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A CLASS OF LOCAL CLASSICAL SOLUTIONS

FOR THE ONE-DIMENSIONAL PERONA-MALIK EQUATION

MARINA GHISI AND MASSIMO GOBBINO

Abstract. We consider the Cauchy problem for the one-dimensional Perona-
Malik equation

ut =
1− u2

x

(1 + u2
x)

2
uxx

in the interval [−1, 1], with homogeneous Neumann boundary conditions.
We prove that the set of initial data for which this equation has a local-

in-time classical solution u : [−1, 1]× [0, T ] → R is dense in C1([−1, 1]). Here
“classical solution” means that u, ut, ux and uxx are continuous functions in
[−1, 1]× [0, T ].

1. Introduction

In this paper we consider the initial boundary value problem

ut =
1− u2

x

(1 + u2
x)

2
uxx in [−1, 1]× [0, T ],(1.1)

ux(−1, t) = ux(1, t) = 0 ∀t ∈ [0, T ],(1.2)

u(x, 0) = u0(x) ∀x ∈ [−1, 1].(1.3)

Since we are interested in classical solutions, we require that (1.1) and (1.2)
be satisfied also for t = 0. In particular we always consider initial conditions
u0 ∈ C2([−1, 1]) and such that u0x(−1) = u0x(1) = 0.

Formally, equation (1.1) is an instance of the usual parabolic PDE in divergence
form ut = (ϕ′(ux))x = ϕ′′(ux)uxx, corresponding to ϕ(σ) = 2−1 log(1 + σ2). The
main feature is that ϕ(σ) is convex for |σ| < 1 and concave for |σ| > 1. This
implies that (1.1) is a forward-parabolic PDE where |ux| < 1 (the forward or
subcritical region) and a backward-parabolic PDE where |ux| > 1 (the backward
or supercritical region).

Equation (1.1) is the one-dimensional version of the diffusion process introduced
in [15] in the context of image processing. Numerical computations seem to show
that this equation produces the desired denoising effect on the initial condition u0

despite the expected ill posedness: this is usually referred to as “the Perona-Malik
paradox”.

Mathematical understanding of this phenomenology is still quite poor. Research
has developed along three main lines: finding a suitable notion of weak solution
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consistent with experiments [4, 7, 9, 13, 16, 17], proving a priori estimates on
classical solutions yielding existence or nonexistence results [8, 9, 12], extending
some one-dimensional results to higher dimension [5, 9].

In this paper we focus on classical solutions, namely solutions with one derivative
with respect to time and two derivatives in the space variable. The following results
are by now well established in the literature.

• If u0(x) is subcritical, i.e., |u0x(x)| < 1 for all x ∈ [−1, 1], then problem(1.1),
(1.2), (1.3) has a global (defined for every t ≥ 0) classical solution which
remains subcritical for all times [12].

• If u0(x) is transcritical, i.e., ϕ
′′(u0x) changes its sign in [−1, 1], then classical

solutions, if they exist, cannot be global [12, 10]. In particular in [10] it is
proved that for a transcritical solution we have that necessarily

(1.4) T ≤ 4

∫ 1

−1

log(1 + u2
0x(x)) dx.

• Let us assume that a classical local solution exists for some transcritical
u0(x), and let us consider any closed interval contained in the supercritical
region of u0. As remarked in [13], in this interval u0 is the trace at t = 0
of the solution of a backward strictly parabolic equation. Therefore the
standard regularity theory provides severe restrictions on u0. For example,
a necessary (but by no means sufficient) condition is that u0 is of class C∞

in its supercritical region.

To our knowledge, up to now no example of local classical solution with a trans-
critical u0 had been shown. We refer the reader to [12, Section 6] for a discussion on
some apparently inconclusive approaches to local solutions, including higher order
regularization, vanishing viscosity, power series expansions.

Some signs even made people skeptical about their existence. From the analytical
point of view it was proved in [10] that the trivial stationary solutions u(x, t) = ax+
b are the unique classical solutions of (1.1) defined for every (x, t) ∈ R

2. From the
numerical point of view, experiments on some regularizations of (1.1) showed a rapid
formation of microstructures with a drastic reduction of the energy in the backward
region [3]. This phenomenon, usually referred to as staircasing [13] or fibrillation
[6], happens in a time scale which vanishes with the regularization parameter [3].
After the formation of microstructures the evolution in the backward region slows
down and the dynamic is governed by the forward region. This may lead one to
suspect that in the limit the evolution of any transcritical initial condition should
exhibit the instantaneous formation of discontinuities in ux and maybe also in u.

We show that this is not always the case, because some local classical transcritical
solutions do exist. We have indeed the following existence result (throughout this
paper C2,1 denotes the usual parabolic space of functions u(x, t) such that u, ut,
ux and uxx are continuous functions).

Theorem 1.1. Let R ⊆ C1([−1, 1]) be the set of initial data u0(x) for which there
exist T > 0 and u ∈ C2,1([−1, 1]× [0, T ]) satisfying (1.1), (1.2), and (1.3).

Then R is dense in C1([−1, 1]).

The same is true for all equations ut = ϕ′′(ux)uxx with ϕ ∈ C∞(R) (this reg-
ularity requirement can probably be weakened) and such that the set {σ ∈ R :
ϕ′′(σ) = 0} has no accumulation points.
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Note that in Theorem 1.1, in order to obtain density, we are forced to admit
that the life span T of the solution depends on the initial condition. This may seem
too restrictive, but it is not. Indeed there are transcritical data for which the right
hand side of (1.4) is arbitrarily small: it follows that the set of initial data for which
a classical solution exists at least on a fixed time interval [0, T ] cannot be dense in
C1([−1, 1]).

Our proof does not characterize all initial data for which a local solution exists
(and we suspect that a nontautological characterization does not exist). We only
exhibit a quite special class of such data, which however turns out to be dense in
C1([−1, 1]), hence a fortiori in C0([−1, 1]) or in L2((−1, 1)). On the other hand
[13] shows that nothing more than density can be expected.

The rough idea of our construction is the following. Let us take any v0 ∈
C∞([−1, 1]) such that |v0x(x)| = 1 in a finite number of points. Let I+ and I− be
the subcritical and the supercritical regions of v0, respectively (both I+ and I− are
finite unions of intervals). Given T > 0, we prove (Theorem 2.1) that there exists
a solution u of (1.1), (1.2) which at t = 0 coincides with v0 in I+ and at t = T
coincides with v0 in I−. This means that v0 acts as an initial condition in I+ and
as a final condition in I−. In order to construct such a solution, we solve a separate
problem in any connected component of I+ and I−: this subproblem is always well
posed because it is either a (degenerate) forward parabolic problem with an initial
condition or a (degenerate) backward parabolic problem with a final condition. The
main (somehow unexpected) point is that the solutions of these subproblems glue
together in a C2,1 way provided that T is small enough and v0xx(x) = 0 when-
ever |v0x(x)| = 1. The required estimates are proved in Theorem 2.2 and Theorem
2.3 using standard energy estimates in the interior and suitable subsolutions and
supersolutions to control the behavior near the critical points where |v0x(x)| = 1.
More precisely, the key steps are the paragraph Uniform vanishing of uε

xx at the
boundary in the proof of Theorem 2.3 and the paragraph Existence of ux at the
boundary in the proof of Theorem 2.2.

If we now define u0(x) as u(x, 0), we have found an initial condition for which
(1.1), (1.2), (1.3) has a local solution; hence the set R is nonempty. Notice that
u0 coincides with v0 in I+, while in I− it is the trace at t = 0 of a solution of a
backward problem, as required by [13].

Finally, if we choose T small enough, it is clear that u0 is as close to v0 as we
want in the C2([−1, 1]) topology. Since the set of admissible v0 (see Theorem 2.1)
is in turn dense in C1([−1, 1]), we easily conclude that R is dense in C1([−1, 1]).

We conclude by speculating on some consequences of Theorem 1.1.
From the analytical point of view, classical solutions are naturally welcome.

They also give a new light to a priori estimates on smooth solutions [9, 12]. Up to
now indeed it was suspected that they were likely to be vacuous in the transcritical
case.

From the numerical point of view things may be different. On one hand classical
solutions are not a solution of the Perona-Malik paradox, since there is no reason
for them to be stable or to exist but for special classes of smooth initial data (while
a good theory is expected for BV data). On the other hand, it is easy to see
that classical solutions must be taken into account by any reasonable stable theory.
We state it formally in the case of the fourth order regularization (Remark 2.4),
but analogous statements are true for the semi-discrete scheme and maybe also
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for several other approximations of (1.1). The rough idea is the following: our
classical solutions can be obtained as limits in the C2,1 topology of solutions of the
regularized problems up to adding a small perturbation which vanishes in the C0

norm with the regularization parameter.
This proves that any stable theory allowing perturbations vanishing in C0 and

convergence of solutions in C2,1 cannot ignore the dynamics in supercritical regions,
as to the contrary it seemed to be suggested by numerical experiments and some
analytical results on simpler models [4]. For this reason, a solution of the Perona-
Malik paradox now seems even further away.

Remark 2.4 can of course be compared with [9], where it is shown that any the-
ory allowing perturbations vanishing in L2 and uniform convergence of solutions
contains the stationary solution for every initial datum in BV , and with [16] (see
also the pioneering paper [11]) where it is shown that any theory allowing pertur-
bations vanishing in W−1,∞ and uniform convergence of solutions contains plenty
of exotic solutions even for smooth subcritical data.

The plan of this paper is the following. In section 2 we state Theorem 2.1 and
we show how its proof reduces to the proof of Theorem 2.2 and Theorem 2.3. In
section 3 we give the details of the proofs.

2. Statements

As we have seen in the introduction, Theorem 1.1 is a straightforward conse-
quence of the following result, where we prove well posedness for (1.1), (1.2) with
a mixture of initial and final conditions.

Theorem 2.1. Let n ∈ N, and let −1 = a0 < a1 < . . . < a2n < a2n+1 = 1. Let us
consider the open sets

I− :=

n⋃
i=1

(a2i−1, a2i), I+ :=

n⋃
i=0

(a2i, a2i+1).

Let v0 ∈ C∞([−1, 1]) be a function such that

(i) |v0x(x)| < 1 for every x ∈ I+ and |v0x(x)| > 1 for every x ∈ I−;
(ii) v0xx(x) = 0 for every x ∈ {a1, . . . , a2n};
(iii) all derivatives of v0 with odd order are zero at x = −1 and x = 1.

Then for every T > 0 small enough there exists u ∈ C2,1([−1, 1]×[0, T ]) satisfying
(1.1), (1.2), and

u(x, 0) = v0(x) ∀x ∈ I+,

u(x, T ) = v0(x) ∀x ∈ I−,

u(x, t) = v0(x) ∀(x, t) ∈ {a1, . . . , a2n} × [0, T ].

Moreover

|ux(x, t)| < 1 in I+ × [0, T ] and |ux(x, t)| > 1 in I− × [0, T ],(2.1)

ux(x, t) = v0x(x) ∀(x, t) ∈ {a1, . . . , a2n} × [0, T ],(2.2)

uxx(x, t) = 0 ∀(x, t) ∈ {a1, . . . , a2n} × [0, T ].(2.3)

The situation described in Theorem 2.1 is represented in Figure 1 in the par-
ticular case n = 2. The function v0 is prescribed as an initial condition in the
lower horizontal thick segments, as a final condition in the upper horizontal thick
segments, and as a Dirichlet condition in the vertical thick segments. We have
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Figure 1

a1−1a′1

R1′ R1

Figure 2

Neumann boundary conditions in the vertical dashed segments. The shaded re-
gions represent the supercritical zone I− × [0, T ].

In the general case the rectangle [−1, 1] × [0, T ] is divided into 2n + 1 subrect-
angles. Now we solve (1.1) separately in each subrectangle with the appropriate
boundary conditions. We end up with problems of three types.

• D-D-forward problems. In rectangles (a2i, a2i+1)× [0, T ] (i = 1, . . . , n− 1)
(R3 in the figure) we have a forward parabolic equation with an initial
datum and Dirichlet boundary conditions.

• D-D-backward problems. In rectangles (a2i−1, a2i)×[0, T ] (i = 1, . . . , n) (R2
and R4 in the figure) we have a backward parabolic equation with a final
datum and Dirichlet boundary conditions. These problems can be reduced
to D-D-forward problems just by reversing the time.

• N-D-forward problems. In the lateral rectangles (−1, a1)
× [0, T ] and (a2n, 1) × [0, T ] (R1 and R5 in the figure) we have a forward
parabolic equation with an initial datum, a Dirichlet boundary condition
in one of the endpoints of the space interval, and a homogeneous Neumann
boundary condition in the other endpoint. These problems can be reduced
to D-D-forward problems with a standard reflection argument. For example
in the case of the rectangle on the left we can define a′1 as the symmetric of
a1 with respect to −1 (see Figure 2) and extend v0 to the interval [a′1, a1] in
such a way that v0(−1− x) = v0(−1+ x). By assumption (iii) in Theorem
2.1 the extension is still of class C∞.

The solution of the symmetrized problem is clearly symmetric with re-
spect to x = −1. It follows that its restriction to [−1, a1] × [0, T ] satisfies
the homogenous Neumann boundary condition at x = −1.

It is clear that for every choice of T > 0 the solutions found in the subrectangles
glue together in a C0 way. The main point is proving that the glueing is actually
of class C2,1. This is where the smallness of T and assumption (ii) in Theorem
2.1 play a fundamental role. Under such assumptions indeed it turns out that
not only u(x, t) coincides with v0(x) for x ∈ {a1, . . . , a2n}, but also ux(x, t) and
uxx(x, t) coincide with v0x(x) and v0xx(x), respectively, at the same points. In a
certain sense conditions (2.2) and (2.3) make the problem overdetermined, but the
degeneracy of the equation at the boundary of the subrectangle yields some sort of
finite speed of propagation in such a way that u, ux and uxx stay constant at the
boundary for some small time.

As we have just seen, in the proof of these results we can limit ourselves to
D-D-forward problems. The general setting is the following. We have a function
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ϕ ∈ C∞(R) and an interval (α, β) such that

ϕ′′(σ) > 0 for every σ ∈ (α, β),(2.4)

ϕ′′(σ) = 0 at least in one of the endpoints of (α, β).(2.5)

Then we have a function u0 ∈ C∞([a, b]) such that

α < u0x(x) < β ∀x ∈ (a, b),(2.6)

ϕ′′(u0x(a)) = ϕ′′(u0x(b)) = 0,(2.7)

u0xx(a) = u0xx(b) = 0.(2.8)

We finally consider the degenerate parabolic problem

ut = ϕ′′(ux)uxx in [a, b]× [0,+∞),(2.9)

u(x, t) = u0(x) ∀(x, t) ∈ ∂P ([a, b]× [0,+∞)),(2.10)

where ∂P denotes the parabolic boundary. We recall that the parabolic boundary
of a rectangle [a, b]× [0, T ) (with possibly T = +∞) or [a, b]× [0, T ] is the set of its
points with either t = 0 or x ∈ {a, b}.

Therefore in (2.10) the function u0 gives both the initial condition at t = 0 and
the Dirichlet boundary condition at the endpoints x = a and x = b.

All the problems in the subrectangles fit in this framework. In the D-D-forward
problems and in the N-D-forward problems after reflection we can take ϕ(σ) =
2−1 log(1+σ2) and (α, β) = (−1, 1). As for D-D-backward problems, after reversing
the time, we may assume ϕ(σ) = −2−1 log(1 + σ2) and (α, β) defined as follows: if
u0x > 1 in the given subinterval, then we take α = 1 and β any strict upper bound
for u0x; if u0x < −1 in the given subinterval, then we take β = −1 and α any strict
lower bound for u0x. In all the cases u0 is either v0 or its extension by reflection in
the N-D-forward problems.

Theorem 2.2. Let us assume that ϕ and u0 satisfy (2.4) through (2.8).
Then there exists a unique function u ∈ C0([a, b]×[0,+∞))∩C∞((a, b)×[0,+∞))

satisfying (2.9), (2.10), and the estimate

(2.11) α < ux(x, t) < β ∀(x, t) ∈ (a, b)× [0,+∞).

Moreover there exists T0 > 0 such that u ∈ C2,1([a, b]× [0, T0]) and

ux(a, t) = u0x(a), ux(b, t) = u0x(b) ∀t ∈ [0, T0],(2.12)

uxx(a, t) = uxx(b, t) = 0 ∀t ∈ [0, T0].(2.13)

Some parts of Theorem 2.2 are probably scattered in the huge porous medium
literature. The C2,1 regularity is in any case beyond the optimal regularity for this
type of equations [1, 2], and this is of course due to assumptions (2.7) and (2.8).
In order to take advantage of these assumptions, we give a self-contained proof of
Theorem 2.2, which only relies on the theory of strictly parabolic problems [14].

To this end, given ε > 0, we approximate u0(x) with

(2.14) uε
0(x) :=

u0(x)

1 + ε
+

ε(α+ β)

2(1 + ε)
x.

The motivation of this choice is that if α ≤ u0x(x) ≤ β for every x ∈ [a, b], then
there exist constants αε and βε such that

(2.15) α < αε ≤ uε
0x(x) ≤ βε < β ∀x ∈ [a, b].
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Now we consider the problem

uε
t = ϕ′′(uε

x)u
ε
xx in [a, b]× [0,+∞),(2.16)

uε(x, t) = uε
0(x) ∀(x, t) ∈ ∂P ([a, b]× [0,+∞)).(2.17)

This problem turns out to be strictly parabolic. The following result collects the
estimates that are needed for the proof of Theorem 2.2.

Theorem 2.3. Let us assume that ϕ and u0 satisfy (2.4) through (2.8). Let ε > 0,
and let uε

0, αε and βε be defined by (2.14) and (2.15).
Then there exists a unique function

(2.18) uε ∈ C2,1([a, b]× [0,+∞)) ∩ C∞((a, b)× [0,+∞)) ∩ C∞([a, b]× (0,+∞))

satisfying (2.16), (2.17), and

αε ≤ uε
x(x, t) ≤ βε ∀(x, t) ∈ (a, b)× [0,+∞),(2.19)

uε
xx(x, t) = 0 ∀(x, t) ∈ {a, b} × [0,+∞).(2.20)

Moreover uε satisfies the following estimates independent of ε.

(1) Global estimates on ut. There exists a constant M1 such that∫ b

a

[uε
t (x, t)]

2 dx ≤ M1 ∀t ≥ 0,(2.21)

∫ T

0

∫ b

a

ϕ′′(uε
x(x, t))[u

ε
xt(x, t)]

2 dx dt ≤ M1 ∀T ≥ 0.(2.22)

(2) Uniform strict parabolicity in the interior. For every closed interval [x1, x2]
⊆ (a, b) and every T > 0 there exist constants M2 and M3 such that

(2.23) α < M2 ≤ uε
x(x, t) ≤ M3 < β ∀(x, t) ∈ [x1, x2]× [0, T ].

As a consequence, there exists a constant M4 > 0 such that

(2.24) ϕ′′(uε
x(x, t)) ≥ M4 ∀(x, t) ∈ [x1, x2]× [0, T ].

(3) Interior estimates. For every closed interval [x1, x2] ⊆ (a, b) and every
T > 0 there exists a constant M5 such that∫ x2

x1

[uε
xt(x, t)]

2 dx ≤ M5 ∀t ∈ [0, T ],(2.25)

∫ T

0

∫ x2

x1

[uε
xxt(x, t)]

2 dx dt ≤ M5,(2.26)

|uε
xx(x, t)| ≤ M5 ∀(x, t) ∈ [x1, x2]× [0, T ].(2.27)

(4) Uniform vanishing of uε
xx at the boundary. There exist constants T0 > 0

and M6 such that

(2.28) |uε
xx(x, t)| ≤ M6(x− a)(b− x) ∀(x, t) ∈ [a, b]× [0, T0].

We conclude by remarking that classical solutions cannot be neglected when
looking for a stable notion of weak solution. We show indeed that they are obtained
by fourth order regularization with a vanishing continuous perturbation.
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Remark 2.4. Let u ∈ C2,1([−1, 1]× [0, T ]) be any classical solution of (1.1), (1.2).
Then there exist families {fε} ⊆ C0([−1, 1] × [0, T ]) and {uε} ⊆ C2,1([−1, 1] ×

[0, T ]) such that

uε
t = ϕ′′(uε

x)u
ε
xx − εuε

xxxx + fε(x, t) ∀(x, t) ∈ [−1, 1]× [0, T ],(2.29)

uε
x(x, t) = uε

xxx(x, t) = 0 ∀(x, t) ∈ {−1, 1} × [0, T ],(2.30)

uε → u in C2,1([−1, 1]× [0, T ]),(2.31)

fε → 0 in C0([−1, 1]× [0, T ]).(2.32)

We chose fourth order regularizations only because in this framework the result
can be stated without further definitions. An analogous statement holds true for
higher order regularizations (for instance six order regularization) and for the semi-
discrete scheme considered in [9].

3. Proofs

3.1. Compactness and comparison results. In this section we collect two tech-
nical results. They look classical, but we did not find these exact statements in the
literature. For this reason in both cases we give a sketch of the proof for the
convenience of the reader.

The first one is a compactness result. We recall that C1/2,1/4([a, b] × [0, T ]) is
the space of functions f : [a, b] × [0, T ] → R for which there exists a constant N
such that

(3.1) |f(x1, t1)− f(x2, t2)| ≤ N
(
|x1 − x2|1/2 + |t1 − t2|1/4

)
for every x1, x2 in [a, b] and every t1, t2 in [0, T ].

Lemma 3.1. For every ε ∈ (0, ε0) let fε ∈ C1([a, b]× [0, T ]). Let us assume that
there exists M ∈ R such that∫ T

0

∫ b

a

[fε
t (x, t)]

2 dx dt ≤ M ∀ε ∈ (0, ε0),(3.2)

∫ b

a

[fε
x(x, t)]

2 dx ≤ M ∀t ∈ [0, T ], ∀ε ∈ (0, ε0),(3.3)

|fε(a, 0)| ≤ M ∀ε ∈ (0, ε0).(3.4)

Then the family {fε} is relatively compact in C0([a, b] × [0, T ]) and any limit
point belongs to C1/2,1/4([a, b]× [0, T ]).

Proof. It is enough to prove that any function f satisfying (3.2) and (3.3) also
satisfies (3.1) with a constant N independent of ε. At this point it is indeed easy
to conclude that the family {fε} is equicontinuous and equibounded; hence it is
compact for the uniform convergence by the Ascoli-Arzela Theorem.

Moreover the rectangle [a, b] × [0, T ] can be covered with a finite number k of
subrectangles [a, b] × [Ti, Ti+1] with Ti+1 − Ti ≤ (b − a)2. If we prove that (3.1)
holds true in each subrectangle with some constant N , then (3.1) holds true in the
original rectangle with constant kN .

We can therefore assume, without loss of generality, that |t1 − t2| < (b − a)2.
Now let us write

|f(x1, t1)− f(x2, t2)| ≤ |f(x1, t1)− f(x2, t1)|+ |f(x2, t1)− f(x2, t2)| =: A+B.
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By (3.3) and Hölder’s inequality we have that

(3.5) A ≤
∣∣∣∣
∫ x2

x1

fx(x, t1) dx

∣∣∣∣ ≤ M1/2|x2 − x1|1/2.

In order to estimate B, let us set Bδ(x2) = {x ∈ [a, b] : |x − x2| < δ}. If δ
is smaller than b − a, then δ ≤ |Bδ(x2)| ≤ 2δ. Moreover there exist xδ and yδ in
Bδ(x2) such that

1

|Bδ(x2)|

∫
Bδ(x2)

f(x, t1) dx = f(xδ, t1),
1

|Bδ(x2)|

∫
Bδ(x2)

f(x, t2) dx = f(yδ, t2).

Now

B ≤ |f(x2, t1)− f(xδ, t1)|+ |f(xδ, t1)− f(yδ, t2)|+ |f(yδ, t2)− f(x2, t2)|
=: B1 +B2 +B3.

Using (3.3) as we did in (3.5), it is easy to see that B1 ≤ M1/2δ1/2 and B3 ≤
M1/2δ1/2.

Moreover, by (3.2) and Hölder’s inequality applied in the rectangle Bδ(x2) ×
[t1, t2] (we assume that t1 < t2 without loss of generality) we have that

B2 ≤ 1

|Bδ(x2)|

∫
Bδ(x2)

|f(x, t1)− f(x, t2)| dx

≤ 1

|Bδ(x2)|

∫
Bδ(x2)

∫ t2

t1

|ft(x, t)| dx dt

≤ 1

|Bδ(x2)|
{|Bδ(x2)| · |t2 − t1|}1/2 M1/2

≤ M1/2δ−1/2|t2 − t1|1/2.

Putting it all together, we have that

A+B ≤ M1/2|x2 − x1|1/2 + 2M1/2δ1/2 +M1/2δ−1/2|t2 − t1|1/2,

and therefore (3.1) follows by setting δ := |t2 − t1|1/2 (which we assumed to be
smaller than b− a). �

The second result is one of the many variants of the comparison principle for
fully nonlinear parabolic PDEs.

Lemma 3.2. Let Ω ⊆ R
2, and let ψ : [a, b] × [0, T ] × Ω × R → R be a continuous

function which is nondecreasing in the last variable, i.e.,

(3.6) ψ(x, t, p, q, r) ≥ ψ(x, t, p, q, s) ∀r ≥ s

for all admissible values of x, t, p, q (this condition is usually called weak or de-
generate ellipticity).

Let u ∈ C0([a, b]× [0, T ]) ∩ C2,1((a, b)× (0, T ]) be a function such that

(u(x, t), ux(x, t)) ∈ Ω ∀(x, t) ∈ (a, b)× (0, T ],(3.7)

ut = ψ(x, t, u, ux, uxx) in (a, b)× (0, T ].(3.8)

Let v ∈ C0([a, b]× [0, T ]) ∩ C2,1((a, b)× (0, T ]), and let

VΩ := {(x, t) ∈ (a, b)× (0, T ] : (v(x, t), vx(x, t)) ∈ Ω}.
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Let us assume that

vt > ψ(x, t, v, vx, vxx) ∀(x, t) ∈ VΩ,(3.9)

v(x, t) > u(x, t) ∀(x, t) ∈ ∂P ([a, b]× [0, T ]).(3.10)

Then v(x, t) > u(x, t) for every (x, t) ∈ [a, b]× [0, T ].
An analogous statement can be obtained by reversing the inequality signs in (3.9),

(3.10), and in the conclusion.

Proof. Let z(x, t) := v(x, t) − u(x, t). We claim that z(x, t) > 0 for every (x, t) ∈
[a, b]× [0, T ]. Let us assume by contradiction that this is not the case, and let

t0 := inf{t ∈ [0, T ] : z(x, t) ≤ 0 for some x ∈ [a, b]}.

Then it is easy to see that there exists x0 ∈ [a, b] such that z(x0, t0) = 0; hence
v(x0, t0) = u(x0, t0) =: p0. From (3.10) and the continuity of z it follows that
t0 > 0 and x0 ∈ (a, b). Therefore zt(x0, t0) ≤ 0, zx(x0, t0) = 0; hence ux(x0, t0) =
vx(x0, t0) =: q0, and zxx(x0, t0) ≥ 0, and hence vxx(x0, t0) ≥ uxx(x0, t0).

In particular (x0, t0) ∈ VΩ; hence by (3.9), (3.8), and the weak ellipticity (3.6)
of ψ we have that

0 ≥ zt(x0, t0) = vt(x0, t0)− ut(x0, t0)

> ψ(x0, t0, p0, q0, vxx(x0, t0))− ψ(x0, t0, p0, q0, uxx(x0, t0)) ≥ 0,

which is absurd. �

3.2. Proof of Theorem 2.3.

Global existence and maximum principle for ux. In order to prove existence of a
global solution of (2.16), (2.17), we take a function ϕε ∈ C∞(R) which coincides
with ϕ in the interval (αε, βε) and such that ϕ′′

ε (σ) ≥ ν > 0 for every σ ∈ R.
Problem (2.16), (2.17), with ϕε instead of ϕ, is strictly parabolic. By well knows
results (see for example [14]) it admits a unique global solution with the regularity
stated in (2.18).

Since the initial condition uε
0 satisfies (2.15), the classical maximum principle for

uε
x implies that this solution satisfies (2.19), and in particular it is also a solution of

(2.16), (2.17) with the original ϕ. Finally, since the equation is strictly parabolic,
(2.20) is equivalent to saying that uε

t (x, t) = 0 for x = a and x = b, which is a
consequence of the Dirichlet boundary condition.

Global estimates on ut. Computing the time derivative and integrating by parts,
we have that

d

dt

(∫ b

a

[uε
t ]

2 dx

)
= 2

∫ b

a

uε
t (ϕ

′(uε
x))xt dx

= −2

∫ b

a

uε
tx(ϕ

′(uε
x))t dx

= −2

∫ b

a

ϕ′′(uε
x)[u

ε
tx]

2 dx,

where we neglected the boundary terms in the integration by parts because uε
t is

zero for x ∈ {a, b} due to the Dirichlet boundary conditions coming from (2.17).
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Integrating in [0, T ], we obtain that∫ b

a

[uε
t (x, T )]

2 dx+ 2

∫ T

0

∫ b

a

ϕ′′(uε
x)[u

ε
xt]

2 dx dt ≤
∫ b

a

[uε
t (x, 0)]

2 dx.

Since the right hand side can be estimated independently of ε, inequalities (2.21)
and (2.22) easily follow.

Uniform strict parabolicity in the interior. We have to prove that uε
x(x, t) is bounded

away from α and β. Without loss of generality let us concentrate on β (the other
case is quite similar).

If ϕ′′(β) > 0, then by (2.6) and (2.7) we have that u0x(x) is bounded away from
β for every x ∈ [a, b]; hence also uε

0x(x) is bounded away from β independently
of ε. By the maximum principle uε

x(x, t) has the same bound for every (x, t) ∈
[a, b]× [0,+∞).

Let us assume now that ϕ′′(β) = 0. We consider the function

z0(x) :=
(x− a)2(b− x)2(β − u0x(x))

2(b− a)4
,

we choose

k > sup
σ∈(α,β)

ϕ′′(σ)

β − σ
· max
x∈[a,b]

|z0xx(x)|+ max
σ∈(α,β)

|ϕ′′′(σ)| · sup
x∈(a,b)

z20x(x)

z0(x)

(the first supremum is finite because ϕ′′(β) = 0, and the second supremum is finite
because z0x(a) = z0x(b) = 0), and we claim that

(3.11) uε
x(x, t) < β − z0(x)

1 + kt
∀(x, t) ∈ [a, b]× [0,+∞).

Since z0(x) > 0 for every x ∈ (a, b), this proves that uε
x is bounded away from

β, independently of ε, in every rectangle [x1, x2]× [0, T ] with [x1, x2] ⊆ (a, b).
In order to prove (3.11), we set for simplicity v := uε

x, we denote by z(x, t) the
right hand side, and we apply Lemma 3.2 to the functions v and z. Indeed a simple
calculation shows that v satisfies

(3.12) vt = ϕ′′(v)vxx + ϕ′′′(v)v2x in [a, b]× [0,+∞).

The right hand side of (3.12) satisfies the weak ellipticity condition (3.6) with
Ω = (α, β) × R. Moreover for every (x, t) ∈ (a, b) × [0,+∞) it is easy to see that
α < z(x, t) < β; hence by definition of z and k we have that

ϕ′′(z)zxx + ϕ′′′(z)z2x = −ϕ′′(z)
z0xx
1 + kt

+ ϕ′′′(z)
z20x

(1 + kt)2

= −ϕ′′(z)

β − z

z0
(1 + kt)2

z0xx + ϕ′′′(z)
z0

(1 + kt)2
z20x
z0

≤ z0
(1 + kt)2

{
ϕ′′(z)

β − z
|z0xx|+ |ϕ′′′(z)|z

2
0x

z0

}

< k
z0

(1 + kt)2
= zt,

which proves that z is a supersolution of (3.12). It remains to show that z(x, t) >
v(x, t) on the parabolic boundary of [a, b]× [0,+∞). For x = a and x = b we have
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that z(x, t) = β > βε ≥ v(x, t), while for t = 0 we have that

z(x, 0) ≥ β − β − u0x(x)

2
=

u0x(x) + β

2
>

u0x(x)

1 + ε
+

ε(α+ β)

2(1 + ε)
= v(x, 0),

where the last inequality can be proved simply by checking that it holds true for
u0x = α and u0x = β and that both sides are affine with respect to u0x. This
completes the proof of (2.23).

Since uε
x is bounded away from the possible zeroes of ϕ′′, estimate (2.24) easily

follows.

Interior estimates. Let y1 := (x1 + a)/2, y2 := (x2 + b)/2. Let r ∈ C∞(R) be a
cut-off function such that r(x) = 1 for x ∈ [x1, x2], r(x) = 0 for x ≤ y1 or x ≥ y2,
and 0 < r(x) < 1 otherwise. Let us set for simplicity

E(t) :=

∫ b

a

r2[uε
xt]

2 dx, F (t) :=

∫ b

a

r2ϕ′′(uε
x)[u

ε
xxt]

2 dx,

G(t) :=

∫ b

a

ϕ′′(uε
x)[u

ε
xt]

2 dx, H(t) := max
x∈[a,b]

|r(x)uε
xx(x, t)| .

In the following estimates we introduce constants c1, . . . , c14, all independent of
ε.

Thanks to (2.24) the function ϕ′′(uε
x) is bounded away from 0 in the rectangle

[x1, x2]× [0, T ]; hence

(3.13)

∫ y2

y1

[uε
xt]

2 dx ≤ c1

∫ y2

y1

ϕ′′(uε
x)[u

ε
xt]

2 dx ≤ c1G(t).

Taking the time derivative and integrating by parts, we have that

E′(t) = 2

∫ b

a

r2uε
xtu

ε
xtt dx

= −2

∫ b

a

(r2uε
xt)xu

ε
tt dx

= −2

∫ b

a

(2rrxu
ε
xt + r2uε

xxt)(ϕ
′′(uε

x)u
ε
xt)x dx

= −4

∫ b

a

rrx[u
ε
xt]

2ϕ′′′(uε
x)u

ε
xx dx− 4

∫ b

a

rrxu
ε
xtϕ

′′(uε
x)u

ε
xxt dx

−2

∫ b

a

r2ϕ′′′(uε
x)u

ε
xxu

ε
xtu

ε
xxt dx− 2

∫ b

a

r2ϕ′′(uε
x)[u

ε
xxt]

2 dx

=: I1(t) + I2(t) + I3(t) + I4(t).

Now we estimate separately the four terms. First of all

(3.14) I1(t) ≤ c2H(t)

∫ y2

y1

[uε
xt]

2 dx ≤ c3
(
1 +H2(t)

)
G(t).
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Using the well known inequality 2AB ≤ ηA2 + η−1B2 with suitable choices of
A, B, η, we have that

I2(t) = −4

∫ b

a

(
r
√
ϕ′′(uε

x)u
ε
xxt

) (
rx

√
ϕ′′(uε

x)u
ε
xt

)
dx

≤ 1

2

∫ b

a

r2ϕ′′(uε
x)[u

ε
xxt]

2 dx+ c4

∫ b

a

r2xϕ
′′(uε

x)[u
ε
xt]

2 dx

≤ 1

2
F (t) + c5G(t),

and

I3(t) = −2

∫ y2

y1

(
r
√
ϕ′′(uε

x)u
ε
xxt

) (
r
ϕ′′′(uε

x)√
ϕ′′(uε

x)
uε
xxu

ε
xt

)
dx

≤ 1

2

∫ y2

y1

r2ϕ′′(uε
x)[u

ε
xxt]

2 dx+ c6

∫ y2

y1

r2
[ϕ′′′(uε

x)]
2

ϕ′′(uε
x)

[uε
xx]

2[uε
xt]

2 dx

≤ 1

2
F (t) + c7H

2(t)G(t).

Since I4(t) = −2F (t), putting it all together, we obtain that

(3.15) E′(t) ≤ −F (t) + c8G(t)
{
1 +H2(t)

}
.

Now we need an estimate for H2(t). Using (2.24) once more, for every s ∈ [y1, y2]
we have that

|r(s)uε
xx(s, t)|

2 ≤ c9 |r(s)ϕ′′(uε
x(s, t))u

ε
xx(s, t)|

2

= c9 |r(s)uε
t (s, t)|

2

= c9

[∫ s

y1

(ruε
t )x dx

]2

≤ c9(s− y1)

∫ s

y1

[(ruε
t )x]

2
dx

≤ c9(b− a)

∫ b

a

[rxu
ε
t + ruε

tx]
2
dx

≤ c10

∫ b

a

[uε
t ]

2 dx+ c11E(t).

By (2.21) the first summand in the last line is bounded independently of ε and
t. We have thus proved that

(3.16) H2(t) ≤ c12 + c11E(t) ∀t ∈ [0, T ],

so that, coming back to (3.15), we have that

E′(t) ≤ c13G(t)E(t) + c14G(t)− F (t).

Let Γ(t) be the function such that Γ′(t) = c13G(t) and Γ(0) = 0. By the usual
comparison argument for ODEs we obtain that

(3.17) E(t) + eΓ(t)
∫ t

0

e−Γ(s)F (s) ds ≤ E(0)eΓ(t) + c14e
Γ(t)

∫ t

0

e−Γ(s)G(s) ds
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for every t ∈ [0, T ]. By (2.22) the integral of G, hence also Γ(t), is bounded
from above independently of ε. Therefore the right hand side of (3.17) is bounded
independently of ε.

Since r(x) = 1 in [x1, x2], this proves (2.25) and (2.26) by definition of E(t) and
F (t). Analogously, by definition of H(t), (2.27) follows from (3.16) and the uniform
bound for the right hand side of (3.17).

Uniform vanishing of uε
xx at the boundary. Let us prove first that there exist con-

stants c1 and T1 > 0 such that

(3.18) uε
xx(x, t) ≤ c1(x− a) ∀(x, t) ∈ [a, b]× [0, T1].

To this end let us choose

k1 > max
σ∈[α,β]

|ϕ′′′(σ)| , k2 > max
σ∈[α,β]

∣∣ϕIV (σ)
∣∣ , k3 > sup

x∈(a,b]

|u0xx(x)|
x− a

(the supremum is finite because u0xx(a) = 0), let g(t) be the solution of the Cauchy
problem

g′(t) = 3k1g
2(t) + 4k2(b− a)2g3(t) g(0) = k3,

let h(t) be the solution of the Cauchy problem

h′(t) = 3k1g(t)h(t) + 4k2h
3(t) h(0) = 1,

and let T1 > 0 be such that g(t) and h(t) are defined at least for t ∈ [0, T1].
If we prove that for every η ∈ (0, 1) we have that

(3.19) uε
xx(x, t) < g(t)(x− a) + ηh(t) ∀(x, t) ∈ [a, b]× [0, T1],

then (3.18) with c1 := g(T1) follows by letting η → 0+.
In order to prove (3.19), for simplicity we set wε = uε

xx, we denote the right
hand side by z(x, t), and we apply Lemma 3.2 to the functions wε and z. Indeed
with some calculations it turns out that

wε
t = ϕ′′(uε

x)w
ε
xx + 3ϕ′′′(uε

x)w
εwε

x + ϕIV (uε
x)[w

ε]3

=: aε(x, t)wε
xx + bε(x, t)wεwε

x + cε(x, t)[wε]3,(3.20)

where (3.20) satisfies the weak ellipticity condition (3.6) with Ω = R× R.
Moreover

aεzxx + bεzzx + cεz3 = bε(g(t)(x− a) + ηh(t))g(t) + cε(g(t)(x− a) + ηh(t))3

≤ bε(x− a)g2(t) + ηbεh(t)g(t) + 4cεg3(t)(x− a)3 + 4cεη3h3(t)

< (x− a)
{
3k1g

2(t) + 4k2(b− a)2g3(t)
}

+ η
{
3k1g(t)h(t) + 4k2h

3(t)
}

= (x− a)g′(t) + ηh′(t) = zt,

which proves that z is a supersolution of the same equation. It remains to show
that z(x, t) > wε(x, t) on the parabolic boundary of [a, b] × [0, T1]. This is true
because for x = a and x = b we have that z is positive and wε is zero by (2.20),
while for t = 0 we have that

z(x, 0) = k3(x− a) + η > |u0xx(x)| ≥ uε
0xx(x) = wε(x, 0).

Therefore (3.19) follows from Lemma 3.2, and this completes the proof of (3.18).
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With similar arguments we can prove that there exist constants c2, c3, c4, and
positive times T2, T3, T4 such that

uε
xx(x, t) ≥ −c2(x− a) ∀(x, t) ∈ [a, b]× [0, T2],(3.21)

uε
xx(x, t) ≤ c3(b− x) ∀(x, t) ∈ [a, b]× [0, T3],(3.22)

uε
xx(x, t) ≥ −c4(b− x) ∀(x, t) ∈ [a, b]× [0, T4].(3.23)

In conclusion, from inequalities (3.18), (3.21), (3.22), (3.23) we easily obtain
(2.28) for T0 := min{T1, T2, T3, T4}.

3.3. Proof of Theorem 2.2.

Uniqueness. Under condition (2.11) equation (2.9) is weakly parabolic. Since u
is prescribed on the parabolic boundary, uniqueness follows from standard tech-
niques, for example an estimate of the L2 norm of the difference of two solutions,
or comparison arguments such as Lemma 3.2.

Convergence. We show that there exists u ∈ C0([a, b] × [0,+∞)) ∩ C∞((a, b) ×
[0,+∞)) satisfying (2.9), (2.10), (2.11) and such that

uε → u uniformly on compact subsets of [a, b]× [0 +∞),(3.24)

uε
x → ux uniformly on compact subsets of (a, b)× [0 +∞),(3.25)

uε
t → ut uniformly on compact subsets of (a, b)× [0 +∞),(3.26)

uε
xx → uxx uniformly on compact subsets of (a, b)× [0 +∞).(3.27)

First of all, since (2.9), (2.10), (2.11) uniquely characterize the possible limits,
it is enough to prove convergence up to subsequences.

In order to prove (3.24), we apply Lemma 3.1 to the family {uε} in any rectangle
[a, b]× [0, T ]. Assumptions (3.2) and (3.3) follow from (2.21) and (2.19), while (3.4)
is a direct consequence of the initial condition. This also proves that u satisfies the
initial and boundary conditions (2.10).

In order to prove that ux exists and satisfies (3.25), we apply Lemma 3.1 to the
family {uε

x} in any rectangle [x1, x2] × [0, T ] with a < x1 < x2 < b. The estimate
on uε

xt required in (3.2) follows from (2.25); the estimate on uε
xx required in (3.3)

is a consequence of (2.27); finally (3.4) follows from (2.19).
In order to prove that ut exists and satisfies (3.26), we apply Lemma 3.1 to the

family {uε
t} in any rectangle [x1, x2] × [0, T ] with a < x1 < x2 < b. The estimate

on uε
tx required in (3.3) is (2.25). Moreover, since

uε
tt = ϕ′′′(uε

x)u
ε
xxu

ε
xt + ϕ′′(uε

x)u
ε
xxt,

estimate (3.2) follows from (2.27), (2.25), and (2.26). Finally, (3.4) trivially follows
from the fact that uε

t is determined at t = 0 by the initial condition.
In order to prove that uxx exists and satisfies (3.27), we recall that

uε
xx =

uε
t

ϕ′′(uε
x)

.

Since the denominator is bounded away from zero because of (2.24), the uniform
convergence of uε

xx follows from the uniform convergence of uε
t and uε

x. This also
proves that u is a solution of (2.9) in (a, b)× [0,+∞).

Passing (2.23) to the limit, we deduce (2.11). As a consequence, the equation is
strictly parabolic in any compact subset of (a, b)×[0,+∞); hence u is automatically
of class C∞ in this set.
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Existence of ux at the boundary. We prove that there exists T0 > 0 such that
ux(x, t) exists for (x, t) ∈ {a, b} × [0, T0] and satisfies (2.12).

Let us concentrate first on the endpoint x = a. By our assumptions on ϕ and
u0 we have that u0x(a) ∈ {α, β}. Let us assume that u0x(a) = α; hence ϕ′′(α) = 0.

Now we choose positive numbers k, h, T0 such that

k > 18 sup
σ∈(α,β)

ϕ′′(σ)

σ − α
,

1

h
> sup

x∈(a,b)

∣∣∣∣u0(x)− u0(a)− α(x− a)

(x− a)3

∣∣∣∣ , T0 <
h

k

(both suprema are finite because ϕ′′(α) = 0 and u0xx(a) = 0), and we claim that

(3.28) u0(a) + α(x− a) ≤ u(x, t) ≤ u0(a) + α(x− a) +
(x− a)3

h− kt

for every (x, t) ∈ [a, b] × [0, T0]. Since the left and the right hand sides have the
same value at x = a and since they both have derivative equal to α at x = a, it
follows that ux(a, t) exists and is equal to α for every t ∈ [0, T0].

So we have only to prove (3.28). The inequality on the left is true for every
t ≥ 0 because of (2.11). Let us denote by v(x, t) the right hand side of (3.28). The
inequality on the right is equivalent to showing that v(x, t) + η > u(x, t) for every
η > 0 and every (x, t) ∈ [a, b]× [0, T0].

To this end we want to apply Lemma 3.2 to the functions u and v + η. The
function u is a solution of equation (2.9), whose right hand side satisfies the weak
ellipticity condition (3.6) with Ω = R × (α, β). So we need only to verify that
v(x, t)+ η > u(x, t) on the parabolic boundary of the rectangle and vt > ϕ′′(vx)vxx
when α < vx < β.

Inequality v(x, t)+η > u(x, t) for t = 0 is substantially equivalent to our choice of
h, while for x ∈ {a, b} we have that v(x, t)+η > v(x, 0) ≥ u(x, 0) = u(x, t). Finally,
for simplicity setting g(t) = (h− kt)−1 when α < vx(x, t) = α+ 3g(t)(x− a)2 < β,
we have that

ϕ′′(vx)vxx = ϕ′′(α+ 3g(t)(x− a)2) · 6g(t)(x− a)

=
ϕ′′(α+ 3g(t)(x− a)2)

3g(t)(x− a)2
· 18g2(t)(x− a)3

< kg2(t)(x− a)3

= g′(t)(x− a)3 = vt.

This completes the proof when u0x(a) = α.
If u0x(a) = β, then in a similar way we prove that

u0(a) + β(x− a) ≥ u(x, t) ≥ u0(a) + β(x− a)− (x− a)3

h− kt
,

where now of course β replaces α in the definitions of h and k, and this is enough
to conclude that ux(a, t) = β for every x ∈ [0, T0].

Analogous arguments work at the endpoint x = b.

Existence and continuity of ux, ut, uxx up to the boundary. Let T0 > 0 be small
enough so that (2.12) and estimate (2.28) hold true. We claim that for this choice
of T0 we have that u belongs to C2,1([a, b]× [0, T0]) and satisfies (2.13).

Let us consider ux. We have just shown that ux is defined for every (x, t) ∈
[a, b] × [0, T0]. Moreover from (2.28) we obtain a uniform bound on uε

xx, which
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proves in particular that the functions uε
x are Lipschitz continuous with respect to

the x variable in [a, b]× [0, T0], with Lipschitz constant independent of t and ε. In
particular the limit ux turns out to be Lipschitz continuous with respect to the x
variable in [a, b]× [0, T0], continuous with respect to both variables in (a, b)× [0, T0],
and constant for x = a and x = b. This is enough to conclude that ux is continuous
(with respect to both variables) in [a, b]× [0, T0].

Now let us consider ut, which coincides with ϕ′′(ux)uxx in (a, b) × [0, T0]. It is
the product of the bounded function uxx and a function ϕ′′(ux) which tends to 0
for x → a+ and for x → b−. Therefore ut can be extended to [a, b]× [0, T0] just by
defining it to be 0 at x = a or x = b.

Finally, we consider uxx. Inequality (2.28) shows that the functions uε
xx uni-

formly vanish at x = a and x = b. Together with (3.27) this implies that the family
{uε

xx} uniformly converges in the whole rectangle [a, b]× [0, T0]. Moreover the limit
is clearly uxx and vanishes at the endpoints, which proves (2.13).

Of course convergencies (3.25), (3.26), (3.27) are now uniform in [a, b]× [0, T0].

3.4. Proof of Remark 2.4. Let {ρη(x)}η∈(0,1) be a family of mollifiers in the x
variable, which we assume to be even functions. Let us extend u(x, t) to [−2, 2] ×
[0, T ] in such a way that u(1 + x) = u(1− x) and u(−1 + x) = u(−1− x) for every
x ∈ (0, 1). Let us consider uη(x, t) := u(x, t)∗ρη(x) (convolution in the x variable),
defined for x in a neighborhood of [−1, 1] and t ∈ [0, T ].

Since u is of class C2,1, we have that uη → u, uη
t → ut, u

η
x → ux, u

η
xx → uxx

uniformly in [−1, 1]× [0, T ] as η → 0+.
Moreover from the symmetry properties of the extension of u and of the mollifiers

it follows that uη
x(x, t) = uη

xxx(x, t) = 0 for x = −1 and x = 1 (and the same for all
derivatives with odd order). If we set

gε,η := uη
t − ϕ′′(uη

x)u
η
xx + εuη

xxxx,

then we have that

lim
η→0+

(
lim

ε→0+
gε,η(x, t)

)
= 0 uniformly in [−1, 1]× [0, T ].

By a well known property of double limits there exists a function η(ε) such that
η(ε) → 0+ as ε → 0+ and

lim
ε→0+

gε,η(ε)(x, t) = 0 uniformly in [−1, 1]× [0, T ].

Therefore uε := uη(ε) and fε := gε,η(ε) satisfy (2.29), (2.30), (2.31), and (2.32).
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