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20. [M40] Investigate the accuracy of Euclid’s algorithm: What can be said aboyt

calculation of the greatest common divisor of polynomials whose coefficients are ﬂoating |
point numbers?

21. [M25] Prove that the computation time required by Algorithm C to compute the l
ged of two nth degree polynomials over the integers is O(n*(log Nn)?), if the coefficients
of the given polynomials are bounded by N in absolute value.

22. [M23] Prove Sturm’s theorem. [Hint: Some sign sequences are impossible.|

23. [M22] Prove that if u(z) in (29) has deg(u) real roots, then we have deg(usq1) =
deg(u;) —1for 0 < 7 < k.
24. [M21] Show that (19) simplifies to (20) and (23) simplifies to (24).

25. [M24] (W.S. Brown.) Prove that all the polynomials u;(z) in (16) for § > 3 are
multiples of ged(4(u), £(v)), and explain how to improve Algorithm C accordingly. i
> 26. [M26] The purpose of this exercise is to give an analog for polynomials of the
fact that continued fractions with positive integer entries give the best approximations
to real numbers (exercise 4.5.3-42).

Let u(z) and v(z) be polynomials over a field, with deg(u) > deg(v), and let
a1(z), az(z), ... be the quotient polynomials when Euclid’s algorithm is applied to u(z)
and v(z). For example, the sequence of quotients in (5) and (6) is 9z° + 7, 522 + 5,
62° 4 522 + 6z + 5, 9z + 12. We wish to show that the convergents pn(z)/qn(z) of
the continued fraction [a,(z), az(z), .../ are the “best approximations” of low degree
to the rational function v(z)/u(z), where we have Pn(z) = Qn—1(az(z), ..., an(z)) and
qn(z) = Qu(a1(z),...,an(z)) in terms of the continuant polynomials of Eq. 4.5.3-4.
By convention, we let po(z) = q—1(z) =0, p—1(z) = qo(z) = 1.

Prove that if p(z) and q(z) are polynomials such that deg(q) < deg(gn) and
deg(pu — qu) < deg(pn—1u — gn_1v), for some n 2> 1, then p(z) = cpn—i(z) and
q(z) = cqn—_1(z) for some constant ¢. In particular, each gn(z) is a “record-breaking”
polynomial in the sense that no nonzero polynomial q(z) of smaller degree can make
the quantity p(z)u(z) — g(z)v(z), for any polynomial p(z), achieve a degree as small as
Pul(@)u(z) — gu(z)u(z).

*4.6.2. Factorization of Polynomials

Let us now consider the problem of factoring polynomials, not merely finding
the greatest common divisor of two or more of them.

Factoring modulo p. As in the case of integer numbers (Sections 4.5.2, 4.5.4),
the problem of factoring seems to be more difficult than finding the greatest
common divisor. But factorization of polynomials modulo a prime integer p is
not as hard to do as we might expect. It is much easier to find the factors of an
arbitrary polynomial of degree n, modulo 2, than to use any known method to
find the factors of an arbitrary n-bit binary number. This surprising situation
is a consequence of an instructive factorization algorithm discovered in 1967 by
Elwyn R. Berlekamp [Bell System Technical J. 46 (1967), 1853-1859].

Let p be a prime number; all arithmetic on polynomials in the following dis-
cussion will be done modulo p. Suppose that someone has given us a polynomial
u(z), whose coefficients are chosen from the set {0,1,...,p—1}; we may assume
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that u(z) is monic. Our goal is to express u(z) in the form

u(z) = p1(z)**. .. pr(2)*, (1)
where pi(z), ..., p-(z) are distinct, monic, irreducible polynomials.
As a first step, we can use a standard technique to determine whether any
of the exponents ey, ..., e, are greater than unity. If
w(z) = Unz™ + - - + uo = v(z)’w(z), (2)

then its “derivative” formed in the usual way (but modulo p) is
W(z) = nung™ ! 4 -+ up = 20(zW (z)w(z) + v(z)’w(z), (3)

and this is a multiple of the squared factor v(z). Therefore our first step in
factoring u(z) is to form

ged(u(z), v'(z)) = d(z). (4)

If d(z) is equal to 1, we know that u(z) is “squarefree,” the product of distinct
primes py(z). .. p-(z). If d(z) is not equal to 1 and d(z) # u(z), then d(z) is a
proper factor of u(z); the relation between the factors-of-d(z) and the factors. of

_u(z)/d(z) speeds up the factorization process nicely in this case (see exercise 34)

Finally, if d(z) = u(o:) ‘we must have /(z) = 0; hence the coefficient u. of z*
_is nonzero only when k is a multiple of p. This means that u(z) can be written
asa polynomlal of the form v(zP), and in such a case we have

u(z) = v(z?) = (v(z))"; (5)

the factorization process can be completed by finding the irreducible factors
of v(z) and raising them to the pth power.

Identity (5) may appear somewhat strange to the reader; it is an important
fact that is basic to Berlekamp’s algorithm and to several other methods we
shall discuss. We can prove it as follows: If v1(z) and v2(z) are any polynomials

_modulo p, then

(v1(z) + v2(2))” = v1(2)? + ()vi ()P v2(2)
+ -+ (R (z)ve(z)P T 4 va(2)”

= v1(z)? + v2(2)”,
since the binomial coefficients (§), ..., (,7,) are all multiples of p. Furthermore
if @ is any integer, we have aP = (modulo p) by Fermat’s theorem. Therefore

when v(z) = vmz™ + vm_lxm_l + -+ 4 vg, we find that

W(@)? = ms™)P + (Umo12™ ) 4+ (v)?
= Unz™? + Um,_1z‘(m_1)p +---4 v = v(zP).
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The above remarks show that the problem of factoring a polynomial reduces
to the problem of factoring a squarefree polynomial. Let us therefore assume
that

u(z) = p1(z)p2() .- - - pr(2) (6)

is the product of distinct primes. How can we be clever enough to discover the
pj(z)’s when only u(z) is given? Berlekamp’s idea is to make use of the Chinese
remainder theorem, which is valid for polynomials just as it is valid for integers
(see exercise 3). If (sq,s2,...,5,) is any 7-tuple of integers mod p, the Chinese
remainder theorem implies that there is a unique polynomial v(z) such that

v(z) = s1 (modulo py(z)), ..., v(z)=s, (modulo p,(z)),
deg(v) < deg(p:1) + deg(ps) + - - + deg(p) = deg(u).

_The notation g(z) = h(z) (modulo flz )) that appears here is the same as

“g(z) = A( (z) (modulo f(z). and )" in exercise 3.2.2-11, since we are considering
polynomial arithmetic modulo p. The polynomlal v(a:) in ( ) gives us a way to get
at the factors of u(z), for if 7 > 2 and s; 5% s», we will have ged(u(z), v(z) — 51)
divisible by p;(z) but not by pa(z).

Since this observation shows that we can get information about the factors
of u(z) from appropriate solutions v(z) of (7), let us analyze (7) more closely.
In the first place we can observe that the polynomial v(z) satisfies the condition
v(2)? = sF = s; = v(z) (modulo pj(z)) for 1 < j < r, therefore

(1)

v(z)? = v(z) (modulo u(z)), deg(v) < deg(u). (8)
In the second place we have the basic polynomial identity
P —z=(z—0)(z—1)...(z—(p—1)) (modulo p) 9)
(see exercise 6); hence

v(z)? —v(z) = (v(z) — 0)(v(z) — 1)... (v(z) — (p — 1)) (10)

is an identity for any polynomial v(z), when we are working modulo p. If u(z)
satisfies (8), it follows that u(z) divides the lef‘b—hand_gggif_@\()), so every
irreducible factor of u(z) must divide one of the p relatively prime factors of
the right-hand side of (10). In other words, all solutions of (8 (8) must have the
form of (7), for some sy, s, ..., sr; there gyggxgggyp “solutions of (8).

T Thesolutions v(z) to cohg?liiér{(-:é (8) therefore provide a key to the factoriza-
tion of u(z). It may seem harder to find all solutions to (8) than to factor u(z)
in the first place, but in fact this is not true, since the set of solutions to (8) is

closed under addition. Let deg(u) = n; we can construct the n X n matrix

4o,0 qdo,1 ‘.- qo,n—1
Q= : : : (11)

Qn—1,0 Qn—1,1 --- Qn—1i,n—1
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where

PP =gz Qe,1Z + g0 (modulo u(z)). (12)

Then v(z) = vp—12" 1 4 --- 4 v,z + vy is a solution to (8) if and only if

(vOyvly"'yvn—l)Q:(UOaUI)"'yvn—l); (13)

for the latter equation holds if and only if
v(z) ZZ v;27 =Z Z VG 77 = Z U zP* = y(zP) = v(z)? (modulo u(z)).
J j ok k

Berlekamp’s factoring algorithm therefore proceeds as follows:

Bl. Ensure that u(z) is squarefree; i.e., if gcd(u(a:),u’(z)) # 1, reduce the
problem of factoring u(z), as stated earlier in this section.

B2. Form the matrix @ defined by (11) and (12). This can be done in one of two
ways, depending on whether or not p is very large, as explained below.

B3. “Triangularize” the matrix Q — I, where [ = (6:5) is the n X n identity
matrix, finding its rank n — r and finding linearly independent vectors (1],
.-, vl sueh that vUl(Q—1) = (0,0, ..., 0) for 1 < j < r. (The first vector
vl may always be taken as (1,0,...,0), representing the trivial solution
v(z) = 1 to (8). The “triangularization” needed in this step can be done
using appropriate column operations, as explained in Algorithm N below.
At this point, r is the number of irreducible factors of u(z), because the
solutions to (8) are the p™ polynomials corresponding to the vectors ¢y vl 4
-+« + t,ol"! for all choices of integers 0 < ty,...,¢, < p. Thereforeif r = 1
we know that u(z) is irreducible, and the procedure terminates.

B4. Calculate ged(u(z), v1?(z)—s) for 0 < s < p, where v[?l(z) is the polynomial
represented by vector v[?l. The result will be a nontrivial factorization of

u(z), because v!?(z) — s is nonzero and has degree less than deg(u), and by
exercise 7 we have

u(z) = H ged(v(z) — s, u(z)) (14)

0<s<p

whenever v(z) satisfies (8).

If the use of v[?(z) does not succeed in splitting u(z) into r factors,
further factors can be obtained by calculating ged(vl¥(z) — s, w(z)) for
0 < s < pand all factors w(z) found so far, for k = 3, 4, ..., until  factors
are obtained. (If we choose s; 7 s; in (7), we obtain a solution v(z) to (8)
that distinguishes p;(z) from p;(z); some v!¥l(z) — s will be divisible by pi(z)
and not by p;(z), so this procedure will eventually find all of the factors.)

If p is 2 or 3, the calculations of this step are quite efficient; but if p is

more than 25, say, there is a much better way to proceed, as we shall see
later. g
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As an example of this procedure, let us now determine the factorization of

u(z) = 78 + z° + 10z* + 102° + 82 + 2z +8 (15)

modulo 13. (This polynomial appears in several of the examples in Section 4.6.1.)
A quick calculation using Algorithm 4.6.1E shows that ged(u(z), v'(z)) = 1;

therefore u(z) is squarefree, and we turn to step B2. Step B2 involves calculating

the @ matrix, which in this case is an 8 X 8 array. The first row of Q is always
(1,0,0,...,0), representing the polynomial z° modu(z) = 1. The second row

represents z'2 mod u(z), and, in general, z* mod u(z) may readily be determined -

as follows (for relatively small values of k): If
u(z) =z" + Un—1Z" P Fusz +uo

and if
* =agn_1" - Fak1T +ak0 (modulo u(z)),

then

Pt =gpp_1z” 4+ -+ ak1Z7° + k0T
= Gt (—Un18" " — o — T — Ug) + Gkn—2T" T+ akes
= GppinaZ” 4 + Gk+112 + ak41,0,
where
Gk41,j = Qk,j—1 — Qk,n—1U;j- - (18)

In this formula ag,—; is treated as zero, so that axy1,0 = —@kn—1%o. The
3

simple “shift register” recurrence (16) makes it easy to calculate z', 2, 7, ...
mod 17(*2;): Inside a computer, this calculation is of course generally done by
maintaining a one-dimensional array (an—1,-- .,a1,a9) and repeatedly setting
t — an_1, Gn_1 — (@Gn—2 — tUp_1)modp, ..., 01 « (ap — tuy) modp, and
ag — (—tug) mod p. (We have seen similar procedures in connection with random
number generation; cf. Eq. 3.2.2-10.) For the example polynomial u(z) in (15),
we obtain the following sequence of coefficients of 7* mod u(z), using arithmetic

modulo 13:
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Therefore the second row of @ is (2,1,7,11,10,12,5,11). Similarly we may
determine 226 mod u(z), ..., z°! mod u(z), and we find that

0 0 O
10 12
0 4
6
3 1
2
0
0

0 -
1
6
3
11
11

o
o

0,
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11
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12
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11
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11
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1
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0

—
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11
11

5 11 12
\3 3 12 11

That finishes step B2; the next step of Berlekamp’s procedure requires
finding the “null space” of @ — I. In general, suppose that Ais an n X n
matrix over a field, whose rank n — r is to be determined; suppose further that
we wish to determine linearly independent vectors vl vl ol such that
WA = vPRPl4A = ... = o[MA = (0,...,0). An algorithm for this calculation
can be based on the observation that any column of A may be multiplied by
a nonzero quantity, and any multiple of one of its columns may be added to a
different column, without changing the rank or the vectors o ol (These
transformations amount to replacing A by AB, where B is a nonsingular matrix.)
The following well-known “triangularization” procedure may therefore be used.

!
DN R WO WUTO N A W -
0000 O»W=_O =000 O »=

—

0
0
0
2
0

-3
=

11
11

©

Algorithm N (Null space algorithm). Let A be an n X n matrix, whose elements

a;; belong to a field and have subscripts in the range 0 < ¢,7 < n. This

algorithm outputs r vectors vl ..., v["l, which are linearly independent over

the field and satisfy vU]1A = (0,...,0), where n — r is the rank of A.

N1. [Initialize.] Set cg < ¢1 ¢ -+ « ¢n—1 < —1, 7 « 0. (During the calculation
we will have ¢; > 0 only if ac,;; = —1 and all other entries of row c; are
7€r0.)

. [Loop on k.] Do step N3 for k =0, 1, ..., n — 1, and then terminate the
algorithm.

. [Scan row for dependence.] If there is some 7 in the range 0 < 7 < n such
that ax; 7% 0 and ¢; < 0, then do the following: Multiply column j of A by
—1/ag; (so that ax; becomes equal to —1); then add ay; times column j to
column 7 for all ¢ 7 j; finally set ¢; « k. (Since it is not difficult to show
that a;; = 0 for all s < k, these operations have no effect on rows 0, 1, ...,
k—1of A.)
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On the other hand, if there is no j in the range 0 < j < 7 such that
akj 7 0 and ¢; < 0, then set 7 « r 4 1 and output the vector :

v[TI = ('U(),'Ul, »iin 'Jvn——l)

defined by the rule

ifcs=7520
if j = k;
otherwise.

An example will reveal the mechanism of this algorithm. Let A be the matrix
Q@ — I of (17) over the field of integers modulo 13. When k = 0, we output th
veetor vl!l = (1,0,0,0,0,0,0,0). When k = 1, we may take j in step N3 to b
either 0, 2, 3, 4, 5, 6, or 7; the choice here is completely arbitrary, although i
affects the particular vectors that are chosen to be output by the algorithm. Fo
hand calculation, it is most convenient to pick 7 = 5, since a5 = 12 = —
already; the column operations of step N3 then change A to the matrix

0 0
0 0
11 5
3 9
2
1
6
1

®o

DW= OO

4 11
5 11 1
1 11
12 3 1

— =
DO O N W= OO

—
WO O OO

O = 10 Ut 00 © ©
— =

— =0 = O

—

(The circled element in column “5”, row “1”, is used here to indicate that
¢s = 1. Remember that Algorithm N numbers the rows and columns of the
matrix starting with 0, not 1.) When k = 2, we may choose j = 4 and proceed
in a similar way, obtaining the following matrices, which all have the same null
space as Q — I:
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k=4 k=5

0 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 o0
0.0 0 0 0(@) o0 o 0.0 0 0 0@ o o
00 0 0@ 0 0 o 00 0 0@ 0 0 o
0@ o0 0 0 0 o o 0@ 0 0 0 0 0 o
00 0 0 0 0 o0 (@1 0 0 0 0 0 0 0@
1 10 4 11 4 4 0 o @ o0 0o 0 0 0 0 o
8 2 6 10 11 11 0 9 5.0 00 5 5 0 9
16 411 2 0 01/ \;2 9 o 0 11 9 0 10

Now every column that has no cireled entry is completely zero; so when k — 6
and k£ = T the algorithm outputs two more vectors, namely

v = (0,5,5,0,9, 5,1,0), v¥ =(0,9,11,9, 10,12, 0,1).

From the form of matrix A after k — 5, it is evident that these vectors satisfy
the equation vA = (0, ..., 0). Since the computation has produced three linearly
independent vectors, u(z) must have exactly three irreducible factors.

Finally we can go to step B4 of the factoring procedure. The calculation of
ged(u(z), v1?(z)—s) for 0 < s < 13, where v!2! (z) = 28 4-52° 4924 4502 f 51,
gives 2° 452 + 92% 4 524 5 as the answer when s =0, and 23 822+ 47412
when s = 2; the ged is unity for other values of S. Therefore 0[2](2;) gives us only
two of the three factors. Turning to ged(vBl(z) — s, 25 4 524 +92% 452 4-5),
where vl3l(z) = 7 4 1955 + 10z* + 92° 4 1122 + 9z, we obtain the value
zt 4+ 223 4 322 +4z 6 when s =6, z + 3 when s = 8, and unity otherwise.
Thus the complete factorization is

Yz) = (z* + 22° + 322 4 4z 4 6)(23 4 822 + 4z 4 12)(z 4 3). (19)

Let us now estimate the running time of Berlekamp’s method when an nth
degree polynomial is factored modulo p. First assume that p is relatively small,
so that the four arithmetic operations can be done modulo p in essentially a fixed
length of time. (Division modulo p can be converted to multiplication, by storing
a table of reciprocals as suggested in exercise 9; for example, when working
modulo 13, we have § =7, 3 =9, etc.) The computation in step Bl takes O(n?)
units of time; step B2 takes O(pn?). For step B3 we use Algorithm N, which

Tequires O(n3) units of time at most. Finally, in step B4 we can observe that the

calculation of ged(f(z), 9(z)) by Euclid’s algorithm takes O(deg(f) deg’q)) units

of time; hence the calculation of ged(vP)(z) — s, w(z)) for fixed 7 and s and for

all factors w(z) of u(z) found so far takes O(n?) units. Step B4 therefore requires
O(prn?) units of time at most. Berlekamp’s procedure factors an arbitrary
Polynomial of degree n, modulo P, in O(n3+-prn?) steps, when pis a small prime;
and exercise 5 shows that the average number of factors, 7, is approximately In 7.
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Thus the algorithm is much faster than any known methods of factormg n-digit
numbers in the p-ary number system. :

Of course, when n and p are small, a trial-and-error factorization procedure
analogous to Algorithm 4.5.4A will be even faster than Berlekamp’s methog.
Exercise 1 implies that it is a good idea to cast out factors of small degree first
when p is small, before going to any more complicated procedure, even when 7,
is large.

When p is large, a different implementation of Berlekamp’s procedure would
be used for the calculations. Division modulo p would not be done with ap
auxiliary table of reciprocals; instead the method of exercise 4.5.2-15, which
takes O((logp)?) steps, would probably be used. Then step Bl would take
O(n®(log p)?) units of time; similarly, step B3 takes O(n3(logp)?). In step B2,
we_can form zP modu(z) in a more efficient way than (16) when p is lgggg

»Sectlon 4.6.3 shows s that this value can essentially be obtalned by _using g O(log )

_operatloﬁs of squaring mod u(z),” i.e., going from z* mod u(z) to 3¢ ~" mod u(z).
The squaring operation is relatlvely easy to perform if we first make an auxiliary
table of 2 mod u(z) for m =n, n 4 L.y 20— 2000

¥ mod u(z) = ¢p_ 12" L 4 -+ 4 ¢1T + co,

z%* mod u(z) = (2_ 12> 2 ... +(crco + cico)z + ¢3) mod u(z),
where z2"—2, ..., z™ can be replaced by polynomials in the auxiliary table. The
total time to compute z? mod u(z) comes to O(nz(log D) ) units, and we obtain
the second row of @. To get further rows of @, we can compute z?? mod u(z),
3P mod u(z), ..., simply by multiplying repeatedly by z? mod u(z), in a fashion
analogous to squaring mod u(z); step B2 is completed in O(n?(logp)®) units of
time. Thus steps B1, B2, and B3 take a total of O(n?(logp)® + n3(log p)?) units
of time; these three steps tell us the number of factors of u(z).

But when p is large and we get to step B4, we are asked to calculate a greatest
common divisor for p different values of s, and that is out of the question if p
is even moderately large. This hurdle was first surmounted by Hans Zassenhaus
[J. Number Theory 1 (1969), 291-311], who showed how to determine all of the
“useful” values of s (see exercise 14); but an even better way to proceed was
found by Zassenhaus and Cantor in 1980. If v(z) is any solution to (8), we know
that u(z) divides v(z)? —v(z) = v(z)- (v(z)P—1/2 41)- (v(z)P—V/2 —1). This
suggests that we calculate

ged(u(z), 1)(:1:)(7"_1‘)/2 — 1);‘ (20)

with a little bit of luck, (20) will be a nontrivial factor of u(z). In fact, we can
determine exactly how much luck is involved, by considering (7). Let v(z) = s;
(modulo pj;(z)) for 1 < j < r; then p;(z) divides v(z)®—1/2 — 1 if and only if
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s](p—l)/ > = 1 (modulo p). We know that exactly (p — 1)/2 of the integers s in

the range 0 < s < p satisfy s(P~1)/2 = 1 (modulo p), hence about half of the

- pj(z) will appear in the ged (20). More precisely, if v(z) is a random solution

of (8), where all p” solutions are equally likely, the probability that the ged (20)
equals u(z) is exactly
(0 —1)/2p)",

and the probability that it equals 1 is ((p -+ 1)/2p)r. The probability that a
nontrivial factor will be obtained is therefore

p—1Y p+1\ _ 1 ™ _, N\ _ 4
1—( 2p ) _( 2p ) _1_2T‘1(1+(2)p +(4>p 4+m)2§’

forall > 2 and p > 3.

It is therefore a good idea to replace step B4 by the following procedure,
unless p is quite small: Set v(z) « a;v!(z) + ayvl?l(z) 4 - - - + a,vl"](z), where
the coefficients a; are randomly chosen in the range 0 < a; < p. Let the current
partial factorization of u(z) be ui(z)...u:(z) where ¢ is initially 1. Compute

gi(z) = ged(ui(z), v(z)P—V/2 —1)

for all ¢ such that deg(u;) > 1; replace u;(z) by gi(z) - (ui(z)/gi(z)) and increase
the value of ¢, whenever a nontrivial ged is found. Repeat this process for
different choices of v(z) until t = r.

If we assume (as we may) that only O(logr) random solutions v(z) to (8)
will be needed, we can give an upper bound on the time required to perform
this alternative to step B4. It takes O(r(logp)?) steps to compute v(z); and if
deg(u;) = d, it takes O(d?(logp)®) steps to compute v(z)®—1/2 mod u;(z) and
O(d*(log p)?) further steps to compute ged(us(z),v(z)P~1/2 —1). Thus the
total time is O(n?(log p)3logr).

For further discussion, see the articles by E. R. Berlekamp, Math. Comp. 24
(1970), 713-735, and Robert T. Moenck, Math. Comp. 31 (1977), 235-250.

Distinct-degree factorization. We shall now turn to a somewhat simpler way to
find factors modulo p. The ideas we have studied so far in this section involve
many instructive insights into computational algebra, so the author does not
apologize to the reader for presenting them; but it turns out that the problem
of factorization modulo p can actually be solved without relying on so many
concepts.

In the first place we can make use of the fact that an irreducible polynomial
q(z) of degree d is a divisor of z?* — z, and it is not a divisor of z*° — z for
¢ < d; see exercise 16. We can therefore cast out the irreducible factors of each
degree separately, by adopting the following strategy.

D1. Rule out squared factors, as in Berlekamp’s method. Also set v(z) « u(z),

w(z) « “z”, and d « 0. (Here v(z) and w(z) are variables that have
polynomials as values.) '
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D2. (At this point w(z) = zP* mod v(z); all of the irreducible factors of v(z) ape
distinet and have degree > d.) If d+1 > jdeg(v), the procedure terminateg
since we either have v(z) = 1 or v(z) is irreducible. Otherwise increase g
by 1 and replace w(z) by w(z)? mod v(z). -

D3. Find gq4(z) = ged(w(z) — z,v(z)). (This is the product of all the irreducibje
factors of u(z) whose degree is d.) If gq(z) 7% 1, replace v(z) by v(z)/g4(z
and w(z) by w(z) modv(z); and if the degree of g4(z) is greater than d, yse
the algorithm below to find its factors. Return to step D2. 1§ '

~—

This procedure determines the product of all irreducible factors of each
degree d, and therefore it tells us how many factors there are of each degree.
Since the three factors of our example polynomial (19) have different degrees,
they would all be discovered without any need to factorize the polynomials g,(z).

The distinct degree factorization technique was known to several people
in 1960 [cf. S. W. Golomb, L. R. Welch, A. Hales, “On the factorization of
trinomials over GF(2),” Jet Propulsion Laboratory memo 20-189 (July 14, 1959)],
but there seem to be no references to it in the “open literature.” Previous work
by S. Schwarz, Quart. J. Math., Oxford (2) 7 (1956), 110-124, had shown how
to determine the number of irreducible factors of each degree, but not their
product, using the matrix Q.

To complete the method, we need a way to split the polynomial g4(z) into -
its irreducible factors when deg(gs) > d. Michael Rabin pointed out in 1976
that this can be done by doing arithmetic in the field of p% elements. David G.
Cantor and Hans Zassenhaus discovered in 1979 that there is an even simpler
way to proceed, based on the following identity: If p is any odd prime, we have

9a(z) = ged(gu(®), (=) - ged(ga(x), H(z) ™" /2 4 1)
- ged(ga(z), t{z) P V2 — 1) (21)

for all polynomials ¢(z), since t(z)pd —t(z) is a multiple of all irreducible polyno-
mials of degree d. (We may regard ¢(z) as an element of the field of size p%, when
that field consists of all polynomials modulo an irreducible f(z) as in exercise 16.)
Now exercise 29 shows that ged(ga(z), t(z)®*—1/2) will be a nontrivial factor of
ga(z) about 50 per cent of the time, when #(z) is a random polynomial of degree
< 2d — 1; hence it will not take long to discover all of the factors. We may
assume without loss of generality that ¢(z) is monie, since integer multiples of
t(z) make no difference except possibly to change t(:c)(pd_l)/ 2 into its negative.
Thus in the case d = 1, we can take t(z) = = + s, where s is chosen at random.
[See SIAM J. Computing 9 (1980), 273-280; Math. Comp., to appear.]
Sometimes this procedure will in fact succeed for d > 1 when only linear
polynomials ¢(z) are used. For example, there are eight irreducible polynomials
f(z) of degree 3, modulo 3, and they will all be distinguished by calculating
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ged(f(2), (z+ s)1 —1)for 0 < s < 3

2z + 1

2c+2  f(z) f(z) f(z)
f(z) f(z) 1
1 f(z)

f(z)
1 (=) f(z)
1 f(z) 1

1 1 (=)
(=) 1 1

Exercise 31 contains a partial explanation of why linear polynomials can be
effective; however, when the number of irreducible polynomials of degree d ex-
ceeds 2P, it is clear that there will exist irreducibles that cannot be distinguished
by linear choices of #(z).

An alternative to (21) that works when p = 2 is discussed in exercise 30.

Factoring over the integers. It is somewhat more difficult to find the complete
factorization of polynomials with integer coefficients when we are not working
modulo p, but some reasonably efficient methods are available for this purpose.

Isaac Newton gave a method for finding linear and quadratic factors of
polynomials with integer coefficients in his Arithmetica Universalis (1707). This
method was extended by an astronomer named Friedrich von Schubert in 1793,
who showed how to find all factors of degree n in a finite number of steps; see
M. Cantor, Geschichte der Mathematik 4 (Leipzig: Teubner, 1908), 136-137.
L. Kronecker rediscovered von Schubert’s method independently about 90 years
later; but unfortunately the method is very inefficient when 7 is five or more.
Much better results can be obtained with the help of the “mod p” factorization
methods presented above.

Suppose that we want to find the irreducible factors of a given polynomial

Wz) = Ung" +un—1z" " - Fuo, U F0,

over the integers. As a first step, we can divide by the greatest common divisor of
the coefficients; this leaves us with a primitive polynomial. We may also assume
that u(z) is squarefree, by dividing out ged(u(z), v/ (z)) as in exercise 34.

Now if u(z) = v(z)w(z), where each of these polynomials has integer coef-
ficients, we obviously have u(z) = v(z)w(z) (modulo p) for all primes p, so there
is a nontrivial factorization modulo p unless p divides £(u). An efficient algorithm
for factoring u(z) modulo p can therefore be used in an attempt to reconstruct
possible factorizations of u(z) over the integers.

For example, let

u(z) = 2% + 2% — 374 — 3% 4 82% + 2z —5. (22)
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We have seen above in (19) that

u(z) = (z* +21° +32% + 42 4-6)(z° 4-82° + 42 4-12)(z +3) (modulo 13); (23)

and the complete factorization of u(z) modulo 2 shows one factor of degree g
and another of degree 2 (see exercise 10). From (23) we can see that u(z) has no
factor of degree 2, so it must be irreducible over the integers.

This particular example was perhaps too simple; experience shows that most,
irreducible polynomials can be recognized as such by examining their factors
modulo a few primes, but it is not always so easy to establish irreducibility. For
example, there are polynomials that can be properly factored modulo p for all
primes p, with consistent degrees of the factors, yet they are irreducible over the
integers (see exercise 12).

Almost all polynomials are irreducible over the integers, as shown in exer-
cise 27. But we usually aren’t trying to factor a random polynomial; there is
probably some reason to expect a nontrivial factor or else the calculation would
not have been attempted in the first place. We need a method that identifies
factors when they are there. ;

In general if we try to find the factors of u(z) by considering its behavior -
modulo different primes, the results will not be easy to combine; for example,
if u(z) actually is the product of four quadratic polynomials, it will be hard to -
match up their images with respect to different prime moduli. Therefore it is
desirable to stick to a single prime and to see how much mileage we can get out '-
of it, once we feel that the factors modulo this prime have the right degrees.

One idea is to work modulo a very large prime p, big enough so that the
coefficients in any true factorization u(z) = v(z)w(z) over the integers must -
actually lie between —p/2 and p/2. Then all possible integer factors can be
“read off’ from the mod p factors we know how to compute.

“Exercise 20 shows how to obtain fairly good bounds on the coefficients of
polynomial factors. For example, if (22) were reducible it would have a factor
v(z) of degree < 4, and the coefficients of v would be at most 34 in magnitude
by the results of that exercise. So all potential factors of u(z) will be fairly
evident if we work modulo any prime p > 68. Indeed, the complete factorization
modulo 71 is

(z + 12)(z + 25)(z® — 13 — T)(z* — 24z® — 162° + 31z — 12),

and we see immediately that none of these polynomials are factors of (22) over
the integers since their constant terms do not divide 5; furthermore there is no
way to obtain a divisor of (22) by grouping two of these factors, since none of
the conceivable constant terms 12 X 25, —12 X 7, 12 X (—12) is congruent to
+1 or +5 (modulo 71).

Incidentally, it is not trivial to obtain good bounds on the coefficients of poly-
nomial factors, since a lot of 79@;}9@7171@@@9“@ “ean occur when polynomials are mul-

tiplied. "For example, the.innocuous-looking polynomial z® — 1 has irreducible
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factors whose coefficients exceed exp(n'/!€'€™) for infinitely many n. [See R. C.
Vaughan, Michigan Math. J. 21 (1974), 289-295.] The factorization of z™ — 1
is discussed in exercise 32.

Instead of using a large prime p, which might have to be truly enormous
if u(z) has large degree or large coefficients, we can also make use of small p,
provided that u(z) is squarefree mod p. For in this case, an important con-
struction introduced by K. Hensel [Theorie der Algebraischen Zahlen (Leipzig:
Teubner, 1908), Chapter 4] can be used to extend a factorization modulo p in a
unique way to a factorization modulo p® for arbitrarily high e. Hensel’s method
is described in exercise 22; if we apply it to (23) with p = 13 and e = 2, we
obtain the unique factorization

u(z) = (z — 36)(z® — 182 + 82z — 66)(z* + 54> — 102 + 69z - 84)

(modulo 169). Calling these factors vy (z)vs(z)va(z), we see that vy(z) and v3(z)
are not factors of u(z) over the integers, nor is their product v1(z)vs(z) when the
coefficients have been reduced modulo 169 to the range (—1§2,1§2). Thus we
have exhausted all possibilities, proving once again that u(z) is irreducible over
the integers—this time using only its factorization modulo 13.

The example we have been considering is atypical in one important respect:
We have been factoring the monic polynomial u(z) in (22), so we could assume
that all its factors were monic. What should we do if u, > 1? In such a case, the
leading coefficients of all but one of the polynomial factors can be varied almost,
arbitrarily modulo p¢; we certainly don’t want to try all possibilities. Perhaps the
reader has already noticed this problem. Fortunately there is a simple way out:
the factorization u(z) = v(z)w(z) implies a factorization upu(z) = v1(z)w; (x)
where £(v1) = l(w1) = un = £(u). (“Do you mind if I multiply your polynomial
by its leading coefficient before faqgoﬁﬁglt?t) We can proceed essentially as

above, but using p® > 9B where B now bourids the maximum coefficient for
factors of u,u(z) instead of u(z).
Putting these observations all together results in the following procedure:

F1. Find the unique squarefree factorization
u(z) = L(u)v1(z). . . v(z) (modulo p),

where p¢ is sufficiently large as explained above, and where the v;(z) are
monic. (This will be possible for all but a few primes p, see exercise 23.)
Also set d « 1.

F2. For every combination of factors v(z) = v;,(%)...vi,(z), with 1, =1 if
d = r, form the unique polynomial %(z) = £(u)v(z) (modulo p®) whose co-
efficients all lie in the interval [—4p®, 4p°). If 7(z) divides £(u)u(z), output
the factor pp(%(z)), divide u(z) by this factor, and remove the corresponding
v;(z) from the list of factors modulo p¢; decrease r by the number of factors
removed, and terminate the algorithm if d > ir.

F3. Increase d by 1, and return to F2 if d > 5r. 1
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At the conclusion of this process, the current value of u(z) will be the ﬁnaf

irreducible factor of the originally given polynomial. Note that if [uo| < [n], it

is preferable to do all of the work with the reverse polynomial uoz™ + ... +u,
whose factors are the reverses of the factors of u(z). :
The procedure as stated requires p® > 2B, where B is a bound on the coo

efficients of any divisor of unu(z), but we can use a much smaller value of B i

we only guarantee it to be valid for divisors of degree < ldeg(u). In this case
the divisibility test in step F2 should be applied to w(z) = v(z)... vy (x) /v(z)
instead of v(z), whenever deg(v) > 1deg(u).

The above algorithm contains an obvious bottleneck: We may have to test
as many as 2" ! potential factors v(z). The average value of 27 in a random
situation is about n, or perhaps n1-5 (see exercise 5), but in nonrandom situatjong |

we will want to speed up this part of the routine as much as we can. One

way to rule out spurious factors quickly is to compute the trailing coefficient -
7(0) first, continuing only if this divides £(u)u(0); the complication explained in

the preceding paragraph does not have to be considered unless this divisibility
condition is satisfied, since such a test is valid even when deg(v) > ldeg(u).
Another important way to speed up the procedure is to reduce r so that
it tends to reflect the true number of factors. The distinect degree factorization
algorithm above can be applied for various small primes p;, thus obtaining for
each prime a set D; of possible degrees of factors modulo Pj; see exercise 26. We

can represent D; as a string of n binary bits. Now we compute the intersection

(D, namely the logical “and” of these bit strings, and we perform step F2 only
for iy 4-- -+ 445 € (1 D;. Furthermore p is chosen to be that p; having the
smallest value of r. This technique is due to David R. Musser, whose experience
suggests trying about five primes p; (see JACM 25 (1978), 271-282). Of course
we would stop immediately if the current (1 D; shows that w(z) is irreducible.

Musser has given a complete discussion of a factorization method similar to
the steps above, in JACM 22 (1975), 291-308. The procedure above incorporates
an improvement suggested in 1978 by G. E. Collins, namely to look for trial
divisors by taking combinations of d factors at a time rather than combinations of
total degree d. This improvement is important because of the statistical behavior
of the modulo-p factors of polynomials that are irreducible over the rationals (cf.
exercise 37).

Greatest common divisors. Similar techniques can be used to calculate greatest
common divisors of polynomials: If ged(u(z), v(z)) = d(z) over the integers, and
if ged(u(z), v(z)) = q(z) (modulo p) where ¢(z) is monic, then d(z) is a common
divisor of %(z) and v(z) modulo p; hence

d(z) divides g(z) (modulo D). (24)

If p does not divide the leading coefficients of both % and v, it does not divide the
leading coefficient of d; in such a case deg(d) < deg(q). When g(z) = 1 for such
a prime p, we must therefore have deg(d) = 0, and d(z) = ged(cont(u), cont(v)).
This justifies the remark made in Section 4.6.1 that the simple computation
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