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Abstract

In this note we present some recent results for Kirchhoff equations in generalized Gevrey
spaces. We show that these spaces are the natural framework where classical results can
be unified and extended. In particular we focus on existence and uniqueness results for
initial data whose regularity depends on the continuity modulus of the nonlinear term,
both in the strictly hyperbolic case, and in the degenerate hyperbolic case.
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1 Introduction

Let H be a separable real Hilbert space. For every x and y in H , |x| denotes the norm
of x, and 〈x, y〉 denotes the scalar product of x and y. Let A be a self-adjoint linear
operator on H with dense domain D(A). We assume that A is nonnegative, namely
〈Ax, x〉 ≥ 0 for every x ∈ D(A), so that for every α ≥ 0 the power Aαx is defined
provided that x lies in a suitable domain D(Aα).

Given a continuous function m : [0, +∞) → [0, +∞) we consider the Cauchy problem

u′′(t) + m(|A1/2u(t)|2)Au(t) = 0 ∀t ∈ [0, T ), (1.1)

u(0) = u0, u′(0) = u1. (1.2)

It is well known that (1.1), (1.2) is the abstract setting of the Cauchy-boundary value
problem for the quasilinear hyperbolic integro-differential partial differential equation

utt(t, x) − m

(∫

Ω

|∇u(t, x)|2 dx

)
∆u(t, x) = 0 ∀(x, t) ∈ Ω× [0, T ), (1.3)

where Ω ⊆ Rn is an open set, and ∇u and ∆u denote the gradient and the Laplacian
of u with respect to the space variables. Let us set

µ := inf
σ≥0

m(σ).

Equation (1.1) or (1.3) are called strictly hyperbolic if µ > 0, and weakly (or degen-
erate) hyperbolic if µ = 0.

From the mathematical point of view, (1.3) is probably the simplest example of quasi-
linear hyperbolic equation. From the mechanical point of view, this Cauchy boundary
value problem is a model for the small transversal vibrations of an elastic string (n = 1)
or membrane (n = 2). In this context it was introduced by G. Kirchhoff in [18].

We refer to [1] for a sketch of the deduction of (1.3) from the system of (local)
equations of elasticity, and to [3] for the standard arguments in functional analysis
leading from (1.3) to (1.1).

This equation has generated a considerable literature after the pioneering paper by
S. Bernstein [5]. For more details on previous works we refer to the introductions of the
following sections. In this note we focus on the basic analytic questions for a partial
differential equation, namely local existence, uniqueness, and global existence.

Section 2 is devoted to local existence. We show that a local solution of (1.1) exists
provided that the initial data (1.2) are regular enough, depending on the continuity
modulus of m. This result is an interpolation between the two extreme cases, namely
the classical local existence results for analytic data and continuous m, or for Sobolev
data and Lipschitz continuous m. We show that these local solutions satisfy the expected
properties of propagation of regularity and continuous dependence on the data. More
important, we show with some counterexamples that the spaces involved in the local
existence results are optimal.
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Section 3 is devoted to uniqueness issues. We present a uniqueness result in which
the nonlinear term is not required to be Lipschitz continuous.

Section 4 is devoted to global existence. After reviewing the classical global existence
results, we state our result concerning “spectral gap” initial data. This special class of
initial data is small in the sense that it is not a vector space, and it does not even
contain all analytic data, but it is large in the sense that every initial condition in the
spaces involved in the local existence result is the sum of two initial data for which the
solution is actually global. In particular, a solution can globally exist even if its initial
data have only the minimal regularity required by the local existence result.

Finally, Section 5 is devoted to open problems. We recall some old and new unsolved
questions which should inspire the future investigations in this challenging research field.

We conclude by pointing out that there is a considerable literature on equation
(1.1) or (1.3) with additional dissipative terms. The interested reader is referred to the
survey [14].

2 Local existence

Previous works Local existence has been proved in the last century with two opposite
sets of assumptions.

(A) The case where m is Lipschitz continuous, the equation is strictly hyperbolic, and
initial data have Sobolev regularity. Under these assumptions a local existence
result was first proved by S. Bernstein [5], and then extended with increasing
generality by many authors. The more general form was probably stated by A.
Arosio and S. Panizzi in [3], where they proved that problem (1.1), (1.2) is well
posed in the phase space D(A3/4) × D(A1/4).

(B) The case where m is continuous, the equation is weakly hyperbolic, and initial data
are analytic. A local (and actually global, see Section 4) existence result under
these assumptions was proved with increasing generality by S. Bernstein [5], S. I.
Pohozaev [22], A. Arosio and S. Spagnolo [4], P. D’Ancona and S. Spagnolo [8, 9].

More recently, F. Hirosawa [16] considered equation (1.3) with Ω = Rn, and proved
a local existence result in classes of initial data depending on the continuity modulus of
m. The rough idea is that the less regular is the nonlinear term, the more regularity is
required on initial data. This result interpolates (A) and (B).

Our contribution is twofold: in [11] we extended these intermediate results from
the special concrete case Ω = Rn to the general abstract setting, and we provided
counterexamples in order to show their optimality. Let us introduce the functional
setting needed in these statements.
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Functional spaces and continuity moduli For the sake of simplicity we assume
that H admits a countable complete orthonormal system {ek}k≥1 made by eigenvectors
of A. We denote the corresponding eigenvalues by λ2

k (with λk ≥ 0), so that Aek = λ2
kek

for every k ≥ 1. Every u ∈ H can be written in a unique way in the form u =
∑∞

k=1 ukek,
where uk = 〈u, ek〉 are the components of u. In other words, every u ∈ H can be
identified with the sequence {uk} of its components, and under this identification the
operator A acts component-wise by multiplication.

This simplifying assumption is not so restrictive. Indeed the spectral theorem for
self-adjoint unbounded operators on a separable Hilbert space (see [24, Chapter VIII])
states that any such operator is unitary equivalent to a multiplication operator on some
L2 space.

More precisely, for every H and A there exist a measure space (M, µ), a function
a(ξ) ∈ L2(M, µ), and a unitary operator H → L2(M, µ) which associates to every u ∈ H
a function f(ξ) ∈ L2(M, µ) in such a way that Au corresponds to the product a(ξ)f(ξ).

As a consequence, all the spaces we define in terms of uk and λk can be defined in the
general case by replacing the sequence of components {uk} of u with the function f(ξ)
corresponding to u, the sequence {λk} of eigenvalues of A with the function a(ξ), and
summations over k with integrals over M in the variable ξ with respect to the measure
µ. Similarly, there is no loss of generality in proving our existence and uniqueness
results (Theorems 2.1, 3.1, 4.3) using components, as we did in [11, 12, 13]. On the
contrary, existence of countably many eigenvalues is essential in the construction of our
counterexamples, as stated in Theorem 2.5 and Theorem 2.6.

Coming back to functional spaces, using components we have that

D(Aα) :=

{

u ∈ H :
∞∑

k=1

λ4α
k u2

k < +∞

}

, D(A∞) :=
⋂

α≥0

D(Aα).

Let now ϕ : [0, +∞) → [1, +∞) be any function. Then for every α ≥ 0 and r > 0
one can set

‖u‖2
ϕ,r,α :=

∞∑

k=1

λ4α
k u2

k exp
(
rϕ(λk)

)
, (2.1)

and then define the generalized Gevrey spaces as

Gϕ,r,α(A) := {u ∈ H : ‖u‖ϕ,r,α < +∞} . (2.2)

These spaces can also be seen as the domain of the operator Aα exp (rϕ(A)), and
they are a generalization of the usual spaces of Sobolev, Gevrey or analytic functions.
They are Hilbert spaces with norm (|u|2 + ‖u‖2

ϕ,r,α)1/2, and they form a scale of Hilbert
spaces with respect to the parameter r.

A continuity modulus is a continuous increasing function ω : [0, +∞) → [0, +∞)
such that ω(0) = 0, and ω(a + b) ≤ ω(a) + ω(b) for every a ≥ 0 and b ≥ 0.
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The function m is said to be ω-continuous if there exists a constant L ∈ R such that

|m(a) − m(b)| ≤ Lω(|a − b|) ∀a ≥ 0, ∀b ≥ 0. (2.3)

We point out that the set of ω-continuous functions depends only on the values
of ω(σ) for σ in a neighborhood of 0, while when ϕ is continuous the space Gϕ,r,α(A)
depends only on the values of ϕ(σ) for large σ.

Our local existence results The following statement sums up the state of the art
concerning existence of local solutions.

Theorem 2.1 (Local existence) Let H be a separable Hilbert space, and let A be a
nonnegative self-adjoint (unbounded) operator on H with dense domain. Let ω be a
continuity modulus, let m : [0, +∞) → [0, +∞) be an ω-continuous function, and let
ϕ : [0, +∞) → [1, +∞).

Let us assume that there exists a constant Λ such that either

σω

(
1

σ

)
≤ Λϕ(σ) ∀σ > 0 (2.4)

in the strictly hyperbolic case, or

σ ≤ Λϕ

(
σ

√
ω(1/σ)

)

∀σ > 0 (2.5)

in the weakly hyperbolic case. Let us finally assume that

(u0, u1) ∈ Gϕ,r0,α+1/2(A) × Gϕ,r0,α(A) (2.6)

for some r0 > 0, and some α ≥ 1/4.
Then there exist T > 0, and R > 0 with RT < r0 such that problem (1.1), (1.2)

admits at least one local solution u(t) in the space

C1 ([0, T ];Gϕ,r0−Rt,α(A)) ∩ C0
(
[0, T ];Gϕ,r0−Rt,α+1/2(A)

)
. (2.7)

Condition (2.7), with the range space depending on time, simply means that

u ∈ C1 ([0, τ ];Gϕ,r0−Rτ,α(A)) ∩ C0
(
[0, τ ];Gϕ,r0−Rτ,α+1/2(A)

)

for every τ ∈ (0, T ]. This amounts to say that scales of Hilbert spaces are the natural
setting for this problem.

Admittedly assumptions (2.4) and (2.5) do not lend themselves to a simple inter-
pretation. The basic idea is that in the strictly hyperbolic case the best choice for ϕ,
namely the choice giving the largest space of initial data, is always ϕ(σ) = σω(1/σ). In
the weakly hyperbolic case things are more complex because condition (2.5) is stated
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ω(σ) = m is . . . ϕ(σ) = Local existence with data in . . .

any continuous σ analytic functions (never optimal)

any continuous σω(1/σ) space larger than analytic functions

σβ β-Hölder cont. σ1−β Gevrey space of order (1 − β)−1

σ| log σ| Log-Lipschitz cont. log σ D(Aα+1/2) × D(Aα) with α > 1/4

σ Lipschitz cont. 1 D(A3/4) × D(A1/4)

Table 1: Examples of relations between the regularity of m and the regularity of initial
data for local existence in the strictly hyperbolic case

ω(σ) = regularity of m ϕ(σ) = Local existence with data in . . .

any continuous σ analytic functions (never optimal)

any continuous o(σ) space larger than analytic functions

σβ β-Hölder cont. σ2/(β+2) Gevrey space of order 1 + β/2

σ Lipschitz cont. σ2/3 Gevrey space of order 3/2

Table 2: Examples of relations between the regularity of m and the regularity of initial
data for local existence in the weakly hyperbolic case

in an implicit form. In this case the best choice for ϕ is the inverse of the function
σ → σ/

√
ω(1/σ). Note that this inverse function is always o(σ) as σ → +∞. Tables 1

and 2 provide examples of pairs of functions m, ϕ satisfying (2.4) and (2.5).
As one could easily expect, assumption (2.5) is always stronger than assumption

(2.4). We remark that, since we are interested in local solutions, assumption (2.4) is the
relevant one also when the equation is degenerate but the initial condition u0 satisfies
the nondegeneracy condition

m(|A1/2u0|
2) /= 0.

In this case problem (1.1), (1.2) is called mildly degenerate. As observed in [2], in
this situation it is enough to solve the problem with a different nonlinearity which is
strictly hyperbolic and coincides with the given m in a neighborhood of |A1/2u0|2. The
solution of the modified problem is thus a solution of the original problem for t small
enough.

Assumption (2.5) is therefore the relevant one only when m(|A1/2u0|2) = 0. This is
usually called the really degenerate case.

The proof of Theorem 2.1 relies on standard techniques. The first step is remarking
that (1.1) admits a first-order conserved energy, namely the Hamiltonian

H(t) := |u′(t)|2 + M(|A1/2u(t)|2), (2.8)
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where M(σ) is any function such that M ′(σ) = m(σ) for every σ ≥ 0. This is the reason
why D(A1/2) × H is called the energy space.

The second step is to consider the linearization of (1.1), namely equation

u′′(t) + c(t)Au(t) = 0, (2.9)

where now c(t) := m(|A1/2u(t)|2) is thought as a given coefficient. The theory of such
linear hyperbolic equations with time-dependent coefficients was developed by F. Colom-
bini, E. De Giorgi and S. Spagnolo [6] in the strictly hyperbolic case, and by F. Colom-
bini, E. Jannelli and S. Spagnolo [7] in the weakly hyperbolic case. The result is that
a local solution exists provided that the regularity of the initial data is related to the
continuity modulus of c(t) as in Theorem 2.1.

Unfortunately the boundedness of the Hamiltonian (2.8) is not enough to control
the oscillations of c(t). The main point is therefore to prove an a priori estimate for

d

dt
|A1/2u(t)|2 = 2〈A1/2u(t), A1/2u′(t)〉 = 2〈A3/4u(t), A1/4u′(t)〉,

which in turn is achieved through an a priori estimate for the higher order energy

|A1/4u′(t)|2 + |A3/4u(t)|2.

This a priori estimate provides an a priori control on the continuity modulus of
c(t). One can therefore apply the linear theory and obtain, for example, the so called
propagation of regularity, namely the fact that solutions belong to the same space (or
more precisely to the same scale of spaces) of the initial condition. The precise statement
is the following.

Theorem 2.2 (A priori estimate, Propagation of regularity) Let H, A, ω, m,
ϕ, Λ, u0, u1, r0, α be as in Theorem 2.1.

Then there exist positive real numbers T , K, R, with RT < r0, such that every
solution

u ∈ C1
(
[0, T ]; D(A1/4)

)
∩ C0

(
[0, T ]; D(A3/4)

)
(2.10)

of problem (1.1), (1.2) satisfies

|A1/4u′(t)|2 + |A3/4u(t)|2 ≤ K ∀t ∈ [0, T ],

and actually u belongs to the space (2.7).

The constants T , K, R depend only on ω, m, and on the norms of u0 and u1 in the
spaces Gϕ,r0,α+1/2(A) and Gϕ,r0,α(A), respectively.

In Theorem 2.2, as in every a priori estimate, we assumed the existence of a solution.
So the final step in the proof of Theorem 2.1 is proving that a solution exists. Thanks
to the a priori estimate this can be done in several standard ways.
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A first possibility is to use Galerkin approximations. In this case one approximates
(u0, u1) with a sequence of data (u0n, u1n) belonging to A-invariant subspaces of H where
the restriction of A is a bounded operator. For such data solutions exist, and thanks
to the a priori estimate the corresponding coefficients cn(t) are relatively compact in
C0([0, T ]). The conclusion follows from the fact that solutions of the linear problem
depend continuously on the initial data and on the coefficient c(t) (see [6] and [7]).

A second possibility is to apply Schauder’s fixed point theorem in the space of co-
efficients. In this case one defines XK,T as the space of functions a : [0, T ] → R such
that a(0) = |A1/2u0|2, and with Lipschitz constant less than or equal to K. For every
a ∈ XK,T , one considers the solution u(t) of the linear problem (2.9) with c(t) = m(a(t)),
and initial data (1.2). Finally one sets [Φ(a)](t) := |A1/2(t)|2. For suitable values of K
and T (those given by Theorem 2.2), Φ defines a continuous map from XK,T into itself
which has a fixed point due to Schauder’s theorem. This fixed point corresponds to a
solution of (1.1), (1.2).

The same techniques (a priori estimate + compactness + results for the linear equa-
tion) lead to the continuity of the map

(initial data, m) → solution.

Since the solution is not necessarily unique, this has to be intended in the sense that
“the limit of solutions is again a solution”. The precise statement is the following.

Theorem 2.3 (Continuous dependence on initial data) Let H, A, ω, m, ϕ, Λ,
u0, u1, r0, α, T , R be as in Theorem 2.2.

Let {mn} be a sequence of ω-continuous functions mn : [0, +∞) → [0, +∞) satisfying
(2.3) with the same constant L, and such that mn → m uniformly on compact sets. Let
{u0n, u1n} ⊆ Gϕ,r0,α+1/2(A)×Gϕ,r0,α(A) be a sequence converging to (u0, u1) in the same
space.

Let finally T1 ∈ (0, T ) and R1 > R be real numbers such that R1T1 < r0.
Then we have the following conclusions.

(1) For every n ∈ N large enough the Cauchy problem (1.1), (1.2) (with of course mn,
u0n, u1n instead of m, u0, u1) has at least one solution un(t) in the space

C1 ([0, T1];Gϕ,r0−R1t,α(A)) ∩ C0
(
[0, T1];Gϕ,r0−R1t,α+1/2(A)

)
. (2.11)

(2) The sequence {un(t)} is relatively compact in the space (2.11).

(3) Any limit point of {un(t)} is a solution of the limit problem.

With minimal technicalities the theory can be extended in order to allow time-
dependent right-hand sides fn(t) with suitable regularity assumptions, for example in
L2

(
[0, T ],Gϕ,r0,1/4(A)

)
. We spare the reader from the details.
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Derivative loss Our goal is now to prove the optimality of the spaces involved in the
local existence result. To this end we show that solutions with less regular data can
exhibit an instantaneous derivative loss. Let us introduce the precise notion.

Definition 2.4 Let H and A be as in Theorem 2.1. Let ϕ : [0, +∞) → [1, +∞) be
any function, and let α ≥ 1/4. We say that a solution u of problem (1.1), (1.2) has
instantaneous strong derivative loss of type

Gϕ,∞,3/4(A) × Gϕ,∞,1/4(A) → D(Aα+1/2) × D(Aα) (2.12)

if the following conditions are fulfilled.

(1) Regularity of the solution. There exists T0 > 0 such that

u ∈ C1
(
[0, T0]; D(A1/4)

)
∩ C0

(
[0, T0]; D(A3/4)

)
. (2.13)

(2) High regularity at t = 0. We have that

(u0, u1) ∈ Gϕ,∞,3/4(A) × Gϕ,∞,1/4(A),

(3S) Low regularity for subsequent times. We have that

(u(t), u′(t)) /∈ D(Aα+1/2+ε) × D(Aα+ε) ∀ε > 0, ∀t ∈ (0, T0].

We say that the same solution has instantaneous weak derivative loss of type (2.12)
if it satisfies (1), (2), and

(3W) Unboundedness as t → 0+. There exists a sequence τk → 0+ such that

∣∣Aα+1/2+εu(τk)
∣∣ → +∞ ∀ε > 0.

The second notion is weaker in the sense that what is actually lost is the control on
the norm of (u(t), u′(t)) in D(Aα+1/2+ε) × D(Aα+ε) as t → 0+. We are now ready to
state our counterexamples, the first one in the strictly hyperbolic case, the second one
in the weakly hyperbolic case.

Theorem 2.5 (Derivative loss: strictly hyperbolic case) Let A be a self-adjoint
linear operator on a Hilbert space H. Let us assume that there exist a countable (not
necessarily complete) orthonormal system {ek}k≥1 in H, and an increasing unbounded
sequence {λk}k≥1 of positive real numbers such that Aek = λ2

kek for every k ≥ 1.
Let ω : [0, +∞) → [0, +∞) be a continuity modulus such that σ → σ/ω(σ) is a

nondecreasing function.
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Let ϕ : [0, +∞) → [1, +∞) be a function such that

lim
k→+∞

λk

ϕ(λk)
ω

(
1

λk

)
= +∞. (2.14)

Then there exist an ω-continuous function m : [0, +∞) → [1/2, 3/2], and a solution
u of the corresponding problem (1.1) with instantaneous strong derivative loss of type

Gϕ,∞,3/4(A) × Gϕ,∞,1/4(A) → D(A3/4) × D(A1/4).

Theorem 2.6 (Derivative loss: weakly hyperbolic case) Let H, A, {ek}, {λk},
ω be as in Theorem 2.5. Let ϕ : [0, +∞) → [1, +∞) be a function such that

lim
k→+∞

λk

[

ϕ

(
λk√
ω(1/λk)

)]−1

= +∞. (2.15)

Then there exist an ω-continuous function m : [0, +∞) → [0, 3/2], and a solution u
of the corresponding equation (1.1) with instantaneous strong derivative loss of type

Gϕ,∞,3/4(A) × Gϕ,∞,1/4(A) → D(A) × D(A1/2),

and instantaneous weak derivative loss of type

Gϕ,∞,3/4(A) × Gϕ,∞,1/4(A) → D(A3/4) × D(A1/4).

Note that assumptions (2.14) and (2.15) are the counterpart of (2.4) and (2.5),
respectively. Table 3 and Table 4 below present examples of functions ω and ϕ satisfying
the assumptions of Theorem 2.5 and Theorem 2.6 above. They are the counterpart of
Table 1 and Table 2, respectively.

These examples are based on the construction introduced in [6] and [7] in the lin-
ear context. In those papers the authors gave examples of coefficients c(t) and initial
data (u0, u1) in such a way that the “solution” of the linear problem has instantaneous
derivative loss

Gϕ,∞,1/2(A) × Gϕ,∞,0(A) → hyperdistributions.

This means that the solution is quite regular at time t = 0, but it is even outside the
space of distributions for t > 0. This is usually presented as a nonexistence result in the
space of distributions, but it is proved by showing that the solution exists and is unique
(since the equation is linear) in a space of hyperdistributions (which in our notations
is a space of the form Gϕ,r,0 with r < 0), but exhibits an instantaneous derivative loss
up to hyperdistributions. In the quoted papers the derivative loss is always intended in
the weak sense, but those examples are quite flexible and can be modified in order to
obtain the derivative loss even in the strong sense.

Our strategy is similar. In the first step we modify the parameters in those examples
in order to stop the derivative loss up to the D(A3/4) × D(A1/4) level. In the second
step we find a function m in such a way that the coefficient c(t) is actually equal to
m(|A1/2u(t)|2). This can be easily done as soon as the function t → |A1/2u(t)|2 is
invertible in a neighborhood of t = 0, and this can be obtained by modifying just one
dominant component of u(t). We refer to [11] for the details.

9



m(σ) = m is . . . ϕ(σ) = Derivative loss for data in . . .

1

| log σ|1/2
just continuous

σ

log σ
quasi-analytic functions

σβ β-Hölder cont.
σ1−β

log σ
Gevr. sp. of order > (1 − β)−1

σ| log σ|3 β-Höld. cont. ∀β ∈ (0, 1) log2 σ D(A∞)

Table 3: Pairs of functions m, ϕ for which a derivative loss example can be found in the
strictly hyperbolic case

m(σ) = m is . . . ϕ(σ) = Derivative loss for data in . . .

σβ β-Hölder cont.
σ2/(β+2)

log σ
Gevrey sp. of order > 1 + β/2

σ Lipschitz cont.
σ2/3

log σ
Gevrey sp. of order > 3/2

Table 4: Pairs of functions m, ϕ for which a derivative loss example can be found in the
weakly hyperbolic case

3 Uniqueness

Previous works As one can easily guess, uniqueness holds whenever m is (locally)
Lipschitz continuous. In the strictly hyperbolic case a proof of this result is contained
for example in [3], of course for initial data in D(A3/4) × D(A1/4). In the weakly
hyperbolic case a proof of the same result is given in [4] for analytic initial data. Now
from Theorem 2.1 we know that, when m is Lipschitz continuous and the equation is
degenerate, local solutions exist for all initial data in Gϕ,r0,3/4(A) × Gϕ,r0,1/4(A) with
ϕ(σ) = σ2/3. The uniqueness result under these assumptions has never been put into
writing, but it can be easily proved by standard arguments. The main tool is indeed
always the same, namely a Gronwall type lemma for the difference between two solutions.

As a general fact, uniqueness for a nonlinear evolution equation is much more difficult
to establish if the nonlinear term is not locally Lipschitz continuous. Therefore it is
hardly surprising that also in the case of Kirchhoff equations the non-Lipschitz case
remained widely unexplored for a long time. To our knowledge indeed uniqueness issues
have been previously considered only in section 4 of [4], where two results are presented.

The first one is a one-dimensional example (H = R) where problem (1.1), (1.2)
admits infinitely many local solutions. The second result is a detailed study of the
case where u0 and u1 are eigenvectors of A relative to the same eigenvalue. In this
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special situation (which can be easily reduced to the two dimensional case H = R2) the
authors proved that uniqueness of the local solution fails if and only if the following
three conditions are satisfied:

(AS1) 〈Au0, u1〉 = 0,

(AS2) |A1/2u1|2 − m(|A1/2u0|2)|Au0|2 = 0,

(AS3) m satisfies a suitable integrability condition in a neighborhood of |A1/2u0|2.

As a consequence, the local solution is unique if at least one of the conditions above
is not satisfied.

Our uniqueness result Our contribution is the extension of the first two parts of
the above result from the two dimensional case with equal eigenvalues to the infinite
dimensional case with arbitrary eigenvalues. In other words, we prove that in the general
case the solution is necessarily unique whenever either (AS1) or (AS2) are not satisfied.
The precise statement is the following.

Theorem 3.1 (Uniqueness) Let H, A, ω, m, ϕ, Λ be as in Theorem 2.1. Let us
assume that

(u0, u1) ∈ Gϕ,r0,3/2(A) × Gϕ,r0,1(A) (3.1)

for some r0 > 0, and

|〈Au0, u1〉| +
∣∣|A1/2u1|

2 − m(|A1/2u0|
2)|Au0|

2
∣∣ /= 0. (3.2)

Let us assume that problem (1.1), (1.2) admits two local solutions v1 and v2 in

C2
(
[0, T ];Gϕ,r1,1/2(A)

)
∩ C1 ([0, T ];Gϕ,r1,1(A)) ∩ C0

(
[0, T ];Gϕ,r1,3/2(A)

)
(3.3)

for some T > 0, and some r1 ∈ (0, r0).
Then we have the following conclusions.

(1) There exists T1 ∈ (0, T ] such that

v1(t) = v2(t) ∀t ∈ [0, T1]. (3.4)

(2) Let T∗ denote the supremum of all T1 ∈ (0, T ] for which (3.4) holds true. Let v(t)
denote the common value of v1 and v2 in [0, T∗].

Then either T∗ = T or

|〈Av(T∗), v
′(T∗)〉| +

∣∣|A1/2v′(T∗)|
2 − m(|A1/2v(T∗)|

2)|Av(T∗)|
2
∣∣ = 0.

11



Let us make some comments on the assumptions. Inequality (3.2) is equivalent
to say that either (AS1) or (AS2) are not satisfied. The space (3.3) is the natural
one when initial data satisfy (3.1). Indeed from the propagation of regularity (see
Theorem 2.2) it follows that any solution u(t) satisfying (2.10) with initial data as in
(3.1) lies actually in (3.3). Assumption (3.1) on the initial data is stronger than the
corresponding assumption in Theorem 2.1. This is due to a technical point in the proof.
However in most cases the difference is only apparent. For example if ω(σ) = σβ for
some β ∈ (0, 1], then the following implication

u ∈ Gϕ,r,0(A) =⇒ u ∈ Gϕ,r−ε,α(A)

holds true for every r > 0, ε ∈ (0, r), α ≥ 0. Therefore in this case every solution
satisfying (2.7) fulfils (3.3) with r1 = (r0 − RT )/2.

In the proof of Theorem 3.1, for which we refer to [12], we introduced a technique
which seems to be new, and hopefully useful to handle also different evolution equations
with non-Lipschitz terms. The main idea is to split the uniqueness problem in two steps,
which we call trajectory uniqueness and parametrization uniqueness.

Trajectory uniqueness The first step of the proof consists in showing that the image
of the curve (A1/2u(t), u′(t)) in the phase space (for example in D(A3/4) × D(A1/4)) is
unique. To this end we introduce the new variable

s = ψ(t) := |A1/2u(t)|2 − |A1/2u0|
2.

If the function ψ is invertible in a right-hand neighborhood of the origin, then we can
parametrize the curve using the variable s. If (z(s), w(s)) is this new parametrization,
then z and w are solutions of the following system

z′(s) =
A1/2w(s)

2〈A1/2z(s), w(s)〉
, w′(s) = −m

(
s + |A1/2u0|

2
) A1/2z(s)

2〈A1/2z(s), w(s)〉
, (3.5)

with initial data
z(0) = A1/2u0, w(0) = u1. (3.6)

What is important is that the non-Lipschitz term m(|A1/2u|2) of the original equation
has become the non-Lipschitz coefficient m(s + |A1/2u0|2) in the second equation of
system (3.5), and it is well known that nonregular coefficients do not affect uniqueness.
Therefore the solution of the system is unique.

Parametrization uniqueness The second part of the proof consists in showing that
the unique trajectory obtained in the previous step can be covered by solutions in a
unique way. To this end, we first show that the parametrization ψ(t) is a solution of
the Cauchy problem

ψ′(t) = F (ψ(t)), ψ(0) = 0, (3.7)
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where F (σ) := 2〈A1/2z(σ), w(σ)〉. The function F is just continuous in σ = 0, and this
in not enough to conclude that the solution of (3.7) is unique. On the other hand, the
differential equation in (3.7) is autonomous, and for autonomous equations it is well
known that there is a unique solution such that ψ(t) > 0 for t > 0.

Proving that ψ(t) > 0 for t > 0, and more generally that ψ is invertible in a right-
hand neighborhood of t = 0 (as required in the first step), is the point where the quite
strange assumptions (AS1) and (AS2) play their role. Indeed we have that

ψ′(0) = 0 ⇐⇒ (AS1) holds true,

ψ′′(0) = 0 ⇐⇒ (AS2) holds true.

If (3.2) is true, then either (AS1) or (AS2) are false, hence either ψ′(0) /= 0 or
ψ′′(0) /= 0. In both cases ψ(t) is invertible where needed.

We conclude by pointing out that the denominators in (3.5) are actually ψ′(t), hence
they can vanish for t = 0. Since in that case we have that ψ′′(0) /= 0, then for sure
denominators are different from 0 for all t > 0 small enough, and their vanishing in
t = 0 is of order one. This kind of singularity doesn’t affect existence or uniqueness
for system (3.5), but it is in some sense the limit exponent. For this reason we cannot
deal with the same technique the case where ψ′(0) = ψ′′(0) = 0 but ψ′′′(0) /= 0, which
originates denominators with a singularity of order 2.

4 Global existence

Previous works Global existence for Kirchhoff equations has been proved in at least
five special cases.

Analytic data This is the result we quoted as (B) in the history of local existence
results. We recall the main assumptions: the equation is weakly hyperbolic, the nonlin-
earity is continuous, and initial data are analytic.

Quasi-analytic data K. Nishihara [21] proved global existence for a class of initial
data which strictly contains analytic functions. His assumptions are that the equation
is strictly hyperbolic, the nonlinearity is Lipschitz continuous, and

(u0, u1) ∈ Gϕ,r0,1/2(A) × Gϕ,r0,0(A),

where r0 > 0, and ϕ : [0, +∞) → [1, +∞) is an increasing function satisfying suitable
convexity and integrability conditions. He proves existence of a global solution

u ∈ C1 ([0, +∞);Gϕ,r0,0(A)) ∩ C0
(
[0, +∞);Gϕ,r0,1/2(A)

)
.

We point out that, in contrast with our local existence results, this solution lives in
a Hilbert space, instead of a Hilbert scale.
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The most celebrated example of function ϕ satisfying the assumptions is ϕ(σ) =
σ/ log σ, in which case one has global existence in a space which contains non-analytic
initial data. On the contrary, the function ϕ(σ) = σβ with β < 1 never satisfies the
assumptions. In other words, Nishihara’s spaces are intermediate classes between Gevrey
and analytic functions.

It would be interesting to compare Nishihara’s assumptions with
∫ +∞

1

ϕ(σ)

σ2
dσ = +∞,

which is the usual definition of quasi-analytic classes.

Special nonlinearities In a completely different direction, S. I. Pohozaev [23] con-
sidered the special case where m(σ) := (a + bσ)−2 for some a > 0 and b ∈ R. He proved
global existence for initial data (u0, u1) ∈ D(A)×D(A1/2) satisfying the nondegeneracy
condition a + b|A1/2u0|2 > 0.

The main point is that in this case (and in a certain sense only in this case) equation
(1.1) admits the second order nonnegative invariant

P(t) :=
(
a + b|A1/2u(t)|2

)
|A1/2u′(t)|2 +

|Au(t)|2

a + b|A1/2u(t)|2
−

b

4
〈Au(t), u′(t)〉2.

Exploiting that P(t) is constant, it is not difficult to obtain a uniform bound on
〈Au(t), u′(t)〉2, from which global existence follows in a standard way.

Recently, some new results have been obtained along this path. The interested reader
is referred to [27].

Dispersive equations Global existence results have been obtained for the concrete
equation (1.3) in cases where dispersion plays a crucial role, namely when Ω = R (see
J. M. Greenberg and S. C. Hu [15]), Ω = Rn (see P. D’Ancona and S. Spagnolo [10]),
or Ω = exterior domain (see T. Yamazaki [25, 26] and the references quoted therein).

The prototype of these results is global existence provided that the equation is strictly
hyperbolic, the nonlinearity is Lipschitz continuous, and initial data have Sobolev reg-
ularity and satisfy suitable smallness assumptions and decay conditions at infinity. We
refer to the quoted literature for precise statements.

Spectral gap initial data More recently, R. Manfrin [19] (see also [20], [17]) proved
global existence in a new class of nonregular initial data. In order to describe the most
astonishing aspect of his work, we need the following definition.

Definition 4.1 Let M and F be two subsets of D(A1/2)×H . We say that M has the
“Sum Property” in F if M ⊆ F and M + M ⊇ F .

In other words, for every (u0, u1) ∈ F there exist (u0, u1) ∈ M and (û0, û1) ∈ M
such that u0 = u0 + û0, and u1 = u1 + û1.
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Let us assume now that the equation is strictly hyperbolic, and the nonlinearity is of
class C2. The main result of [19] is that there exists a subset M ⊆ D(A)×D(A1/2) such
that M has the “Sum Property” in D(A)×D(A1/2), and problem (1.1), (1.2) admits a
global solution for every (u0, u1) ∈ M.

As a corollary, any initial condition (u0, u1) ∈ D(A) × D(A1/2) is the sum of two
pairs of initial conditions for which the solution is global! Of course the set M is not
a vector space, but just a star-shaped subset (actually a cone). We refer to the quoted
papers for the definition of M.

Our global existence result In [13] we proved a result in the same spirit of Manfrin’s
one, but without assuming the strict hyperbolicity or the regularity of the nonlinearity.

Let L denote the set of all sequences {ρn} of positive real numbers such that ρn →
+∞. Let ϕ : [0, +∞) → [1, +∞) be any function, and let α ≥ 0, β ≥ 0. We can now
define what we call generalized Gevrey-Manfrin spaces, namely

GM(β)
ϕ,{ρn},α

(A) :=

{

u ∈ H :
∑

λk>ρn

λ4α
k u2

k exp
(
ρβ

nϕ(λk)
)
≤ ρn ∀n ∈ N

}

, (4.1)

and
GM(β)

ϕ,α(A) :=
⋃

{ρn}∈L

GM(β)
ϕ,{ρn},α

(A). (4.2)

Admittedly this definition has no immediate interpretation. Let us compare (4.1)
with (2.2) and (2.1). In the inequalities in (4.1) the weight ρn appears in the right-hand
side, and in the left-hand side in place of r. Moreover ρn appears also in the summation,
which is now restricted to eigenvalues λk > ρn. The weight in the left-hand side is inside
an exponential term, hence it dominates on the weight in the right-hand side. It follows
that the inequalities in (4.1) are smallness assumptions on the “tails” of suitable series.
More important, the smallness is not required for all tails, but only for a subsequence.

It is easy to see that the space defined in (4.1) is actually a vector space, while
the space defined by (4.2) is a cone in Gϕ,∞,α(A), because its elements may be defined
starting from different sequences in L. This fact is crucial in the proof of the “Sum
Property” (see Proposition 3.2 in [13]).

Proposition 4.2 (Sum Property) For every ϕ : [0, +∞) → [1, +∞), α ≥ 0, β > 0
we have that

GM(β)
ϕ,α+1/2(A) × GM(β)

ϕ,α(A)

has the “Sum Property” in

Gϕ,∞,α+1/2(A) × Gϕ,∞,α(A).

The proof of the “Sum Property” is based on the following idea. Let us consider
an increasing and divergent sequence sn of positive real numbers. Then any u0 ∈ H
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can be written as the sum of u0 and û0, where u0 has the same components of u0 with
respect to eigenvectors corresponding to eigenvalues belonging to intervals of the form
[s2n, s2n+1), and components equal to 0 with respect to the remaining eigenvectors, and
vice versa for û0. If the sequence sn grows fast enough, then it turns out that u0 and
û0 lie in suitable generalized Gevrey-Manfrin spaces corresponding to the sequences s2n

and s2n+1. Note that the spectrum of both u0 and û0 has a sequence of “big holes”,
which justify the term “spectral gap” initial data.

We are now ready to state our global existence result (see Theorem 3.1 and Theo-
rem 3.2 in [13]).

Theorem 4.3 (Global existence) Let H, A, ω, m, ϕ, Λ be as in Theorem 2.1. Let
{ρn} ∈ L, and let

(u0, u1) ∈ GM(β)
ϕ,{ρn},3/4(A) × GM(β)

ϕ,{ρn},1/4(A),

where β = 2 if the equation is strictly hyperbolic, and β = 3 if the equation is weakly
hyperbolic.

Then problem (1.1), (1.2) admits at least one global solution u with

u ∈ C1
(
[0, +∞);Gϕ,r,3/4(A)

)
∩ C0

(
[0, +∞);Gϕ,r,1/4(A)

)

for every r > 0.

Combining Theorem 4.3 and Proposition 4.2 we obtain the following statement:
every pair of initial conditions satisfying (2.6) with r0 = ∞ is the sum of two pairs of
initial conditions for which the solution is global. We have thus extended to the general
case the astonishing aspect of Manfrin’s result.

The extra requirement that r0 = ∞ is hardly surprising. It is indeed a necessary
condition for existence of global solutions even in the theory of linear equations with
nonsmooth time-dependent coefficients.

We conclude by remarking that, in the concrete case, these spaces do not contain
any compactly supported function.

5 Open problems

The main open problem in the theory of Kirchhoff equations is for sure the existence of
global solutions in C∞. In the abstract setting it can be stated as follows.

Open problem 1 Let us assume that equation (1.1) is strictly hyperbolic, that m ∈
C∞(R), and (u0, u1) ∈ D(A∞) × D(A∞).

Does problem (1.1), (1.2) admit a global solution?
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The same problem can be restated in all situations where a local solution has been
proved to exist (see Theorem 2.1). Up to now indeed we know no example of local
solution, with any regularity, which is not global.

Now we would like to mention some other open questions. The first one concerns
local (but of course also global) existence for initial data in D(A1/2) × H , which is the
natural energy space for a second order wave equation.

Open problem 2 Let us assume that equation (1.1) is strictly hyperbolic, that m ∈
C∞(R), and (u0, u1) ∈ D(Aα+1/2) × D(Aα) for some α ∈ [0, 1/4).

Does problem (1.1), (1.2) admit a local solution? Of course in this case we accept
solutions

u ∈ C1([0, T0]; H) ∩ C0([0, T0]; D(A1/2)). (5.1)

Once again we know no counterexample, even with degenerate equations or nonlin-
earities which are just continuous.

We stress that counterexamples are the missing element in all the theory. We proved
the optimality of our local existence results by showing examples of solutions with
derivative loss. These are actually counterexamples to propagation of regularity, but
not counterexamples to existence. We can therefore ask the following question.

Open problem 3 Do there exist a nonnegative continuous function m, and initial data
(u0, u1) ∈ D(A3/4) × D(A1/4), such that problem (1.1), (1.2) admits no (local) solution
u satisfying (2.13)?

Do there exist a nonnegative continuous function m, and initial data (u0, u1) ∈
D(A1/2) × H, such that problem (1.1), (1.2) admits no (local) solution u satisfying
(5.1)?

We conclude by mentioning three open questions related to uniqueness results. The
first one concerns once again counterexamples. The motivation is that we know no
example where uniqueness fails apart from those given in [4]. So we ask whether different
counterexamples can be provided.

Open problem 4 Let H, A, ω, m, ϕ, A, u0, u1 be as in Theorem 3.1, but without
assumption (3.2). Let us assume that problem (1.1), (1.2) admits two local solutions.

Can one conclude that u0 and u1 are eigenvectors of A relative to the same eigen-
value?

We stress that this problem is open even in the simple case H = R2, where ω and ϕ
play non role, and no regularity is required on initial data.

The second open problem concerns trajectory uniqueness, namely the key step in the
proof of our uniqueness result. One can indeed observe that, even in the non-uniqueness
examples of [4], all the different solutions describe (a subset of) the same trajectory with
a different pace. With our notations this is equivalent to say that the solution of (3.5),
(3.6) is unique. We ask whether this property is true in general.
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Open problem 5 Let H, A, ω, m, ϕ, A, u0, u1 be as in Theorem 3.1, but without
assumption (3.2). Let us consider system (3.5), with initial data (3.6).

Does this system admit at most one solution?

Note that in the case where 〈Au0, u1〉 = 0 it is by no means clear that the system
admits at least one solution, since this implicitly requires that 〈A1/2z(s), w(s)〉 /= 0 for
every s ∈ (0, s0]. In any case the above question doesn’t concern existence, but just
uniqueness provided that a solution exists.

The last open problem concerns the regularity assumptions on initial data and solu-
tions required in the uniqueness result. Indeed in Theorem 3.1 we proved that inequality
(3.2) yields uniqueness provided that initial data satisfy (3.1) and solutions satisfy (3.3).
Similar assumptions are required in the uniqueness result for Lipschitz continuous non-
linearities. On the other hand, solutions of problem (1.1), (1.2) may exist also if (3.1)
is not satisfied (this is the case, for example, of our solutions with derivative loss). We
ask whether uniqueness results can be proved for these solutions.

Open problem 6 Is it possible to prove the known uniqueness results (namely the Lip-
schitz case and our Theorem 3.1) with less regularity requirements on initial data or for
solution in the energy space?

Just to give an extreme example, let us consider problem (1.1), (1.2) in the strictly
hyperbolic case, with an analytic nonlinearity m, and analytic initial data. We know
that there exists a unique solution in D(A3/4) × D(A1/4), which is actually analytic.
However, as far as we know, no one can exclude that there exists a different solution in
D(A1/2) × H with the same initial data!
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