantity

|b2 log τ(α2)− b1 log τ(α1)|

is independent of the embedding τ : Q(α1, α2) ↪→ C (this is Condition 2.3 (2));

3. | log |τ(π)|| ≤ log |π| for all τ : Q(α1, α2) ↪→ C.

Proof. By definition, αk1 = η2, so α1 is a root of the polynomial(
xk − η2

) (
xk − η2

)
∈ Q[x].

Since η = ±Dη−1, the conjugates of α1 over Q are contained in the set{
η2/kζjk, (±Dη)

−2/kζjk = η−2/kζ ′ζjk = η−2/kζjk : j = 0, . . . , k − 1
}
,

where ζ ′ is a root of unity such that (ζ ′)k/2 = ±D1. Notice that ζ ′ has multiplicative order dividing k,
hence it can be reabsorbed in the factor ζjk. Thus, | log |τ(α1)|| = | log η±2/k| =

∣∣± 2
k log η

∣∣ = 2
k log η is

independent of τ . Similarly, the absolute value of the only conjugate of α2 = |π|/|π| is |α2|−1 = |π|/|π|,
so the absolute value of log |τ(α2)| is independent of τ . This proves part 1.

For part 2, notice that τ(α1) is of the form η2/kζjk for some j if and only if τ(α2) = α2 (to see this,

raise to the k-th power), and τ(α1) is of the form η−2/kζjk for some j if and only if |τ(α2)| = |1/α2|.
We discuss only the first case, the second being completely analogous. The logarithms of η2/kζjk are
2
k logR(η) +

2πi
k j + 2πik1 for k1 ∈ Z. The logarithms of α2 are logR(α2) + 2πik2 for k2 ∈ Z, where in

both cases logR denotes the real logarithm of a positive real number. For these determinations,

Λτ = b2 log (α2)− b1 log
(
η2/kζjk

)
= b2 logR(α2) + b2 · 2πik2 − b1

(
2

k
logR(η) +

2πi

k
j + 2πik1

)
= b2 logR(α2)− 2r logR(η) + 2πi (k2b2 − rj − k1b1)

= Λ + 2πi (k2b2 − rj − k1b1) .

Since b2 = p and b1 = kr = 2tr are relatively prime (recall that |r| ≤ p−1
2 and p is odd), Bézout’s

identity allows us to find integers k1, k2 such that k2b2−k1b1 = rj. For these values of k1, k2 (that is, for
the corresponding determinations of the logarithms), the above calculation shows Λτ = Λ, as desired.
A completely analogous calculation shows that when τ(

√
D) = −

√
D we can find determinations for

which Λτ = −Λ.
Finally, the only conjugates of π over Q are π and π itself. By the assumptions and Lemma A.3

we have |π| > |π|, and the claim follows.
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4.3 Checking Condition 2.5

We check that our parameters satisfy Condition 2.5.

1. We know from Lemma A.2 that α1, α2 are multiplicatively independent. We then obtain

#{αr1αs2 : 0 ≤ r < R1, 0 ≤ s < S1} = R1S1 = L,

so that (2) is satisfied.

2. We now have to show that

#{rb2 + sb1 : 0 ≤ r < R2, 0 ≤ s < S2} ≥ (K − 1)L.

We prove this under the assumption
S2 < p; (45)

if (45) is not satisfied, we get a good upper bound p ≤ S2. On the other hand, if (45) holds, then
the numbers pr+b1s are all distinct because pr1+b1s1 = pr2+b1s2 implies s1 = s2 by considering
the equality modulo p (we find b1s1 ≡ b1s2 (mod p); since p is coprime to b1 = kr = 2t or 2t · 3,
this implies s1 ≡ s2 (mod p). Given that |s1− s2| < S2 < p, we finally conclude s1 = s2). Hence
the cardinality of the above set is

R2S2 ≥

√K̃L

a1
a2

 ·
(√

K̃La1

)
= L · K̃a2 > L · (K − 1).

4.4 Estimating the terms in (17)

With the above choice of parameters we have the following estimates for the various terms in (17):

1. We give an upper bound for log γ. By definition we have

log γ = log

(
(R− 1)b2 + (S − 1)b1

2

)
− 2

K2 −K
log

(
K−1∏
k=1

k!

)
.

By [LMN95, p. 307] we have the inequality

− 2

K2 −K
log

(
K−1∏
k=1

k!

)
≤ − log(K − 1) +

3

2
− log (2π(K − 1)/

√
e)

K − 1
+

logK

6K(K − 1)
,

and it is easy to see that the sum of the last two terms is negative. We then have

log γ ≤ log

(
(R− 1)b2 + (S − 1)b1

2

)
− log(K − 1) +

3

2
=

3

2
+ log

(
(R− 1)p+ (S − 1)b1

2(K − 1)

)
=

3

2
+ log

(
(R− 1) + (S − 1)(rk/p)

2(K − 1)
· p
)
.

Recall that r = 1 or 3 (Corollary 3.17). Using Remark 4.1, we obtain

(K − 1) log γ ≤

3

2
+ log


√
K̃L/a1 +R1/a2,min + (S − 1)/(pa2,min) · rk

λK̃
· p
2

 K̃ · a2.

Remark 4.3. Note that, even if we didn’t know that r is fixed, the ratio r/p would still be
bounded by 1/2. This gives a weaker, but still useful, bound.

2. By the inequalities in Remark 4.1 we have

Ra1 + Sa2 ≤
(√

K̃L/a1 +
R1

a2,min

)
a1a2 +

(√
K̃La1 + S1

)
a2

=

(
2

√
K̃La1 +

R1a1
a2,min

+ S1

)
a2.

One could also give precise bounds on the factor g, but it will be enough to observe that by
definition g < 1

4 .
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To simplify the next inequality we use our explicit lower bound for a2,min: combining Lemma A.3

and Proposition 3.23 we know that in all cases a2 ≥ a2,min ≥ 400, hence K ≥ K̃a2−1 > 0.1a2−1 > 6.
We can then use Lemma B.1 to estimate

h(N) ≤ 2 · 1.41 logN ≤ 3 log(K̃La2) =
3 log(K̃L) + 3 log(a2)

a2
a2 ≤ 3 log(K̃L) + 3 log(a2,min)

a2,min
a2.

Putting everything together, we see that, if pmin ≤ p ≤ p0, the right-hand side of (17) is at most
g(K̃, p0) · a2, where

g(K̃, p0) =
3 log(K̃L)

a2,min
+
3 log a2,min

a2,min
+

1

4
L

(
2

√
K̃La1 +

R1

a2,min
a1 + S1

)

+ log

e3/2 ·
√
K̃L/a1 +R1/a2,min + (S − 1)/(pmina2,min) · rk

λK̃
· p0
2

 K̃.

(46)

On the other hand, it is clear that the left-hand side of (17) is at least f(K̃) · a2, where

f(K̃) = λK̃ · (L− 1) · log(ρ). (47)

In particular, if f(K̃) > g(K̃, p0), then the inequality in the second case of Theorem 2.16 does not
hold, and thus we obtain the lower bound in case 1 of this theorem. In the next section we compute
this lower bound more explicitly.

4.5 Applying Theorem 2.16

We have now checked that our choice of parameters satisfies all the assumptions of Theorem 2.16 and
we have estimated the various summands in Equation (17). We obtain the following corollary:

Corollary 4.4. Let f(K̃) and g(K̃, p0) be as in Equations (47) and (46). Fix p0. Suppose that
Equation (1) admits a non-trivial solution with p ≥ pmin and p ≤ p0. Suppose that K̃ satisfies
f(K̃) > g(K̃, p0). Assume in addition that the following inequalities hold:

1. L(
√
K̃L/a1 +

R1

a2,min
) < 2b1 < 1010;

2. LS ≤ 2pa2,min.

Then we have

p ≤ max

{
⌈
√
K̃L(ρ+ 1) · 2

k
log η⌉, 2LK̃ log ρ+ 2δ

}
,

where, using the notation c2(D) of Lemma A.6, we have set

δ :=
log(4

√
Dηr)

a2,min
+
c2(D)(ρ+ 1)

2a2,min
+ 10−1000 +

log a2,min

a2,min
.

Remark 4.5. The additional assumptions 1-2 are only included to obtain a simpler bound, but they
are somewhat arbitrary. In any case, they will be largely met by our final choice of parameters.

Proof. From the analysis in the previous section, it follows that either the inequality (45) is not
satisfied, that is,

p ≤ S2 = ⌈
√
K̃La1⌉ = ⌈

√
K̃L(ρ+ 1) · 2

k
log η⌉

or all assumptions of Theorem 2.16 hold. Moreover, the first inequality in Theorem 2.16 holds, because
the assumption f(K̃) > g(K̃, p0) implies that the inequality in case (2) of Theorem 2.16 does not hold.
Applying the theorem we then obtain

log |Λ′| ≥ −µN log ρ = −LK log ρ ≥ −LK̃ log ρ · a2, (48)
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where (see (15))

Λ′ = Λmax

{
LSeLS|Λ|/2b2

2b2
,
LReLR|Λ|/2b1

2b1

}
.

The correction term given by the maximum in this formula is very small: we estimate it as follows.
For the exponential part, we have

logmax
{
eLS|Λ|/2b2 , eLR|Λ|/2b1

}
≤ LR|Λ| < 10−1000a2,

where we have used S ≤ R (which follows from Equation (44)), LR < 104a2 (see Remark 4.1 and use
assumption 1) and |Λ| < 10−1010 (see Lemma A.5). For the rest, we simply write

logmax{LS
2b2

,
LR

2b1
} ≤ log a2 + logmax


LS

2pa2
,

L

(√
K̃L/a1 +R1/a2,min

)
2b1

 ≤ log a2,

where we have used the assumptions in the statement. From Equation (27) we know that

log |Λ| ≤ log(4
√
Dηr)− p log |π| = log(4

√
Dηr)− p

a2 − (ρ+ 1) logα2

2
.

Further using log(α2) <
c2(D)
p = c2(D)

pa2
a2 ≤ c2(D)

a2,minp
a2 (Lemma A.6), we arrive at

log |Λ′| ≤ log(4
√
Dηr)− p

a2 − (ρ+ 1) logα2

2
+ 10−1000a2 + log a2

≤ log(4
√
Dηr)− p

2
a2 +

ρ+ 1

2
p · c2(D)

pa2,min
a2 + 10−1000a2 + log a2

≤ −

(
p

2
− log(4

√
Dηr)

a2,min
− c2(D)(ρ+ 1)

2a2,min
− 10−1000 − log a2,min

a2,min

)
a2.

(49)

Combining Equations (48) and (49) we obtain

(−p
2
+ δ)a2 ≥ −LK̃ log ρ · a2,

hence
p ≤ 2

(
LK̃ log ρ+ δ

)
,

as desired.

4.6 Conclusion of the proof of Theorem 1.1

Fix D ∈ {2, 3, 5}. From Proposition 3.10 we know that Equation (1) has no non-trivial solutions for
p > p0 = 105, so we can assume p ≤ p0. We find a K̃0 such that f(K̃0) > g(K̃0, p0) and all conditions
of Corollary 4.4 are satisfied. This gives us a new bound p ≤ p1 (notice that p is an integer, so we
can take the floor of the bound in Corollary 4.4). If this bound is smaller than p0, we can iterate
this procedure, obtaining sharper and sharper estimates on p. We denote by p0, p1, . . . the successive
upper bounds obtained in this way. Tables 1 to 3 give the result of this procedure for D = 2, 3, 5,
starting from p < p0 = 105, and assuming p > 17 (so p ≥ 19: we take pmin = 19). For the third and
fourth columns, we give four significant digits, which in each case are enough to check the inequality
f(K̃) > g(K̃, pi). Note that all the values of K̃i employed in the reduction process are ≥ 0.1.

From the last line of each table, we obtain p ≤ 17. Since we had assumed from the beginning
that p > 17, we have reached a contradiction. This proves that Equation (1) does not have any
non-trivial solutions for p > 17, hence for any p ≥ 3 since the cases 3 ≤ p ≤ 17 are taken care of by
Proposition 3.18. This concludes the proof of Theorem 1.1.
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i pi K̃i f(K̃i) g(K̃i, pi) pi+1

0 105 1.623 28.77 28.73 69
1 69 0.4365 7.670 7.655 18
2 18 0.3797 6.661 6.649 16

Table 1: Reduction process for D = 2

i pi K̃i f(K̃i) g(K̃i, pi) pi+1

0 105 1.689 29.94 29.89 72
1 72 0.4587 8.065 8.053 19
2 19 0.3991 7.005 6.994 17

Table 2: Reduction process for D = 3

i pi K̃i f(K̃i) g(K̃i, pi) pi+1

0 105 1.591 28.20 28.16 68
1 68 0.4153 7.293 7.292 17
2 17 0.3613 6.333 6.321 15

Table 3: Reduction process for D = 5

4.7 Solving Equation (1) for D = 37

In this section, we quickly prove Theorem 1.2. We do not give many details, because the arguments are
simple variants of those already presented in detail for D = 2, 3, 5. We do point out, however, that the
calculations required are somewhat more extensive than those for D ∈ {2, 3, 5}, and the intermediate
results are slightly less clean: for example, we only get an analogue of Proposition 3.16 for p > 157.
Nevertheless, the total computation time is of the order of ten minutes on an ordinary laptop.

For this section, set D = 37. The fundamental unit of Q(
√
D) is η = 6 +

√
D and the class

number h37 is 1. By Proposition 3.10, Equation (1) has no solutions for p > p0 := 2.1 · 106. Note
that in every solution of Equation (1) with p ≥ 3 the variable b is odd, because 37 is not a square
modulo 8. By testing directly all pairs (b, p) with odd b ≤ 200 and p ≤ p0, we find the small solutions
(a, b, p) = (8, 3, 3), (3788, 27, 5). We can then assume b ≥ 201; by a computation very similar to the
proof of Proposition 3.10 for D ∈ {2, 3, 5}, using this lower bound we find p < 1.5 · 105 (we omit the
details).

By the procedure explained in Section 3.4, we find that, for all p with 157 < p < 1.5 · 105, we
must have r ∈ {±1}. We can then apply the technique of Section 3.5, where we consider all pairs
(r, p) = (1, p) for p ∈ (157, 1.5 · 105), as well as all pairs (r, p) with p ≤ 157 and 0 ≤ r ≤ p−1

2 . The
outcome is that, for p ≥ 7, all non-trivial solutions of Equation (1) satisfy b ≥ exp(400). Applying the
reduction process of Section 4.6 (with the same parameters) we then get p ≤ 17. We note that we use
Remark 4.3, as well as the estimate |r| ≤ 59 that comes from our previous examination of the possible
values of r.

There only remains to consider the Thue equations of Remark 3.6 for p ≤ 17 and r ∈ {0, . . . , p−1
2 }.

Thanks to the previous results, we can even avoid testing certain values of r. Solving these Thue
equations explicitly, we find one more non-trivial solution, namely (±3788)2 = (35)3 + 37. This
concludes the proof of Theorem 1.2.

4.8 Final comments

We conclude with a few remarks.

1. The computations necessary to obtain Tables 1 to 3 are completely straightforward and can be
checked with a pocket calculator. In general, the final reduction process is simple enough that it
can almost be carried out by hand.

2. The reduction process converges very quickly, and the size of the initial upper bound has very
little effect on it: for D = 2, 3, 5, if we start with the much weaker upper bound p0 ≤ 106, the pi
converge to the same estimates in the same number of steps. The other side of the coin is that
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iteration beyond a few steps does not lead to any further improvement of the upper bound pi (in
particular, the values given in the tables are stable: further applications of Corollary 4.4 yield
pi+1 = pi).

3. There are two reasons why having a larger value of a2,min helps in obtaining better estimates.
The first is that this parameter appears as a denominator in many error terms (see Corollary 4.4),
which therefore go to zero as a2,min → ∞. The other reason is that if a2,min is very large, one can
take h to be large (see Equation (46), which involves the ratio h/a2,min), and as a consequence,
we can also take a large value of ρ while ensuring a1 ≤ 1. In general, larger values of ρ lead
to better upper bounds. More precisely: in the limit where a2,min, k = 2t and ρ all go to
infinity, with 1

2 ≤ a1 ≤ 1 and a2,min being much larger than any other parameter in play, one

can check that asymptotically the optimal value of K̃ is 9
10 log ρ , which leads to an upper bound

p ≲ 2 · 6 · 9
10 log ρ · log ρ < 12.

4. It seems that the main obstacle to generalising the arguments in this paper to larger values ofD >
0 lies in extending Propositions 3.23 and 3.16. The two are closely connected: the computation
necessary for Proposition 3.23 is much faster if one has a result analogous to Proposition 3.16.
We have explained in Section 3.4 how to obtain results similar to Proposition 3.16 while avoiding
computations with modular forms. However, there is no guarantee that this procedure will
uniquely determine r (up to sign) for all values of p. In fact, it seems typical that for intermediate
p – say, p up to a few hundred – we are unable to pin down the value of r using this method (this
seems less of a problem if we also take into account the restrictions imposed by modular forms,
which is why we included the discussion of Section 3.3). If the value of r cannot be determined,
the resolution of the relevant Thue equations can become quite slow, both because the number
of Thue equations to solve increases, and especially because the size of their coefficients grows
rapidly with r. For example, we almost ran into this problem for D = 37. To check the result,
we wanted to extend the resolution of the Thue equations a bit beyond our upper bound of 17.
However, by the method of Section 3.4 we were unable to rule out the pair p = 19, r = 8, and
the gp algebra system could not solve the corresponding Thue equation within a few hours, so
we gave up on the computation. We note that we could not solve the Thue equation even after
reducing the binary form using MAGMA’s MinRedBinaryForm.

5. Finally, we discuss the situation for squarefree values of D that are squares modulo 8 (that is,
D ≡ 1 (mod 8)). Nothing changes if we assume that b is odd: in this case, Lemma 3.1 applies, and
the whole discussion of Section 3 can be repeated verbatim. Otherwise, the factors a±

√
D have

divisors that are primes of O√
D lying above 2, and are no longer relatively prime. In particular,

a ±
√
D need not be p-th powers, even as ideals (an example is given by a = 7, D = 17, which

corresponds to the solution 72 − 17 = 25 of Equation (1) with D = 17). One is then naturally
led to consider linear forms in three logarithms, so it seems that for D ≡ 1 (mod 8) and b ≡ 0
(mod 2) the situation is genuinely more complicated.

On the other hand, trying to extend our technique to cover this situation may not be the right
approach. The modular method can often handle ternary diophantine equations without solu-
tions, and – when D is fixed – we expect infinite sequences of solutions of Equation (1) only
for b = ±1 (or, in the exceptional case when D is a square, b = 0; but the situation is quite
different when D is a square, so we will not focus on this case). The values b = ±1 are odd, and
can therefore be treated with our method. The hope is then to use the modular method to deal
with the complementary case when b is an even number. For example, Equation (1) for D = 17
can probably be solved by a combination of the techniques of this paper and [BS23a]: see the
comments after [BS23a, Theorem 2], where it is (implicitly) claimed that the case D = 17 and
b even can be treated with the methods of that paper. As already explained, we can handle
the case where b is odd (specifically, with calculations almost identical to those of Section 4.7
we can prove that every solution of a2 − 17 = bp with b odd and p ≥ 3 is either trivial or
(a, b, p) = (282, 43, 3)), so it seems likely that the resolution of Equation (1) for D = 17 is well
within reach.
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A Basic properties of solutions of Equation (1)

To avoid cluttering the main discussion, we collect here some numerical estimates and other basic facts
about solutions of Equation (1). The results in this section are all elementary.

Lemma A.1. Let D ∈ {2, 3, 5} and let π, π be as in Equations (18) and (19). The algebraic numbers
π, π are relatively prime in the ring of integers of Q(

√
D).

Proof. If q is a prime of OQ(
√
D) that divides both, then Equation (21) shows that q divides 2

√
D,

hence q is either a prime above 2 or the prime (
√
D). If (

√
D) divides π, then – taking the norm down

to Q – we find that D divides b, which is easily seen to be impossible by considering Equation (1)
modulo D2. If a prime above 2 divides π, we similarly find that b must be even. When D = 2 this is
ruled out as above. For D = 3, 5, considering Equation (1) modulo 8 shows that if b is even we have
a2 ≡ D (mod 8), which is impossible both for D = 3 and D = 5.

Lemma A.2. Suppose (a, b) is a non-trivial solution to Equation (1) with D ∈ {2, 3, 5}. With notation
as in Equations (18) and (19), the numbers η and ±π/π are multiplicatively independent. For general
squarefree D > 0, not a square modulo 8, the same conclusion holds if |a| >

√
D + 4 + 2.

Proof. Note that we are in the situation of Remark 3.2, so the discussion of Section 3 applies. If
η,±π/π were multiplicatively dependent, a power of π

π would be equal to a power of η. Since η is

an algebraic unit, ±π
π would also be an algebraic unit. Since π, π are relatively prime (Lemma A.1),

this implies that π, π are algebraic units. But then so is b = ±ππ (see Equation (20)), hence b = ±1,
contradicting the non-triviality of the solution (a, b).

For general D we can proceed as follows: as above, if by contradiction η and ±π/π are multiplica-
tively dependent, we obtain that π/π is an algebraic unit. Taking the ratio of Equations (18) and (19)

we get that a−
√
D

a+
√
D

is an algebraic integer (in fact, a unit). We rewrite this ratio as a2+D−2a
√
D

a2−D . For

any algebraic integer in OQ(
√
D), the coefficient of

√
D in the Q-basis {1,

√
D} is a half-integer, hence

a2 −D | 4a. Assuming without loss of generality a ≥ 0, this implies a = 0 or a2 −D ≤ |a2 −D| ≤ 4a,
and therefore (a− 2)2 ≤ D + 4, which is the opposite of the inequality in the statement.

Lemma A.3. Let (a, b) be a non-trivial solution of Equation (1) for some prime p and some D ∈
{2, 3, 5}. With notation as in Equations (18) and (19), and under the assumption r > 0 (see Re-
mark 3.3), we have |π| > |π| and log |π| > 1

2 log b. For general squarefree D > 0, not a square modulo

8, the same conclusions hold for |a| > η2+1
η2−1

√
D. If r = 0, then (possibly up to replacing (a, b) with

(−a, b)) we have |π| ≥ |π| and log |π| ≥ 1
2 log b, with strict inequalities unless D is a perfect p-th power.

Proof. We are in the situation of Remark 3.2, so the discussion of Section 3 applies. By Equations (18)
and (19) we have

|π|p = |a+
√
D|

ηr
, |π|p = ηr · |a−

√
D|,

where we assume 0 < r ≤ p−1
2 . If |π| ≥ |π|, then

|a|+
√
D ≥ ηr|π|p ≥ ηr|π|p ≥ η2r(|a| −

√
D),

hence (1+η2r)
√
D ≥ (η2r−1)|a|. This gives the absolute upper bound |a| ≤ 1+η2r

η2r−1

√
D = 1+η−2r

1−η−2r

√
D ≤

1+η−2

1−η−2

√
D. For D ∈ {2, 3, 5} these values of a only lead to trivial solutions, contradiction. Hence

|π| < |π|. Writing |b| = |ππ| = |π|2 · |π|
|π| < |π|2 then gives the other statement. For the case r = 0, see

Remark 3.3.

Lemma A.4. Let (a, b) be a non-trivial solution of Equation (1) for some D ∈ {2, 3, 5}. With
notation as in Equations (18) and (19), and under the assumption r ≥ 0, or r = 0 and |π| ≥ |π| (see
Remark 3.3), the heights of η and π/π are given by

h(η) =
1

2
log(η) and h(π/π) = logmax{|π|, |π|} = log |π|,
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hence the heights of α1 = η2/k and α2 = |π|/|π| are

h(α1) = h(η2/k) =
1

k
log(η) and h(α2) = h(π/π) = log |π|.

For general squarefree D > 0, not a square modulo 8, we have h(η) = 1
2 log η and h(π/π) ≤ log |π|.

Proof. The minimal polynomials of η, π/π are respectively

(x− η)(x− η) and

(
x− π

π

)(
x− π

π

)
= x2 −

(
π

π
+
π

π

)
x+ 1.

Using ππ = ±b (see Equation (20)), we can rewrite the second of these polynomials as

x2 ∓ π2 + π2

b
x+ 1;

in particular, π/π is a root of the polynomial with integer coefficients

bx2 ∓ (π2 + π2)x+ b.

Note that this polynomial is primitive: if there is a prime of Z that divides both b and π2 + π2, then
there is a prime of OQ(

√
D) that divides both b = ±ππ and π2 + π2, and this contradicts Lemma A.1.

Note that since |ηη| = 1 and |η| > 1 we have |η| < 1, so the only conjugate of η with absolute value
greater than 1 is η itself. Similarly, at most one of |π/π| and |π/π| is strictly greater than 1. We can
then immediately compute the desired heights: since both η and π/π are of degree 2, we get

h(η) =
1

2
log(η), h(π/π) =

1

2
(log |b|+ logmax{|π/π|, |π/π|}) .

Taking into account that log(|b|) = log(|ππ|) by Equation (20), we get h(π) = logmax{|π|, |π|}. We
conclude by applying Lemma A.3.

The proof for generalD > 0 is the same, except that we do not necessarily know that the polynomial
bx2 ∓ (π2 + π2)x+ b is primitive, hence we only get an upper bound for the height.

Lemma A.5. Let (a, b) be a non-trivial solution of Equation (1) with D ∈ {2, 3, 5} and p ≥ 17. Let
π, π be as in Equations (18) and (19). Set

ε :=
4
√
D · ηr

|π|p
> 0.

We have ε < 4
√
Dηrb−p/2, hence in particular ε < 4

√
5(2 +

√
3)r exp(−200p) < 10−1400.

Proof. We have |π| ≥ |b|1/2 by Lemma A.3 and |b| > exp(400) by Proposition 3.23.

Lemma A.6. Let (a, b) be a non-trivial solution of Equation (1) for D ∈ {2, 3, 5} and p ≥ 17. Suppose
that, in the notation of Equation (18), we have r = 1 if D = 2, 3 and r = 3 if D = 5. With α2 as in
Notation 3.5, we have

0 < logα2 <
c2(D)

p
,

where

c2(D) =


1.77, for D = 2

2.64, for D = 3

0.97, for D = 5.

Proof. We already know that logα2 = log (|π|/|π|) > 0 by Lemma A.3. By (25) with r = 1 or r = 3
and Lemma A.5 we obtain ∣∣∣∣2p log β1 − log β2

∣∣∣∣ < 4
√
Dηr

pbp/2
,

hence (using the lower bound for b provided by Proposition 3.23) we have

| logα2| = | log β2| <
4
√
Dηr

pbp/2
+

2

p
| log β1| <

2 log β1 + 10−4

p
<
c2(D)

p
.
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B Elementary inequalities

We prove two elementary inequalities needed in the rest of the paper.

Lemma B.1. Let N ≥ 6 be an integer. We have

1

N

(
log(eN + (e− 1)N ) + log(N !) + logN

)
< 1.41 logN.

Proof. We bound log(eN + (e− 1)N ) < log(2eN ) = N + log 2 and use Stirling’s approximation,

N ! ≤
√
2πN

(
N

e

)N
e

1
12N ,

to get log(N !) ≤ 1
2 log(2π) +

1
12N + (N + 1

2 ) logN −N ≤ 1 + (N + 1
2 ) logN −N (the last inequality

holds for all N ≥ 2). We then obtain

log(N)

N
+
log
(
eN + (e− 1)N

)
N

+
log(N !)

N
≤

≤ logN

N
+

log 2 +N

N
+

1 + (N + 1/2) logN −N

N

≤ N logN + 3/2 logN + log(2e)

N
< 1.41 logN,

where it is easy to test numerically that the last inequality holds for all N ≥ 6.

Lemma B.2. Let A ≥ 2000 be a real number. The inequality x < A(log x)2 implies x < γ0A(logA)
2,

where γ0 = 2.8.

Proof. It suffices to check that, for every γ ≥ γ0, the number x = γA(logA)2 does not satisfy the
inequality x < A(log x)2, that is, that we have

γA(logA)2 ≥ A
(
log(γA(logA)2)

)2 ⇐⇒ γ(logA)2 ≥ (log(γ) + logA+ 2 log logA)
2

⇐⇒ √
γ ≥ 1 +

log γ + 2 log logA

logA
.

The right-hand side is a decreasing function of A, so it suffices to check this inequality for A = 2000.
Once A is fixed, the derivative of the left-hand side is greater than the derivative of the right-hand
side for γ ≥ 1, so it suffices to check the inequality for γ = γ0. A numerical verification concludes the
proof.
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1992 (Taejŏn), pages 53–79. Korea Adv. Inst. Sci. Tech., Taejŏn, 1992.
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