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Abstract. We consider the second order Cauchy problem

εu′′

ε + u′

ε + m(|A1/2uε|
2)Auε = 0, uε(0) = u0, u′

ε(0) = u1,

and the first order limit problem

u′ + m(|A1/2u|2)Au = 0, u(0) = u0,

where ε > 0, H is a Hilbert space, A is a self-adjoint nonnegative operator on H

with dense domain D(A), (u0, u1) ∈ D(A3/2) × D(A1/2), and m : [0,+∞) →
[0, +∞) is a function of class C1.

We prove global-in-time estimates for the difference uε(t) − u(t) provided

that u0 satisfies the nondegeneracy condition m(|A1/2u0|2) > 0, and the func-
tion σm(σ2) is nondecreasing in a right neighborhood of its zeroes.

The abstract results apply to parabolic and hyperbolic partial differential
equations with non-local nonlinearities of Kirchhoff type.

1. Introduction. Let H be a real Hilbert space. For every x and y in H , |x|
denotes the norm of x, and 〈x, y〉 denotes the scalar product of x and y. Let A be
a self-adjoint linear operator on H with dense domain D(A). We always assume
that A is nonnegative, namely 〈Au, u〉 ≥ 0 for every u ∈ D(A). For any such
operator the power Aα is defined for every α ≥ 0 in a suitable domain D(Aα). Let
m : [0,+∞) → [0,+∞) be a function of class C1.

For every ε > 0 we consider the second order Cauchy problem

εu′′ε (t) + u′ε(t) +m(|A1/2uε(t)|2)Auε(t) = 0, ∀t ≥ 0, (1.1)

uε(0) = u0, u′ε(0) = u1. (1.2)

This problem is just an abstract setting of the initial boundary value problem
for the hyperbolic partial differential equation (PDE)

εuε
tt(t, x) + uε

t (t, x) −m

(
∫

Ω

|∇uε(t, x)|2 dx
)

∆uε(t, x) = 0 (1.3)

in an open set Ω ⊆ R
n. This equation is a model for the damped small transversal

vibrations of an elastic string (n = 1) or membrane (n = 2) with uniform density ε.
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We also consider the first order Cauchy problem

u′(t) +m(|A1/2u(t)|2)Au(t) = 0, ∀t ≥ 0, (1.4)

u(0) = u0, (1.5)

obtained setting formally ε = 0 in (1.1), and omitting the second initial condition in
(1.2). In the concrete setting of (1.3) the limit problem involves a PDE of parabolic
type.

These problems are called non-degenerate if there exists a constant µ > 0 such
that m(σ) ≥ µ for every σ ≥ 0. They are called mildly degenerate if the initial
condition u0 belongs to D(A1/2) and satisfies the non-degeneracy condition

m(|A1/2u0|2) > 0. (1.6)

Existence of a global solution for the first order problem (1.4), (1.5) can be
established under very general assumptions on m, A, u0. In particular one can
prove the following result (see [8] and the references quoted therein).

Theorem A. Let A be a nonnegative operator, and let m : [0,+∞) → [0,+∞) be
a locally Lipschitz continuous function. Let us assume that u0 ∈ D(A) satisfies the
non-degeneracy condition (1.6). Then problem (1.4), (1.5) has a unique solution

u ∈ C1([0,+∞);H) ∩ C0([0,+∞);D(A)).

Moreover u ∈ C1((0,+∞);D(Aα)) for every α ≥ 0.

The standard result concerning the second order problem (1.1), (1.2) is the ex-
istence of a unique global solution provided that (u0, u1) ∈ D(A)×D(A1/2) satisfy
(1.6) and ε is small enough. This was proved by E. De Brito [3], Y. Yamada [17],
and K. Nishihara [14] in the non-degenerate case, then by K. Nishihara and Y.

Yamada [15] in the mildly degenerate case with m(σ) = σγ (γ ≥ 1), and finally by
the authors [5] with a general locally Lipschitz continuous nonlinearity m(σ) ≥ 0.

The following theorem is a straightforward consequence of Theorem 2.2 of [5].

Theorem B. Let A be a nonnegative operator, and let m : [0,+∞) → [0,+∞) be a
locally Lipschitz continuous function. Let us assume that (u0, u1) ∈ D(A)×D(A1/2)
satisfy the non-degeneracy condition (1.6). Then there exists ε0 > 0 such that for
every ε ∈ (0, ε0) problem (1.1), (1.2) has a unique global solution

uε ∈ C2([0,+∞);H) ∩C1([0,+∞);D(A1/2)) ∩C0([0,+∞);D(A)).

The singular perturbation problem is concerned with the convergence of uε to u
as ε→ 0+. Following the approach introduced by J. L. Lions [13] in the linear case,
one defines the corrector θε(t) as the solution of the linear second order problem

εθ′′ε (t) + θ′ε(t) = 0, ∀t ≥ 0, (1.7)

θε(0) = 0, θ′ε(0) = u1 +m(|A1/2u0|2)Au0 =: w0. (1.8)

Since θ′ε(0) = u′ε(0)− u′(0), this corrector keeps into account the boundary layer
due to the loss of one initial condition. Then one defines the remainder rε(t) in
such a way that

uε(t) = u(t) + θε(t) + rε(t) ∀t ≥ 0. (1.9)

The singular perturbation problem consists in proving that rε → 0 in some sense
as ε→ 0+.

As far as we know, the first result in this direction for Kirchhoff equations was ob-
tained by B. F. Esham and R. J. Weinacht [4]. Restated in the abstract setting,
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they considered the non-degenerate case with initial data (u0, u1) ∈ D(A3/2)×D(A),
and they proved a local-in-time error estimate, namely

|A1/2rε(t)| ≤ CT ε, ∀t ∈ [0, T ], (1.10)

where CT is a constant which depends on T , but not on ε.
Later on this problem was considered by the second author [9] in the mildly

degenerate case, proving the following two results.

• Global-in-time uniform convergence. For initial conditions (u0, u1) ∈ D(A) ×
D(A1/2) (i.e., the same space involved in the existence theorem) we have that

rε → 0 uniformly in C0([0,+∞);D(A)), (1.11)

r′ε → 0 in L2([0,+∞);D(A1/2)). (1.12)

• Local-in-time error estimates. For more regular initial data we have that

|rε(t)| ≤ CT ε ∀t ∈ [0, T ], (1.13)

|A1/2rε(t)| ≤ CT ε ∀t ∈ [0, T ], (1.14)
∫ T

0

|r′ε(t)|2 dt ≤ CT ε
2, (1.15)

where CT is a constant which depends on T , but not on ε.

In this paper we need the local-in-time error estimates (1.13), (1.14), and (1.15)
for initial data in D(A3/2)×D(A1/2). For the convenience of the reader we provide
in Appendix A a self contained proof of these estimates (the proof given in [9]
assumes the coerciveness of the operator A and more regularity of the initial data).

Concerning the regularity of initial data, we point out that in [6] the authors
proved that D(A3/2) ×D(A1/2) is the largest space where local-in-time estimates
of order ε such as (1.13) and (1.14) can be proved, even for linear equations (the
case where m is constant).

In a recent paper H. Hashimoto and T. Yamazaki [10] considered once again
the non-degenerate case providing for the first time global-in-time error estimates.
Indeed for initial data (u0, u1) ∈ D(A3/2) ×D(A) they proved that

|rε(t)| ≤ Cε ∀t ≥ 0, (1.16)

|A1/2rε(t)| ≤ C√
1 + t

ε ∀t ≥ 0, (1.17)

where now C doesn’t depend on t (and of course on ε). They also obtained estimates
for |r′ε(t)| and |Arε(t)|, but for more regular initial data (at least (u0, u1) ∈ D(A2)×
D(A)).

In this paper we prove global-in-time error estimates for the mildly degenerate
case, under the additional assumption that σm(σ2) is nondecreasing. In Lemma 3.2
we show that this assumption is equivalent to the monotonicity of the operator
u → m(|A1/2u|2)Au in the sense of [2], which in turn is equivalent to say that
problem (1.4), (1.5) generates a contraction semigroup.

To be more precise, we need the monotonicity of σm(σ2) only for σ in a suitable
interval (see Theorem 2.1 for the details). This weaker assumption turns out to
be satisfied in most cases, for instance whenever the problem is nondegenerate, or
when m is monotone in a right neighborhood of its zeroes (see Remark 2.3).
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Under this monotonicity assumption we prove that

|rε(t)| ≤ Cε, ∀t ≥ 0, (1.18)

|A1/2rε(t)| ≤ C
√
ε, ∀t ≥ 0, (1.19)

∫ +∞

0

|r′ε(t)|2 dt ≤ Cε, (1.20)

where C doesn’t depend on t and ε. If we assume that (u0, u1) ∈ D(A3/2) ×D(A)
we have also better convergence rates (see the second part of Theorem 2.1).

Apart from the monotonicity assumption (which we suspect to be a necessary
condition) estimates (1.18), (1.19), and (1.20) are the global-in-time extensions of
(1.13), (1.14) and (1.15), but with lower convergence rates.

Comparing with [10] we have weaker assumptions on the nonlinearity (we recall
once again that our monotonicity assumption is automatically satisfied in the non-
degenerate case), and weaker assumptions on the initial data (D(A3/2) ×D(A1/2)
instead of D(A3/2)×D(A)). Nevertheless we obtain the same estimate on |rε|, and
we get an integral estimate on |r′ε| which in [10] requires initial data inD(A2)×D(A).
On the contrary our estimate (1.19) is weaker than (1.17), both because of the con-
vergence rate, and because the latter contains also a time-decay estimate.

Let us conclude with a few words about the technique. The main idea in previ-
ous papers is considering (1.1) and (1.4) as linear equations with time-dependent
coefficients cε(t) = m(|A1/2uε(t)|2) and c(t) = m(|A1/2u(t)|2). In this framework
the convergence estimates follow from general results on linear equations with some
a priori bounds on cε(t) − c(t), which are the single point where the nonlinearity
plays a role. The proof of Proposition A.1 is an example of these techniques.

On the contrary, in the proof of our main result we don’t pursue this “linear
path”, but we introduce a “nonlinear approach” in order to take advantage of the
monotonicity assumption. The main point is considering quantities such as

〈uε − u, cεAuε − cAu〉
which are not quadratic forms in uε − u, but nevertheless are nonnegative due to
the assumed monotonicity.

This paper is organized as follows. In section 2 we state our results, which we
prove in section 3. Section 4 contains some open problems. In Appendix A we give
a proof of the local-in-time error estimates.

2. Statements. In this paper we assume for simplicity thatm : [0,+∞) → [0,+∞)
is a function of class C1. Probably all the theory can be generalized to functions m
which are locally Lipschitz continuous. We set σ0 := |A1/2u0|2, and µ0 := m(σ0).
Since we consider mildly degenerate equations we always have that µ0 6= 0. Let

σ1 := sup {σ ∈ [0, σ0] : σ ·m(σ) = 0} . (2.1)

In a few words, σ1 is either 0 or the largest σ < σ0 such that m(σ) = 0. Let us
choose σ2 > σ0 in such a way that m(σ) > 0 for every σ ∈ (σ1, σ2]. We set

µ1 := min
σ∈[σ1,σ2]

m(σ), µ2 := max
σ∈[σ1,σ2]

m(σ),

and we denote by L the Lipschitz constant of m in [σ1, σ2]. We finally set

c(t) := m(|A1/2u(t)|2), cε(t) := m(|A1/2uε(t)|2).
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We recall from previous literature that for every small enough ε we have that
σ1 ≤ |A1/2uε(t)|2 ≤ σ2 for every t ≥ 0 (and analogous estimates for the first order
problem). This means that the behavior of m(σ) is relevant only for σ ∈ [σ1, σ2]:
in particular equation (1.1) is non-degenerate if and only if µ1 > 0, which in turn
is true if and only if σ1 = 0 and m(0) > 0.

The following is the main result of this paper.

Theorem 2.1. Let A be a nonnegative operator, let m : [0,+∞) → [0,+∞) be a
function of class C1, and let σ1 be defined as in (2.1). Let us assume that (u0, u1) ∈
D(A3/2) ×D(A1/2) satisfy the non-degeneracy condition (1.6).

Let us assume that there exists δ > 0 such that σm(σ2) is nondecreasing in the
interval [σ1, σ1 + δ]. Let rε be defined as in (1.9). Then there exist ε1 > 0 and a
constant C1 such that for every ε ∈ (0, ε1) we have that

|rε(t)| ≤ C1ε ∀t ≥ 0, (2.2)

|A1/2rε(t)| ≤ C1

√
ε ∀t ≥ 0, (2.3)

∫ +∞

0

|r′ε(t)|2 dt ≤ C1ε. (2.4)

If in addition we assume that u1 ∈ D(A), then there exists a constant C2 such
that for every ε ∈ (0, ε1) we have that

|A1/2rε(t)| ≤ C2ε
2/3 ∀t ≥ 0, (2.5)

|A(uε(t) − u(t))| ≤ C2ε
1/3 ∀t ≥ 0, (2.6)

|r′ε(t)| ≤ C2ε
1/3 ∀t ≥ 0. (2.7)

Estimate (2.6) is stated in terms of uε − u because Aθε, hence also Arε, cannot
be considered unless u0 ∈ D(A2).

Remark 2.2. Estimates (2.2), (2.3), (2.4) in Theorem 2.1 hold true more generally
if we replace the initial conditions (1.2) with uε(0) = u0ε, u

′

ε(0) = u1ε, where
{(u0ε, u1ε)} ⊆ D(A) ×D(A1/2) is any family such that

|u0ε − u0| ≤ Cε, (2.8)

|A1/2u0ε| + |Au0ε| + |u1ε| +
√
ε|A1/2u1ε| ≤ C, (2.9)

where u0 ∈ D(A3/2) is the initial condition in (1.5), and C is a suitable constant
independent on ε. If in addition we have that (u0ε, u1ε) ∈ D(A3/2) ×D(A), and

|A3/2u0ε| +
√
ε|Au1ε| ≤ C, (2.10)

then the corresponding solutions satisfy also (2.5), (2.6), and (2.7).

Remark 2.3. The monotonicity assumption on σm(σ2) is automatically satisfied
both when m is monotone in a right neighborhood of its zeroes, and in the nonde-
generate case. In this case we have indeed that σ1 = 0 and m(0) > 0, hence

d

dσ

[

σm(σ2)
]

= m(σ2) + 2σ2m′(σ2)

is positive in a neighborhood of σ1 = 0.
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3. Proofs.

3.1. Technical preliminaries. The first result we need is the following compar-
ison principle for ordinary differential equations (ODEs). A similar result for au-
tonomous equations has been widely used in [5, 7, 9].

Lemma 3.1. Let f : [0,+∞) → [0,+∞) be a function of class C1, and let g :
[0,+∞) → [0,+∞) be a continuous function. Let us assume that there exist two
constants c1 > 0 and c2 > 0 such that

f ′(t) ≤ −c1f(t) + c2
√

f(t) + g(t) ∀t ≥ 0. (3.1)

Then we have that

f(t) ≤ max
{

f(0), (c2/c1)
2
}

+

∫ t

0

g(s) ds ∀t ≥ 0. (3.2)

Proof. Let us consider the ordinary differential equation

u′ = −c1u+ c2
√
u+ g(t). (3.3)

Assumption (3.1) is equivalent to say that f(t) is a subsolution of this ODE. Let
y(t) denote the right hand side of (3.2). Then it is clear that y(0) ≥ f(0). Since
y(t) ≥ (c2/c1)

2 it is easy to see that

y′(t) = g(t) ≥ g(t) − c1y(t) + c2
√

y(t) ∀t ≥ 0,

which proves that y(t) is a supersolution of (3.3). Therefore (3.2) follows from the
standard comparison principle between subsolutions and supersolutions.

Now we characterize all functions m for which the operator u→ m(|A1/2u|2)Au
is monotone in the sense of [2], namely the following inequality

〈m(|A1/2u|2)Au −m(|A1/2v|2)Av, u − v〉 ≥ 0 (3.4)

is satisfied for every u and v in D(A).

Lemma 3.2. Let A be a nontrivial (not identically zero) nonnegative operator, and
let m : [0,+∞) → [0,+∞) be any function. Then the operator u→ m(|A1/2u|2)Au
is monotone if and only if the function σ → σm(σ2) is nondecreasing.

Proof. Let x ∈ D(A) with |A1/2x| = 1. Writing inequality (3.4) with u = ax,
v = bx, we obtain that

[

am(a2) − bm(b2)
]

(a− b) ≥ 0 ∀a ∈ R, ∀b ∈ R, (3.5)

which implies that σ → σm(σ2) is nondecreasing.
Conversely, let us assume that σ → σm(σ2) is nondecreasing. This means that

(3.5) holds true, and this is equivalent to

m(a2)a2 +m(b2)b2 ≥ ab(m(a2) +m(b2)) ∀a ∈ R, ∀b ∈ R. (3.6)

Now let u and v be in D(A). Applying (3.6) with a = |A1/2u|, b = |A1/2v|, and
then Cauchy-Schwarz inequality, we obtain that

m(|A1/2u|2)|A1/2u|2 +m(|A1/2v|2)|A1/2v|2

≥ |A1/2u||A1/2v|
(

m(|A1/2u|2) +m(|A1/2v|2)
)

≥ 〈A1/2u,A1/2v〉
(

m(|A1/2u|2) +m(|A1/2v|2)
)

,
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which is equivalent to

〈m(|A1/2u|2)A1/2u−m(|A1/2v|2)A1/2v,A1/2u−A1/2v〉 ≥ 0,

which in turn is equivalent to (3.4).

3.2. Estimates for the first order problem. The following lemma collects the
estimates on solutions of (1.4), (1.5) which are needed in the proof of our main
result.

Lemma 3.3. Let A be a nonnegative operator, and let m ∈ C1([0,+∞); [0,+∞)).
Let us assume that u0 ∈ D(A) satisfies the nondegeneracy condition (1.6).

Then the solution u(t) of (1.4) and (1.5) satisfies the following estimates.

(1) For k = 0, 1, 2 we have that

|Ak/2u(t)| ≤ |Ak/2u0| ∀t ≥ 0; (3.7)
∫ +∞

0

c(s)|A(k+1)/2u(s)|2 ds ≤ 1

2
|Ak/2u0|2. (3.8)

Moreover
∫ +∞

0

|c′(s)| ds < +∞. (3.9)

(2) If in addition u0 ∈ D(A3/2), then (3.7) and (3.8) hold true also with k = 3,
and there exists a constant p0 such that

|A3/2u(t)| ≤ p0|A1/2u(t)| ∀t ≥ 0. (3.10)

Moreover
∫ +∞

0

|u′′(s)|2 ds < +∞, (3.11)

∫ +∞

0

|u′′(s)| ds < +∞. (3.12)

Proof. For every k ≥ 0 we have that

d

dt

(

1

2

∣

∣

∣
Ak/2u(t)

∣

∣

∣

2
)

= 〈Ak/2u(t), Ak/2u′(t)〉 = −c(t)
∣

∣

∣
A(k+1)/2u(t)

∣

∣

∣

2

∀t > 0,

(3.13)
from which (3.7) and (3.8) follow by integration whenever u0 ∈ D(Ak/2).

Since we have that

|c′(t)| = |m′(|A1/2u(t)|2) · 2〈Au(t), u′(t)〉| ≤ 2L|u′(t)| · |Au(t)| = 2Lc(t)|Au(t)|2,
estimate (3.9) follows from (3.8) applied with k = 1.

Let us consider now u0 ∈ D(A3/2), and let us prove (3.10). If A1/2u0 = 0 thesis
is trivial (for instance with p0 = 1). So we can assume that A1/2u0 6= 0, hence
A1/2u(t) 6= 0 for every t ≥ 0.

By Cauchy-Schwarz inequality we have that

|Au|4 =
(

〈A3/2u,A1/2u〉
)2

≤ |A3/2u|2|A1/2u|2. (3.14)

Rewriting (3.14) with A1/2u instead of u we have that

|A3/2u|4 ≤ |A2u|2|Au|2. (3.15)

Multiplying (3.14) and (3.15) we obtain that

|Au|2|A3/2u|2 ≤ |A2u|2|A1/2u|2,
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hence

d

dt

[ |A3/2u|2
|A1/2u|2

]

= −2
c(t)

|A1/2u|4
(

|A2u|2|A1/2u|2 − |Au|2|A3/2u|2
)

≤ 0,

and therefore
|A3/2u(t)|2
|A1/2u(t)|2 ≤ |A3/2u0|2

|A1/2u0|2
=: p2

0 ∀t ≥ 0,

which implies (3.10).
Now let us consider u′′. A simple computation shows that

u′′(t) = −c′(t)Au − c(t)Au′ = 2m′(|A1/2u|2) · c(t)|Au|2Au+ c2(t)A2u. (3.16)

From the boundedness of m, m′, and from (3.7) applied with k = 2 we have that

|u′′(t)|2 ≤ 8|m′(|A1/2u|2)|2 · c(t)|Au(t)|4 · c(t)|Au(t)|2 + 2c3(t) · c(t)|A2u(t)|2

≤ 8L2µ2|Au0|4 · c(t)|Au(t)|2 + 2µ3
2 · c(t)|A2u(t)|2.

Applying (3.8) with k = 1 and k = 3 we obtain (3.11).
Now we consider the integral of |u′′|. From (3.16) we deduce that

|u′′(t)| ≤ 2L|Au0| · c(t)|Au(t)|2 + c2(t)|A2u(t)|.
The integral in [0,+∞) of the first summand in the right hand side is finite

because of (3.8) applied with k = 1. So we have to prove that also the integral in
[0,+∞) of the second summand is finite. To this end we consider separately the
degenerate and the nondegenerate case.
Nondegenerate case. Since c(t) is bounded, it is enough to prove that

|A2u(t)| ≤ γ1√
t+ t2

∀t > 0 (3.17)

for a suitable constant γ1. In turn (3.17) holds true if we show that there exist γ2

and γ3 such that

t|A2u(t)|2 ≤ γ2 ∀t ≥ 0, (3.18)

t4|A2u(t)|2 ≤ γ3 ∀t ≥ 0. (3.19)

Let us prove these inequalities. Since

d

dt

[

t|A2u|2
]

= |A2u|2 − 2tc(t)|A5/2u|2 ≤ |A2u|2,

integrating in [0, t] and using (3.8) with k = 3 we have that

t|A2u(t)|2 ≤
∫ t

0

|A2u(s)|2 ds ≤ 1

µ1

∫ t

0

c(s)|A2u(s)|2 ds ≤ 1

2µ1
|A3/2u0|2,

which implies (3.18). Inequality (3.19) follows from the case k = 4 of the more
general inequality

tk|Ak/2u(t)|2 + 2

∫ t

0

skc(s)|A(k+1)/2u(s)|2 ds ≤ k!

(2µ1)k
|u0|2 ∀t ≥ 0, (3.20)

which holds true for every k ∈ N. This inequality can easily be proved by induction.
The case k = 0 indeed follows by integrating (3.13) with k = 0. Let us assume now
that (3.20) holds true for some k. Since

d

dt

[

tk+1|A(k+1)/2u|2
]

= (k + 1)tk|A(k+1)/2u|2 − 2c(t)tk+1|A(k+2)/2u|2,
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integrating in [0, t] we obtain that

tk+1|A(k+1)/2u(t)|2 + 2

∫ t

0

sk+1c(s)|A(k+2)/2u(s)|2 ds

≤ (k + 1)

∫ t

0

sk|A(k+1)/2u(s)|2 ds

≤ k + 1

2µ1
· 2

∫ t

0

skc(s)|A(k+1)/2u(s)|2 ds

≤ (k + 1)!

(2µ1)k+1
|u0|2,

which completes the induction.
Degenerate case. Since x ≤ x2 + 1 for every x ∈ R, we have that

c2(t)|A2u(t)| ≤ c2(t)|A2u(t)|2 + c2(t) ≤ µ2c(t)|A2u(t)|2 + c2(t).

Therefore it is enough to prove that the integral in [0,+∞) of the two summands
in the right hand side is finite. For the first one this is true by (3.8) applied with
k = 3.

In order to estimate the integral of c2(t) we use that m(σ1) = 0 in the degenerate
case, hence

c(t) = m(|A1/2u|2) = m(|A1/2u|2)−m(σ1) ≤ L(|A1/2u|2−σ1) ≤ L|A1/2u|2, (3.21)

and therefore by (3.8) with k = 0 we have that
∫ +∞

0

c2(s) ds ≤
∫ +∞

0

c(s) · L|A1/2u(s)|2 ds ≤ L

2
|u0|2.

This completes the proof of (3.12) in the degenerate case.

3.3. Estimates for the second order problem. The estimates on (1.1), (1.2)
follow from the monotonicity or boundedness properties of the following energies

Dε,k :=
|Ak/2uε|2

2
+ ε〈Ak/2uε, A

k/2u′ε〉, (3.22)

Eε,k := ε
|Ak/2u′ε|2

cε
+ |A(k+1)/2uε|2, (3.23)

Gε :=
|u′ε|2
c2ε

. (3.24)

The following results were proved in [7] (see statement (1) of Proposition 3.10
and statement (1) of Theorem 3.6 of [7]).

Lemma 3.4. Let A be a nonnegative operator, and let m ∈ C1([0,+∞); [0,+∞)).
Let us assume that (u0, u1) ∈ D(A) ×D(A1/2) satisfy the nondegeneracy condition
(1.6). Let ε0 be as in Theorem B.

Then there exists ε1 ∈ (0, ε0) such that for every ε ∈ (0, ε1) the solution uε(t) of
(1.1), (1.2) satisfies the following estimates.

(1) There exists a constant δ > 0 such that

cε(t) ≥ m(|A1/2u0|2) · e−δt ∀t ≥ 0. (3.25)

Moreover

1 + ε
c′ε(t)

cε(t)
≥ 0 ∀t ≥ 0. (3.26)
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(2) The energies defined by (3.22), (3.23), (3.24) satisfy the following estimates
(for k = 0, 1):

|Ak/2uε(t)|2
4

+

∫ t

0

cε(s)|A(k+1)/2uε(s)|2 ds ≤ Dε,k(0)+2εµ2Eε,k(0) ∀t ≥ 0, (3.27)

Eε,k(t) +

∫ t

0

|Ak/2u′ε(s)|2
cε(s)

ds ≤ Eε,k(0) ∀t ≥ 0, (3.28)

Gε(t) ≤ max {Gε(0), 4Eε,1(0)} ∀t ≥ 0. (3.29)

If in addition (u0, u1) ∈ D(A3/2) ×D(A) then (3.27) and (3.28) hold true
also with k = 2.

(3) Let ψ : [σ1, σ2] → [0,+∞) be any strictly increasing function of class C1 such
that ψ(σ) ≤ σm(σ2) for every σ ∈ [σ1, σ2].

Then σ1 ≤ Eε,0(t) ≤ σ2 for every t ≥ 0, and there exists a constant C,
independent on ε, such that

tψ (Eε,0(t)) ≤ C ∀t ≥ 0. (3.30)

As a consequence of Lemma 3.4 we have the following estimates, which we need
in the proof of the main result.

Lemma 3.5. Let A be a nonnegative operator, and let m ∈ C1([0,+∞); [0,+∞)).
Let us assume that (u0, u1) ∈ D(A) ×D(A1/2) satisfy the nondegeneracy condition
(1.6). Let ε1 be as in Lemma 3.4.

Then we have the following estimates.

(1) Uniform bounds. There exist constants h0, . . . , h6 such that for every ε ∈
(0, ε1) we have that

|Ak/2uε(t)| ≤ hk ∀t ≥ 0, ∀k ∈ {0, 1, 2}, (3.31)

|u′ε(t)| ≤ h4 ∀t ≥ 0, (3.32)
√
ε|A1/2u′ε(t)| ≤ h5 ∀t ≥ 0, (3.33)

∫ +∞

0

|c′ε(s)| ds ≤ h6. (3.34)

If in addition (u0, u1) ∈ D(A3/2) × D(A) then (3.31) holds true also with
k = 3.

(2) Uniform decay. There exists a function γ : [0,+∞) → [σ1, σ2] such that
γ(t) → σ1 as t→ +∞, and for every ε ∈ (0, ε1) we have that

σ1 ≤ |A1/2uε(t)|2 ≤ γ(t) ∀t ≥ 0. (3.35)

Proof. Applying (3.27) with k = 0 we have that

|uε(t)|2 ≤ 4Dε,0(0) + 8εµ2Eε,0(0) ≤ 2|u0|2 + 4ε1|u0| · |u1| + 8ε1µ2Eε1,0(0) =: h2
0.

By (3.28) applied with k = 0, 1 we have that

|A(k+1)/2uε(t)|2 ≤ Eε,k(t) ≤ Eε,k(0) ≤ Eε1,k(0) =: h2
k+1.

If in addition (u0, u1) ∈ D(A3/2) ×D(A), then we have (3.28) with k = 2, from
which we easily deduce inequality (3.31) with k = 3. This completes the proof of
(3.31).

From (3.29) we have that

|u′ε(t)|2 = c2ε(t)Gε(t) ≤ µ2
2 · max {Gε1

(0), 4Eε1,1(0)} =: h2
4,
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which proves (3.32).
From (3.28) with k = 1 we have that

ε|A1/2u′ε(t)|2 ≤ c2ε(t)Eε,1(t) ≤ µ2
2Eε,1(0) ≤ µ2

2Eε1,1(0) =: h2
5,

which proves (3.33).
Now we have that

|c′ε(t)| =
∣

∣

∣
m′(|A1/2uε(t)|2) · 2〈Auε(t), u

′

ε(t)〉
∣

∣

∣
≤ 2L|u′ε(t)| · |Auε(t)|

≤ L

( |u′ε(t)|2
cε(t)

+ cε(t)|Auε(t)|2
)

. (3.36)

The integral in [0,+∞) of the first summand in (3.36) is finite because of (3.28)
applied with k = 0. The integral in [0,+∞) of the second summand in (3.36) is
finite due to (3.27) applied with k = 1. This proves (3.34).

From statement (3) of Lemma 3.4 we have that

ψ(|A1/2uε(t)|2) ≤ ψ(Eε,0(t)) ≤ min
{

ψ(σ2), Ct
−1

}

for every t > 0. Applying ψ−1 to both sides we have that

|A1/2uε(t)|2 ≤ ψ−1
(

min
{

ψ(σ2), Ct
−1

})

=: γ(t),

which proves (3.35). Since ψ(σ) = 0 if and only if σ = σ1, it is easy to see that
γ(t) → σ1 as t→ +∞.

Remark 3.6. All the conclusions of Lemma 3.4 and Lemma 3.5 are true also if
we replace the fixed initial condition (1.2) with a family of initial conditions as
in Remark 2.2. The reason is that all the constants appearing in those lemmata
(including ε0 and ε1) depend in a continuous way on the norms |u0|, |A1/2u0|, |Au0|,
|u1|,

√
ε|A1/2u1| (and also on |A3/2u0| and

√
ε|Au1| when needed).

3.4. Proof of Theorem 2.1. The proof is divided into four parts. In the first
part we prove (2.2), (2.3), (2.4) under the additional assumption that σm(σ2) is
nondecreasing in the whole interval [σ1, σ2]. In the second part we extend the
estimates of the first part to families of initial data (u0ε, u1ε) as in Remark 2.2.
In the third part we prove (2.2), (2.3), (2.4) under the original assumption that
σm(σ2) is nondecreasing in [σ1, σ1 + δ] for a given δ > 0. Finally, in the fourth part
we prove (2.5), (2.6), (2.7).

In this proof we always consider ε ∈ (0, ε1), where ε1 is given by Lemma 3.4. We
also consider rε defined by (1.9), and ρε(t) := uε(t) − u(t) = rε(t) + θε(t). Simple
calculations show that rε is the solution of the Cauchy problem

εr′′ε (t) + r′ε(t) + cε(t)Aρε(t) = (c(t) − cε(t))Au(t) − εu′′(t)

rε(0) = 0, r′ε(0) = 0,

while ρε is the solution of the Cauchy problem

ερ′′ε (t) + ρ′ε(t) + cε(t)Auε(t) − c(t)Au(t) = −εu′′(t), (3.37)

ρε(0) = 0, ρ′ε(0) = w0,

where w0 is defined in (1.8). Moreover we have that

θε(t) = εw0(1 − e−t/ε). (3.38)

Throughout the proof we introduce constants γ0, . . . , γ10, all independent on ε.
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Let us begin with some basic estimates. Applying (3.7) and (3.31) with k = 0
and k = 2 we have that

|ρε(t)| ≤ |uε(t)| + |u(t)| ≤ γ0 ∀t ≥ 0, (3.39)

|Aρε(t)| ≤ |Auε(t)| + |Au(t)| ≤ γ1 ∀t ≥ 0. (3.40)

Thanks to (3.40), every estimate on ρε yields a corresponding estimate on A1/2ρε,
as follows:

|A1/2ρε(t)|2 = 〈Aρε(t), ρε(t)〉 ≤ |Aρε(t)| · |ρε(t)| ≤ γ1|ρε(t)|. (3.41)

3.4.1. Proof with global monotonicity. In this part of the proof we assume that
σm(σ2) is nondecreasing in [σ1, σ2]. Due to the explicit expression (3.38) for θε(t),
it is equivalent to prove estimates (2.2), (2.3), (2.4) for rε or for ρε. So we work with
ρε, and we exploit a technique introduced in [6]: we prove (bootstrap argument) that
any estimate on ρε leads to a (possibly better) estimate for ρε and then, applying
inductively the bootstrap argument, we start from (3.39) and we end up with (2.2).
Bootstrap argument . We show that there exist nonnegative constants M1, M2, M3,
M4 with the following property: if for some K ≥ 0 and α ∈ [0, 1] we have that

|ρε(t)| ≤ Kεα ∀t ≥ 0, (3.42)

then we have also the following two estimates:
∫ +∞

0

|ρ′ε(s)|2 ds ≤M1ε+M2Kε
α, (3.43)

|ρε(t)| ≤ (M3 +M4K)1/2 ε(α+1)/2 ∀t ≥ 0. (3.44)

Let us consider indeed

Eε := ε|ρ′ε|2 + 2〈ρε, cεAuε − cAu〉.

The second summand in the definition of Eε is nonnegative because of the mono-
tonicity assumption (3.4). Moreover from (3.37) it follows that

E ′

ε = −2|ρ′ε|2 − 2ε〈ρ′ε, u′′〉 + 2〈ρε, c
′

εAuε − c′Au〉 + 2〈ρε, cεAu
′

ε − cAu′〉. (3.45)

Let us estimate the terms in the right hand side of (3.45). First of all we have
that

−2ε〈ρ′ε, u′′〉 ≤ 2|ρ′ε| · ε|u′′| ≤ |ρ′ε|2 + ε2|u′′|2.
Applying (3.7) and (3.31) with k = 2, and assumption (3.42), we have that

2〈ρε, c
′

εAuε − c′Au〉 ≤ 2|ρε|
(

|c′ε||Auε| + |c′||Au|
)

≤ 2Kεα
(

h2|c′ε| + |Au0| · |c′|
)

.

In order to estimate the last summand in (3.45) we write it in the form

2〈ρε, cεAu
′

ε − cAu′〉 = 2cε〈ρε, Au
′

ε −Au′〉 + 2(cε − c)〈ρε, Au
′〉. (3.46)

The first term in (3.46) can be rewritten as

2cε〈ρε, Au
′

ε −Au′〉 = 2cε〈A1/2ρε, A
1/2ρ′ε〉 =

(

cε|A1/2ρε|2
)′

− c′ε|A1/2ρε|2,

hence by (3.41) and (3.42) we have that

2cε〈ρε, Au
′

ε −Au′〉 ≤
(

cε|A1/2ρε|2
)′

+ γ1Kε
α|c′ε|.
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Let us estimate the second term in (3.46). First of all we have that

|cε(t) − c(t)| =
∣

∣

∣
m(|A1/2uε|2) −m(|A1/2u|2)

∣

∣

∣

≤ L
∣

∣

∣
|A1/2uε|2 − |A1/2u|2

∣

∣

∣

= L
∣

∣

∣
〈A1/2(uε − u), A1/2(uε + u)〉

∣

∣

∣

≤ L|A1/2ρε|
(

|A1/2uε| + |A1/2u|
)

. (3.47)

Moreover from (3.10) we have that
∣

∣〈ρε, Au
′〉
∣

∣ =
∣

∣

∣
〈A1/2ρε, A

1/2u′〉
∣

∣

∣
≤ |A1/2ρε| · c(t)|A3/2u| ≤ p0c(t)|A1/2ρε| · |A1/2u|,

hence by (3.41) and (3.42) we obtain that
∣

∣2(cε − c)〈ρε, Au
′〉
∣

∣ ≤ 2Lp0|A1/2ρε|2c(t)|A1/2u|
(

|A1/2uε| + |A1/2u|
)

≤ 2Lγ1p0 ·Kεα · c(t)|A1/2u|
(

|A1/2uε| + |A1/2u|
)

.

Replacing all these estimates in (3.45) we have that

E ′

ε ≤ −|ρ′ε|2 + ε2|u′′|2 +
(

cε|A1/2ρε|2
)′

+Kεαgε, (3.48)

where

gε(t) ≤ γ2|c′ε(t)| + γ3|c′(t)| + γ4c(t)|A1/2u(t)|
(

|A1/2uε(t)| + |A1/2u(t)|
)

.

Integrating in [0, t] we obtain that

Eε(t)+

∫ t

0

|ρ′ε(s)|2 ds ≤ Eε(0)+ε2
∫ t

0

|u′′(s)|2 ds+cε(t)|A1/2ρε(t)|2+Kεα

∫ t

0

gε(s) ds.

Using (3.41) and (3.42) once again we easily deduce that
∫ +∞

0

|ρ′ε(s)|2 ds ≤ ε

(

|w0|2 + ε1

∫ +∞

0

|u′′(s)|2 ds
)

+Kεα

(

µ2γ1 +

∫ +∞

0

gε(s) ds

)

.

The coefficient of ε is finite because of (3.11). In order to prove (3.43) it is
therefore enough to prove that the integral of gε(t) in [0,+∞) is finite and bounded
independently on ε.

By (3.9) and (3.34) this is true for the terms involving |c′ε(t)| and |c′(t)|. The
integral of c(t)|A1/2u(t)|2 in [0,+∞) is finite because of (3.8) applied with k = 0.
Finally, by inequality (3.6) applied with a = |A1/2uε| and b = |A1/2u| we have that

c(t)|A1/2u(t)| · |A1/2uε(t)| ≤ c(t)|A1/2u(t)|2 + cε(t)|A1/2uε(t)|2.
The integral in [0,+∞) of the right hand side is finite and independent on ε

because of (3.8) and (3.27) applied with k = 0. Therefore the same is true for the
left hand side. This completes the proof of (3.43).

In order to prove (3.44) we consider

Dε :=
1

2
|ρε|2 + ε〈ρε, ρ

′

ε〉. (3.49)

A simple computation proves that

D′

ε = 〈ρε, ρ
′

ε〉 + ε|ρ′ε|2 + 〈ρε, ερ
′′

ε 〉 = ε|ρ′ε|2 − 〈ρε, cεAuε − cAu〉 − ε〈ρε, u
′′〉. (3.50)
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The second term in the right hand side is less or equal than zero because of the
monotonicity assumption (3.4). Therefore by (3.42) we have that

D′

ε ≤ ε|ρ′ε|2 + ε|ρε| · |u′′| ≤ ε|ρ′ε|2 +Kεα+1|u′′|. (3.51)

Integrating in [0, t], and using (3.43) and (3.12), we obtain that

Dε(t) ≤ ε

∫ t

0

|ρ′ε(s)|2 ds+Kεα+1

∫ t

0

|u′′(s)| ds ≤M1ε
2 +M2Kε

α+1 + γ5Kε
α+1

for a suitable constant γ5. Therefore

1

2
|ρε(t)|2 ≤ M1ε

2 + (M2 + γ5)Kε
α+1 − ε〈ρε(t), ρ

′

ε(t)〉

≤ M1ε
2 + (M2 + γ5)Kε

α+1 +
1

4
|ρε(t)|2 + ε2|ρ′ε(t)|2,

hence
|ρε(t)|2 ≤ 4ε2(M1 + |ρ′ε(t)|2) + 4(M2 + γ5)Kε

α+1. (3.52)

It remains to estimate ρ′ε(t). This can be easily done using (3.32) and (3.7) with
k = 2: we obtain that

|ρ′ε(t)| ≤ |u′ε(t)| + |u′(t)| = |u′ε(t)| + c(t)|Au(t)| ≤ h4 + µ2|Au0| =: γ6. (3.53)

Coming back to (3.52) we have that

|ρε(t)|2 ≤ 4εα+1
{

(M1 + γ6)ε
1−α
1 + (M2 + γ5)K

}

=: εα+1(M3 +M4K),

which proves (3.44).
Iteration argument . Let us consider the sequences αn and kn recursively defined by

α0 = 0, αn+1 = (αn + 1)/2,

k0 = γ0, kn+1 =
√

M3 +M4kn.

Then for every n ∈ N we have that

|ρε(t)| ≤ knε
αn ∀t ≥ 0. (3.54)

Indeed for n = 0 this estimate is exactly (3.39), and then (3.54) follows by
induction due to the bootstrap argument (note that αn < 1 for every n ∈ N).

As n → +∞ we have that αn → 1 and kn → k∞, where k∞ is the unique real

number such that k∞ = (M3 +M4k∞)
1/2

.
Passing to the limit in (3.54) we finally obtain that

|ρε(t)| ≤ k∞ε ∀t ≥ 0, (3.55)

which implies (2.2). At this point (2.3) immediately follows from (3.55) and (3.41).
Finally, if we apply the bootstrap argument starting from (3.55), we obtain (3.43)
with α = 1 and K = k∞, which proves (2.4).

3.4.2. Proof with a family of initial data. We prove that the conclusion of the first
part of the proof holds true also if we replace the fixed initial data (u0, u1) for the
second order problem with a family of initial data (u0ε, u1ε) satisfying (2.8) and
(2.9).

The initial data for ρε(t) are now

ρε(0) = u0ε − u0, ρ′ε(0) = u1ε +m(|A1/2u0|2)Au0 =: w0ε.

Due to (2.8), (2.9), and Remark 3.6, all the estimates based on Lemma 3.5 remain
true. So the proof of the bootstrap argument doesn’t change up to the integration
of (3.48). Now in the computation of Eε(0) we have to keep into account that
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ρε(0) 6= 0. However assumption (2.8) implies that Eε(0) is of order ε, exactly as in
the case of fixed initial data.

Finally, when integrating (3.51) we cannot ignore Dε(0). However assumption
(2.8) implies that Dε(0) is of order ε2, and therefore nothing changes in the boot-
strap argument apart from the values of the constants. The iteration argument is
exactly the same.

3.4.3. Proof with local monotonicity. Let us come back to the initial assumption
that σm(σ2) is nondecreasing in [σ1, σ1 + δ] for some δ > 0.

Let us consider the decay estimate (3.35), and let T0 > 0 be such that γ(t) ≤ σ1+δ
for every t ≥ T0. This means that for every ε ∈ (0, ε1) we have that

σ1 ≤ |A1/2uε(t)|2 ≤ σ1 + δ ∀t ≥ T0. (3.56)

In the fixed interval [0, T0] we can apply the local-in-time error estimates (1.13),
(1.14), and (1.15) (see Appendix A). It follows that

|rε(t)| ≤ γ7ε ∀t ∈ [0, T0], (3.57)

|A1/2rε(t)| ≤ γ7ε ∀t ∈ [0, T0], (3.58)
∫ T0

0

|r′ε(s)|2 ds ≤ γ7ε
2, (3.59)

where the constant γ7 depends on T0 (hence on δ) but is independent on ε.
Now we need similar inequalities for t ≥ T0. To this end we consider uε and u as

solutions of a new singular perturbation problem with “initial” data u0ε = uε(T0),
u1ε = u′ε(T0), and of course u0 = u(T0) for the first order problem.

By (3.57) applied with t = T0 we have that the family u0ε satisfies (2.8). Moreover
from (3.31), (3.32), and (3.33) we deduce that the family (u0ε, u1ε) satisfies (2.9).
Finally by (3.56) the solutions lie in the monotonicity region of the operator for
every t ≥ T0.

Therefore from the first and second part of the proof we have that

|rε(t)| ≤ γ8ε ∀t ≥ T0, (3.60)

|A1/2rε(t)| ≤ γ8

√
ε ∀t ≥ T0, (3.61)

∫ +∞

T0

|r′ε(s)|2 ds ≤ γ8ε. (3.62)

Estimates (3.57) through (3.62) are enough to prove (2.2), (2.3), and (2.4).

3.4.4. Proof of estimates (2.5), (2.6), and (2.7). If (u0, u1) ∈ D(A3/2) ×D(A) we
can apply (3.7) and (3.31) with k = 3, and deduce that

|A3/2ρε(t)| ≤ |A3/2uε(t)| + |A3/2u(t)| ≤ γ9 ∀t ≥ 0. (3.63)

At this point (2.5) and (2.6) follow from (2.2) and (3.63) by interpolation (once
again it is equivalent to prove (2.5) for rε of for ρε).

In order to estimate r′ε, let us consider the function Gε := |r′ε|2. Then we have
that

G′

ε = −2

ε
|r′ε|2 +

2

ε
〈r′ε, (c− cε)Au− εu′′ − cεAρε〉

≤ −2

ε
|r′ε|2 +

2

ε
|r′ε| ·

(

|c− cε||Au| + cε|Aρε|
)

+
2

ε

( |r′ε|2
2

+
ε2|u′′|2

2

)

≤ −1

ε
Gε +

2

ε

√

Gε

(

|c− cε||Au| + cε|Aρε|
)

+ ε|u′′|2.
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By (3.47) we have that

|c− cε||Au| + cε|Aρε| ≤ L|A1/2ρε|
(

|A1/2uε| + |A1/2u|
)

|Au| + cε|Aρε|.

Applying (3.7) with k = 1, 2, (3.31) with k = 1, and estimates (2.5) and (2.6),
we obtain that

|c− cε||Au| + cε|Aρε| ≤ γ10ε
1/3,

hence

G′

ε ≤ −1

ε
Gε +

2

ε
γ10ε

1/3
√

Gε + ε|u′′|2.

Since Gε(0) = 0 (and here it is essential that we considered rε instead of ρε),
from Lemma 3.1 applied with g(t) = ε|u′′(t)|2 we deduce that

|r′ε(t)|2 = Gε(t) ≤ 4γ2
10 · ε2/3 + ε

∫ +∞

0

|u′′(s)|2 ds ∀t ≥ 0.

Since the integral is finite (see (3.11)), inequality (2.7) is proved.
The same argument works if we replace the fixed initial data (u0, u1) with a

family of initial data (u0ε, u1ε) satisfying (2.8), (2.9), and (2.10). �

4. Open problems. It is well known that the main open problem in the the-
ory of Kirchhoff equations is the existence of global solutions without smallness
assumptions on ε, both for the dissipative and for the non-dissipative case (see
[1, 11, 12, 16]).

In this section we present some “minor” open problems related to the singular
perturbation topic.

The first one concerns once again the existence of global solutions to (1.1), (1.2).
The classical local existence results in the nondissipative case hold true for initial
data (u0, u1) ∈ D(A3/4)×D(A1/4). The global existence results for the dissipative
case can be easily extended to initial data (u0, u1) ∈ D(A3/4) ×D(A1/4) provided
that the equation is nondegenerate or m(σ) = σγ with γ ≥ 2.

On the contrary, the proof given in [5] for a general locally Lipschitz continuous
non-linearity m(σ) ≥ 0 seems to require in an essential way that (u0, u1) ∈ D(A)×
D(A1/2). So the first open problem is the following.

Open problem 4.1. Let m : [0,+∞) → [0,+∞) be a locally Lipschitz continu-
ous function. Let us assume that (u0, u1) ∈ D(A3/4) × D(A1/4) satisfy the non-
degeneracy condition (1.6).

Does problem (1.1), (1.2) admit a global solution for every small enough ε?

The convergence estimates for the singular perturbation can probably be im-
proved in several directions. For instance, it could be interesting to understand the
role of the monotonicity assumption in Theorem 2.1.

Open problem 4.2. Are the conclusions of Theorem 2.1 true without the assump-
tion that σm(σ2) is nondecreasing in a right neighborhood of σ1?

Concerning the converge rate, it could be interesting to replace
√
ε with ε in

(2.3), or ε with ε2 in (2.4). We recall that ε is the convergence rate for |A1/2rε|
which appears both in the local-in-time estimates for the mildly degenerate case,
and in the global-in-time estimates for the nondegenerate case.
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Open problem 4.3. Let (u0, u1) ∈ D(A3/2) ×D(A1/2). Is it true that

|A1/2rε(t)| ≤ Cε ∀t ≥ 0,

for a suitable constant C independent on ε and t?

Finally, it could be interesting to mix singular perturbation and decay estimates,
as it was done in [10] in the non-degenerate case. We state a possible question in
this direction.

Open problem 4.4. Let (u0, u1) ∈ D(A3/2) ×D(A1/2). Is it true that

|A1/2rε(t)| ≤ εγ(t) ∀t ≥ 0,

for a suitable function γ(t), independent on ε, such that γ(t) → 0 as t→ +∞?

Concerning the choice of γ(t), we suspect that in many cases |A1/2rε(t)|, as
t → +∞, may decay faster than |A1/2uε(t)| and |A1/2u(t)| separately (see [10] for
the nondegenerate case).

Appendix A. Local-in-time convergence.

Proposition A.1. Let A be a nonnegative operator, and let m : [0,+∞) → [0,+∞)
be a function of class C1. Let us assume that the initial data (u0, u1) ∈ D(A3/2) ×
D(A1/2) satisfy the nondegeneracy condition (1.6), and let ε1 be as in Lemma 3.4.

Then for every T > 0 there exists a constant CT such that estimates (1.13),
(1.14), and (1.15) hold true for every ε ∈ (0, ε1).

Proof. Let ε ∈ (0, ε1). In the following α1, . . . , α13 denote some constants, depend-
ing on T and on the initial data, but independent on ε. From (3.25) we have that

cε(t) ≥ α1 > 0 ∀t ∈ [0, T ]. (A.1)

As in the proof of Theorem 2.1, due to the explicit expression (3.38), it is equiv-
alent to prove estimates (1.13) and (1.14) with rε or with ρε := rε + θε. Let us
consider the function (note that in the definition we use both rε and ρε)

Fε := ε
|r′ε(t)|2
cε

+ |A1/2ρε|2.

Then we have that

F ′

ε = −|r′ε|2
cε

(

2 + ε
c′ε
cε

)

+ 2〈θ′ε, Aρε〉 +
2(c− cε)

cε
〈r′ε, Au〉 −

2ε

cε
〈r′ε, u′′〉

=: I1 + I2 + I3 + I4. (A.2)

Let us estimate the four summands. From (3.26) we have that

I1 ≤ −|r′ε|2
cε

.

From (3.38) we have that

I2 = 2〈A1/2θ′ε, A
1/2ρε〉 ≤ 2|A1/2w0|e−t/ε · sup

s∈[0,T ]

|A1/2ρε(s)|.

From (3.47) and (A.1) we have that

I3 ≤ 2 · |r
′

ε|√
cε

· |c− cε|√
cε

|Au| ≤ 1

4

|r′ε|2
cε

+ 4
|c− cε|2

cε
|Au|2

≤ 1

4

|r′ε|2
cε

+ α2|A1/2ρε|2 ≤ 1

4

|r′ε|2
cε

+ α2Fε.
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Finally using (A.1) once more we have that

I4 ≤ 2 · |r
′

ε|√
cε

· ε|u
′′|√
cε

≤ 1

4

|r′ε|2
cε

+ 4ε2
|u′′|2
cε

≤ 1

4

|r′ε|2
cε

+ α3ε
2|u′′|2.

Replacing all these estimates in (A.2) we obtain that

F ′

ε ≤ −|r′ε|2
2cε

+ α2Fε + α3ε
2|u′′|2 + 2e−t/ε|A1/2w0| · sup

s∈[0,T ]

|A1/2ρε(s)|.

This is a differential inequality satisfied by the function Fε. Integrating it, and
recalling that Fε(0) = 0, we obtain that

Fε(t) + eα2t

∫ t

0

|r′ε(s)|2
2cε(s)

e−α2s ds ≤ α3ε
2eα2t

∫ t

0

e−α2s|u′′(s)|2ds+

+2|A1/2w0| · sup
s∈[0,T ]

|A1/2ρε(s)| · eα2t

∫ t

0

e−α2s−s/εds

=: J1 + J2.

By (3.11) and the boundedness of t we have that

J1 ≤ α4ε
2, J2 ≤ α5ε · sup

s∈[0,T ]

|A1/2ρε(s)| ≤ α6ε
2 +

1

2
sup

s∈[0,T ]

|A1/2ρε(s)|2.

We have thus proved that

|A1/2ρε(t)|2 +
1

2µ2

∫ t

0

|r′ε(s)|2 ds ≤ Fε(t) + eα2t

∫ t

0

|r′ε(s)|2
2cε(s)

e−α2s ds

≤ α7ε
2 +

1

2
sup

s∈[0,T ]

|A1/2ρε(s)|2. (A.3)

In particular

sup
s∈[0,T ]

|A1/2ρε(s)|2 ≤ α7ε
2 +

1

2
sup

s∈[0,T ]

|A1/2ρε(s)|2,

hence |A1/2ρε(t)|2 ≤ α8ε
2 for every t ∈ [0, T ], which proves (1.14). Coming back to

(A.3) this proves also (1.15).
It remains to prove (1.13). To this end we define Dε as in (3.49), and we estimate

the right hand side of (3.50). Using (3.47) and (1.14) we have that

|〈ρε, cεAuε − cAu〉| =
∣

∣

∣
〈A1/2ρε, (cε − c)A1/2u+ cεA

1/2ρε〉
∣

∣

∣
≤ α9ε

2.

Moreover

−ε〈ρε, u
′′〉 ≤ ε|u′′(t)| · sup

s∈[0,T ]

|ρε(s)|.

Integrating (3.50) in [0, t] we therefore obtain that

Dε(t) ≤ ε

∫ t

0

|ρ′ε(s)|2 ds+ α10ε
2 + ε · sup

s∈[0,T ]

|ρε(s)| ·
∫ T

0

|u′′(s)| ds. (A.4)

By (1.15) and (3.38) we have that

ε

∫ t

0

|ρ′ε(s)|2 ds ≤ 2ε

∫ t

0

|r′ε(s)|2 ds+ 2ε

∫ t

0

|θ′ε(s)|2 ds ≤ α11ε
2,
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and by (3.12) we have that

sup
s∈[0,T ]

|ρε(s)| · ε
∫ T

0

|u′′(s)| ds ≤ 1

8
sup

s∈[0,T ]

|ρε(s)|2 + α12ε
2.

Coming back to (A.4) we have thus proved that

|ρε(t)|2
2

≤ −ε〈ρε(t), ρ
′

ε(t)〉 + α13ε
2 +

1

8
sup

s∈[0,T ]

|ρε(s)|2

≤ 1

8
|ρε(t)|2 + 2ε2|ρ′ε(t)|2 + α13ε

2 +
1

8
sup

s∈[0,T ]

|ρε(s)|2.

Taking the supremum in [0, T ] of both sides and estimating |ρ′ε(t)| as in (3.53),
we finally obtain (1.13).

Remark A.2. The proof of Proposition A.1 is an example of what in the introduc-
tion we called a “linear argument”. The advantage of this approach is that it can
be extended word-by-word to more regular data. For instance, if we assume that
(u0, u1) ∈ D(Aα+1) × D(Aα) for some α ≥ 1/2, then the same argument proves
also that

|Aαrε(t)| ≤ CT ε ∀t ∈ [0, T ],
∫ T

0

|A(2α−1)/2r′ε(s)|2 ds ≤ CT ε
2.
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