
Acta Mathematica Sinica, English Series

Jul., 2006, Vol. 22, No. 4, pp. 1161–1170

Published online: Jan. 2, 2006

DOI: 10.1007/s10114-005-0649-7

Http://www.ActaMath.com

Global-in-time Uniform Convergence for

Linear Hyperbolic–Parabolic Singular Perturbations

Marina GHISI
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Abstract We consider the Cauchy problem εu′′
ε + δu′

ε + Auε = 0, uε(0) = u0, u′
ε(0) = u1, where

ε > 0, δ > 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense

domain D(A). We study the convergence of {uε} to the solution of the limit problem δu′ + Au = 0,

u(0) = u0.

For initial data (u0, u1) ∈ D(A1/2)×H, we prove global-in-time convergence with respect to strong

topologies.

Moreover, we estimate the convergence rate in the case where (u0, u1) ∈ D(A3/2) × D(A1/2), and

we show that this regularity requirement is sharp for our estimates. We give also an upper bound for

|u′
ε(t)| which does not depend on ε.
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1 Introduction

Let H be a real Hilbert space, with norm | · | and scalar product 〈·, ·〉. Let A be a self-
adjoint linear operator on H with dense domain D(A). We assume that A is non-negative, i.e.
〈Au, u〉 ≥ 0 for all u ∈ D(A).

For ε > 0, δ > 0, we consider the Cauchy problem{
εu′′

ε (t) + δu′
ε(t) + Auε(t) = 0, t ≥ 0,

uε(0) = u0, u′
ε(0) = u1.

(1.1)

We study the convergence of {uε} to the solution u of the “limit problem”{
δu′(t) + Au(t) = 0, t > 0,

u(0) = u0,
(1.2)

obtained by setting formally ε = 0 in (1), and forgetting the initial datum u1. This “loss of one
initial condition” is measured by w1 := u′

ε(0) − u′(0) = u1 + Au0
δ .

For the convenience of the reader, we recall the classical results on these equations, whose
proof can be found in almost every textbook on linear PDEs.
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Theorem 1.1 For every (u0, u1) ∈ D(A1/2) × H, Problem (1.1) has a unique solution
u ∈ C0([0, +∞[, D(A1/2)) ∩ C1([0, +∞[, H) ∩ C2([0, +∞[, D(A−1/2)).

For every u0 ∈ H, Problem (1.2) has a unique solution u ∈ C0([0, +∞[, H) such that
u ∈ C∞(]0, +∞[, D(Ak)) for every k ≥ 0.

This singular perturbation problem was considered by Lions (see [1, pp. 491–495]). For
initial data (u0, u1) ∈ D(A1/2) × H he proved that

uε ⇀ u weakly * in L∞([0, +∞[; D(A1/2)), (1.3)
u′

ε ⇀ u′ weakly in L2([0, +∞[; H). (1.4)
Moreover, for initial data (u0, u1) ∈ D(A2) × D(A), he proved that, for each T > 0, there

exists a constant CT such that
‖uε − u‖L∞([0,T ];D(A1/2)) ≤ CT ε, (1.5)

δ‖u′
ε − u′‖L2([0,T ];H) ≤ |w1|

√
ε + CT ε, (1.6)

and, for every t ∈ [0, T ],
|u′

ε(t) − u′(t)| ≤ |w1|e−δt/ε + CT

√
ε. (1.7)

The constant CT depends on u0, u1, δ, T , but not on ε.
Later on, this theory was generalized to equations with lower order terms (see Benaouda

and Madaune–Tort [2]), and to nonlinear equations (see Esham and Weinacht [3, 4], Colli and
Grasselli [5]). Singular perturbations have been used also as a tool to find numerical algorithms
(see Esham [6]), and in the quasilinear case to prove the existence of solutions of the hyperbolic
problem for ε small (see Milani [7–11]).

However, as far as we know, the convergence results in the literature are generalizations of
Lions’ ones, i.e.:

• Global-in-time weak convergence for the initial data in the “energy space”;
• Local-in-time strong convergence for regular initial data.
In this note we improve both results in the linear case. Indeed we prove:
• Global-in-time convergence with respect to strong topologies for the initial data in the

energy space (Theorem 2.1);
• Global-in-time estimates of the convergence rate for the initial data in D(A3/2)×D(A1/2)

(Theorem 2.2);
• Optimality of D(A3/2) × D(A1/2) when looking even for local-in-time estimates of the

convergence rate of order O(ε) (Theorem 2.3);
• An estimate for u′

ε which does not depend on ε (Theorem 2.4).
Our results are stated and proved in an abstract Hilbert space setting. The standard

application is the possibility to approximate a dissipative wave equation, with a small inertia
term, by a heat equation, which was probably the initial motivation of this theory (see Cattaneo
[12]).

It is of course possible to prove our results by reducing to ODEs via spectral decomposition.
Nevertheless, we prefer to present proofs based on estimates of suitable energies, because they
can be generalized to equations with lower order terms and also to non linear PDEs (cf. [13]
for a partial extension of Theorem 2.1 to scalar nonlinearities), or to control teory (cf. [14]).

2 Statements

In the following we assume, without loss of generality, that ε ∈]0, 1].
The first result concerns global-in-time strong convergence for the initial data in the energy

space.

Theorem 2.1 Let (u0, u1) ∈ D(A1/2) × H, and let uε and u be the solutions of (1.1) and
(1.2), respectively.



Linear Hyperbolic–Parabolic Singular Perturbations 1163

Then
uε → u strongly in L∞([0, +∞[; D(A1/2)), (2.1)
u′

ε → u′ strongly in L2([0, +∞[; H). (2.2)
Moreover, for every B > 0, we have that

u′
ε → u′ strongly in L∞([B, +∞[; H). (2.3)

We remark that, by the continuity of u′
ε − u′, we cannot expect that u′

ε converges to u′

strongly in L∞([0, +∞[; H) if w1 �= 0, even for very regular initial data.
The second result concerns global-in-time estimates of the convergence rate for regular initial

data; this proves in particular that the constant CT in Lions’ inequalities (1.5), (1.6), and (1.7)
can be taken to be independent on T .
Theorem 2.2 Let (u0, u1) ∈ D(A3/2) × D(A1/2), and let uε and u be the solutions of (1.1)
and (1.2), respectively.

Then there exists a constant C such that
‖uε − u‖L∞([0,+∞[;D(A1/2)) ≤ Cε, (2.4)

δ‖u′
ε − u′‖L2([0,+∞[;H) ≤ |w1|

√
ε + Cε, (2.5)

and that, for every t ≥ 0,
|u′

ε(t) − u′(t)| ≤ |w1|e−δt/ε + C
√

ε. (2.6)
The constant C depends on u0, u1, δ, but not on ε and t.
At this point the reader may ask whether such estimates for the convergence rate can be

extended to less regular initial data. The following result shows that this is not possible, and
that the choice of D(A3/2)×D(A1/2) is sharp when looking even for local-in-time estimates of
order O(ε).
Theorem 2.3 Let H = L2(]0, 2π[), and let Au = −uxx (with zero Dirichlet boundary
conditions). Then there exists u0 ∈ H such that:

• u0 ∈ D(Aα) for every α < 3/2;
• Considering (u0, 0) as initial data of uε, then for every T > 0, we have that

lim
ε→0+

1
ε
‖uε − u‖L∞([0,T ];D(A1/2)) = +∞.

A similar result holds true for initial data (0, u1) with u1 ∈ D(Aβ) for every β < 1/2.
Remark 1 Theorem 2.1 gives uniform convergence for the initial data in D(A1/2) × H, i.e.
in the natural setting for problem (1.1). In this case there is a “gap of 1/2” between the spaces
where uε and u′

ε are defined, a situation which is typical of second order evolution problems
such as (1.1).

On the contrary, Theorem 2.3 shows that the best space where one can prove estimates such
as (2.4) is D(A3/2)×D(A1/2), hence with a “gap of 1”. This situation is typical for first order
evolution problems such as (1.2).

The proof of Theorem 2.1 relies on Theorem 2.2 and an approximation argument. To this
end, the following estimate is crucial in the proof of (2.3):
Theorem 2.4 Let (u0, u1) ∈ D(A1/2) × H, and let uε be the solution of (1.1). Then

|u′
ε(t)| ≤ |u1| + |A1/2u0|√

δt
, ∀ t > 0. (2.7)

We point out that the right-hand side of (2.7) does not depend on ε, while the standard
energy estimate on u′

ε(t) diverges as ε → 0+.

3 Proofs

In all the proofs we assume, without loss of generality, that ε ∈]0, 1]. To begin with, we assume
also for simplicity that the operator A is coercive, i.e. there exists a constant ν > 0 such that
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〈Au, u〉 ≥ ν|u|2 for every u ∈ D(A). In Section 3.6 we outline how our proofs should be modified
in the non-coercive case. In many estimates we also use the inequality

2 |〈x, y〉| ≤ σ|x|2 +
1
σ
|y|2,

which holds true for every x ∈ H, y ∈ H, σ > 0.

3.1 Standard Estimates
Let us recall the standard estimates for solutions of (1.1) and (1.2), which will be used in this
paper.

Let uε be the solution of (1.1). Taking the scalar product of the equation by 2u′
ε(t), and

integrating in [0, T ], we obtain that

ε |u′
ε(T )|2 + |A1/2uε(T )|2 + 2δ

∫ T

0

|u′
ε(t)|2dt = ε|u1|2 + |A1/2u0|2.

We refer to this as the standard energy estimate. It provides good estimates for the norm
of u′

ε in L2([0, +∞[; H), and the norm of uε in L∞([0, +∞[; D(A1/2)). However, if u0 �= 0, this
gives an upper bound for |u′

ε(t)| which diverges as ε → 0+.
For the solution of (1.2), we recall that if u0 ∈ D(A1/2), then

|A1/2u(t)| ≤ |A1/2u0|, ∀ t ≥ 0, (3.1)
and

|u′(t)| ≤
∣∣A1/2u0

∣∣
√

δt
∀ t > 0. (3.2)

We omit the classical proofs.

3.2 Proof of Theorem 2.2
Before we enter into the technical details, we introduce some notations. Following Lions, for
every ε > 0 we define the corrector θε as the solution of εθ′′ε (t) + δθ′ε(t) = 0, θε(0) = 0, θ′ε(0) =
w1, so that

θε(t) = w1
ε

δ
(1 − e−δt/ε). (3.3)

Moreover, we define rε in such a way that uε(t) = u(t) + θε(t) + rε(t), ∀ t ≥ 0.
With simple calculations, it turns out that rε is the solution of the Cauchy problem{

εr′′ε (t) + δr′ε(t) + Arε(t) = −εu′′(t) − Aθε(t),
rε(0) = 0, r′ε(0) = 0.

(3.4)

With these notations, inequalities (2.4), (2.5), and (2.6) are equivalent to proving that there
exists a constant C such that

|A1/2rε(t)|2 ≤ Cε2 ∀ t ≥ 0, (3.5)

δ

∫ +∞

0

|r′ε(t)|2dt ≤ Cε2, (3.6)

|r′ε(t)|2 ≤ Cε ∀ t ≥ 0. (3.7)
We also set Rε(t) = rε(t) + θε(t), ∀ t ≥ 0, so that Rε is the solution of the Cauchy problem{

εR′′
ε (t) + δR′

ε(t) + ARε(t) = −εu′′(t),
Rε(0) = 0, R′

ε(0) = w1.
(3.8)

We conclude this preliminary part of the proof with a remark on the regularity required
on the initial data. In the statement of Theorem 2.2, (u0, u1) are assumed to be in D(A3/2) ×
D(A1/2), but in this proof we always work with Aθε, which by (17) depends on Aw1, and
therefore can be defined as an element of H only if (u0, u1) ∈ D(A2) × D(A). However, the
results we prove hold true for (u0, u1) ∈ D(A3/2)×D(A1/2), and this can be rigorously justified
in at least two different ways:
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• Working in D(A2) × D(A) and then, since all the constants depend at most on |A3/2u0|
and |A1/2w1|, passing to the limit;

• Working in D(A3/2) × D(A1/2), and thinking of all the equations involving Aθε as
equalities in D(A−1/2) and not in H.

3.2.1 Estimate on u′′

We prove that ∫ +∞

0

|u′′(t)|2dt ≤ 1
2δ3

|A3/2u0|2. (3.9)

Indeed, taking the scalar product of 2u′′(t) with the derivative of the equation in (1.2), we
obtain that 2δ|u′′(t)|2 + (|A1/2u′(t)|2)′ = 0, so that, integrating in [0, T ], we find that

2δ

∫ T

0

|u′′(t)|2dt + |A1/2u′(T )|2 = |A1/2u′(0)|2 =
1
δ2

|A3/2u0|2.
Taking the limit as T → +∞, inequality (3.9) is proved.

3.2.2 Estimate on Rε

We prove that there exists a constant D1 such that
|A1/2Rε(t)|2 ≤ D1ε, ∀ t ≥ 0. (3.10)

To this end, we introduce the function E(t) := ε |R′
ε(t)|2 + |A1/2Rε(t)|2.

Using (3.8) it follows that

E ′(t) = −2δ |R′
ε(t)|2 − 2ε〈u′′(t), R′

ε(t)〉 ≤ −2δ |R′
ε(t)|2 + 2δ |R′

ε(t)|2 +
ε2

2δ
|u′′(t)|2,

so that, integrating in [0, T ] and using (3.9), we find that

E(T )≤ E(0) +
ε2

2δ

∫ T

0

|u′′(t)|2dt≤ ε|w1|2 +
ε2

2δ

1
2δ3

|A3/2u0|2≤ ε

{
|w1|2 +

1
4δ4

|A3/2u0|2
}

=:D1ε.

By the definition of E(t), inequality (3.10) is proved.

3.2.3 First Estimate on rε

There exists a constant D2 such that
|A1/2rε(t)|2 ≤ D2ε, ∀ t ≥ 0. (3.11)

Indeed, by (3.3) and (3.10) we have that

|A1/2rε(t)|2=|A1/2(Rε(t)−θε(t))|2≤2|A1/2Rε(t)|2+2|A1/2θε(t)|2≤ε

{
2D1+

2
δ2

|A1/2w1|2
}

=:D2ε.

3.2.4 Bootstrap Argument

Let us assume that there exist constants α ∈ [1, 2] and D > 0 such that
|A1/2rε(t)|2 ≤ Dεα, ∀ t ≥ 0. (3.12)

Then, setting D = 1
2δ4 |A3/2u0|2 + 4

δ |A1/2w1|
√

D, we have that

|A1/2rε(t)|2 ≤ Dεα/2+1 ∀ t ≥ 0, (3.13)

δ

∫ +∞

0

|r′ε(t)|2dt ≤ Dεα/2+1, (3.14)

|r′ε(t)|2 ≤ Dεα/2 ∀ t ≥ 0. (3.15)

In order to prove these estimates, let us consider the function E(t) := ε |r′ε(t)|2+|A1/2rε(t)|2.
Using (3.4) it follows that

E′(t) = −2δ |r′ε(t)|2 − 2ε〈u′′(t), r′ε(t)〉 − 2〈Aθε(t), r′ε(t)〉
≤ −2δ |r′ε(t)|2 + δ |r′ε(t)|2 +

ε2

δ
|u′′(t)|2 − 2〈Aθε(t), r′ε(t)〉.
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Since E(0) = 0, integrating in [0, T ] we find that

E(T ) + δ

∫ T

0

|r′ε(t)|2 dt ≤ ε2

δ

∫ T

0

|u′′(t)|2dt − 2
∫ T

0

〈Aθε(t), r′ε(t)〉dt. (3.16)

The first integral on the right-hand side can be estimated by (3.9). In order to estimate the
second one, we use integration by parts and assumption (3.12).∣∣∣∣

∫ T

0

〈Aθε(t), r′ε(t)〉dt

∣∣∣∣ =
∣∣∣∣〈Aθε(T ), rε(T )〉 − 〈Aθε(0), rε(0)〉 −

∫ T

0

〈Aθ′ε(t), rε(t)〉dt

∣∣∣∣
≤ |〈A1/2θε(T ), A1/2rε(T )〉| +

∫ T

0

|A1/2θ′ε(t)| · |A1/2rε(t)|dt

≤ |A1/2θε(T )| · |A1/2rε(T )| +
√

Dεα/2|A1/2w1|
∫ +∞

0

e−δt/εdt.

≤ 2|A1/2w1|
√

D

δ
εα/2+1,

where we also used that rε(0) = 0, and the explicit formula for θε found in (3.3).
Coming back to (3.16) we have that

E(T ) + δ

∫ T

0

|r′ε(t)|2dt ≤ ε2

2δ4
|A3/2u0|2 +

4
√

D

δ
|A1/2w1|εα/2+1

≤ εα/2+1

{∣∣A3/2u0

∣∣2
2δ4

+
4
√

D

δ
|A1/2w1|

}
= Dεα/2+1.

By the definition of E(t), estimates (3.13), (3.14), and (3.15) are proved.

3.2.5 Inductive Argument
Let us define the sequence {αn} in the following way: α0 = 1, αn+1 = αn

2 +1; and the sequence

{Cn} in the following way: C0 = D2, Cn+1 = |A3/2u0|2
2δ4 + 4

δ |A1/2w1|
√

Cn, where D2 is the
constant introduced in (3.11).

Then for every n ∈ N we have that
|A1/2rε(t)|2 ≤ Cnεαn , ∀ t ≥ 0. (3.17)

Indeed the case n = 0 is exactly (3.11), while the inductive step follows from the bootstrap
argument.

3.2.6 Passing to the Limit
From elementary calculus arguments, we have that αn → 2, Cn → C∞, where C∞ is the unique
real number such that

C∞ =

∣∣A3/2u0

∣∣2
2δ4

+
4
δ
|A1/2w1|

√
C∞.

Passing to the limit as n → +∞ in (3.17), we therefore obtain that |A1/2rε(t)|2 ≤ C∞ε2,
∀ t ≥ 0.

This proves estimate (3.5). Using the bootstrap argument with α = 2 and D = C∞, (3.6)
and (3.7) are also proved. This completes the proof of Theorem 2.2.

3.3 Proof of Theorem 2.4
Lemma 3.1 Let v1 ∈ H, and let v be the solution of the Cauchy problem{

εv′′(t) + δv′(t) + Av(t) = 0,

v(0) = 0, v′(0) = v1.
(3.18)

Then

t|A1/2v(t)|2 ≤ ε2

δ
|v1|2, ∀ t ≥ 0. (3.19)
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Proof Let us consider the function F (t) =
(

ε
δ + t

)
(ε|v′(t)|2 + |A1/2v(t)|2).

Using (3.18) we have that

F ′(t) =
(ε

δ
+ t

) (−2δ|v′(t)|2) + ε |v′(t)|2 + |A1/2v(t)|2

= −ε |v′(t)|2 − 2δt|v′(t)|2 + |A1/2v(t)|2. (3.20)
In order to compute the last summand, we take the scalar product of the equation in (3.18)

by v(t). We obtain that
ε〈v′′(t), v(t)〉 + δ〈v′(t), v(t)〉 + 〈Av(t), v(t)〉 = 0,

so that (
ε〈v′(t), v(t)〉 +

δ

2
|v(t)|2

)′
− ε|v′(t)|2 + |A1/2v(t)|2 = 0.

Coming back to (3.20), we have that

F ′(t) = −ε |v′(t)|2 − 2δt|v′(t)|2 + ε |v′(t)|2 −
(

ε〈v′(t), v(t)〉 +
δ

2
|v(t)|2

)′

≤ −
(

ε〈v′(t), v(t)〉 +
δ

2
|v(t)|2

)′
.

Integrating in [0, T ], and exploiting that v(0) = 0, we obtain that

F (T ) − F (0) ≤ −ε〈v′(T ), v(T )〉 − δ

2
|v(T )|2 ≤ δ

2
|v(T )|2 +

1
2δ

ε2|v′(T )|2 − δ

2
|v(T )|2,

and therefore, recalling the definition of F ,( ε

2δ
+ T

)
ε |v′(T )|2 +

(ε

δ
+ T

)
|A1/2v(T )|2 ≤ ε2

δ
|v1|2.

In conclusion, for every T ≥ 0, we have that

T |A1/2v(T )|2 ≤
(ε

δ
+ T

)
|A1/2v(T )|2 ≤ ε2

δ
|v1|2,

and this proves (3.19).
In order to prove Theorem 2.4, let us write uε(t) = u1ε(t)+u2ε(t), where u1ε and u2ε(t) are

the solutions of the same equation, with the initial data, respectively, u1ε(0) = 0, u′
1ε(0) = u1,

and u2ε(0) = u0, u′
2ε(0) = 0.

The standard energy inequality applied to u1ε gives that
ε |u′

1ε(t)|2 + |A1/2u1ε(t)|2 ≤ ε |u′
1ε(0)|2 + |A1/2u1ε(0)|2 = ε|u1|2,

and therefore
|u′

1ε(t)| ≤ |u1|, ∀ t ≥ 0. (3.21)

On the other hand, setting v(t) = A−1/2u′
2ε(t), we have that v(t) satisfies the assumptions

of Lemma 3.1 with
v1 = v′(0) = A−1/2u′′

2ε(0) = −1
ε
A1/2u2ε(0) = −1

ε
A1/2u0.

By (3.19) it follows therefore that

t |u′
2ε(t)|2 = t|A1/2v(t)|2 ≤ ε2

δ
|v1|2 =

1
δ
|A1/2u0|2, ∀ t ≥ 0. (3.22)

In conclusion, by (3.21) and (3.22) we have that

|u′
ε(t)| ≤ |u′

1ε(t)| + |u′
2ε(t)| ≤ |u1| +

∣∣A1/2u0

∣∣
√

δt
,

for every t > 0, and this completes the proof of Theorem 2.4.

3.4 Proof of Theorem 2.1
In this section, we extend to the energy space D(A1/2) × H the convergence result proved in
Theorem 2.2 for the initial data in D(A3/2) × D(A1/2). The fundamental tool is an approxi-
mation technique based on the following well-known result (the completely standard proof is
omitted).
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Lemma 3.2 Let X be a Banach space, and let fn, f :]0, 1] → X be functions such that
(i) {fn} → f uniformly in ]0, 1];
(ii) for every n ∈ N there exists (in X) xn := limε→0+ fn(ε).
Then the sequence {xn} tends to a limit x∞ in X, and limε→0+ f(ε) = x∞.

Now we are ready to prove Theorem 2.1 for the initial data (u0, u1) ∈ D(A1/2) × H. Let
{(u0n, u1n)} ⊆ D(A3/2) × D(A1/2) be a sequence converging to (u0, u1) in D(A1/2) × H, and
let uεn, un be the corresponding solutions of (1.1) and (1.2). Let us consider the Banach space

X := L∞([0, +∞[; D(A1/2)),
let xn = un ∈ X, x∞ = u ∈ X, and let fn, f :]0, 1] → X be defined in the following way:
fn(ε) = uεn, f(ε) = uε, ∀ ε ∈]0, 1].

With these notations, statement (2.1) is equivalent to showing that limε→0+ f(ε) = x∞ in
X. We prove this convergence using Lemma 3.2. In order to verify assumption (i), we recall
that uεn − uε is a solution of the equation in (1.1), hence by the standard energy estimate,

‖fn(ε) − f(ε)‖X = sup{|A1/2(uεn(t) − uε(t))| : t ≥ 0}
≤ {ε|u1n − u1|2 + |A1/2(u0n − u0)|2}1/2.

This proves that fn converges to f uniformly in ε ∈ ]0, 1]. Assumption (ii) follows immedi-
ately from Theorem 2.2. Finally, xn converges to x∞ just because un − u is a solution of the
equation in (1.2), hence, by (3.1),

‖xn − x∞‖X = sup{|A1/2(un(t) − u(t))| : t ≥ 0} ≤ |A1/2(u0n − u0)|.
The proof of statement (2.2) is analogous, with the only difference that now the Banach

space is X = L2([0, +∞[; H).
Now let us prove statement (2.3). To this end, we fix B > 0, and we consider the Banach

space XB := L∞([B, +∞[; H), the functions fn, f :]0, 1] → XB defined by fn(ε) = u′
εn, f(ε) =

u′
ε, ∀ ε ∈ ]0, 1], and the elements xn = u′

n ∈ XB and x∞ = u′ ∈ XB.
Now we use Lemma 3.2 once more. In order to verify assumption (i) we apply Theorem 2.4

to uεn − uε. We obtain that

‖fn(ε) − f(ε)‖XB
= sup {|u′

εn(t) − u′
ε(t)| : t ≥ B} ≤ |u1n − u1| +

∣∣A1/2(u0n − u0)
∣∣

√
δB

.

This proves that fn converges to f uniformly in ε ∈ ]0, 1]. Assumption (ii) follows immedi-
ately from Theorem 2.2. Finally, xn converges to x∞ just because un − u is a solution of the
equation in (1.2), hence, by (3.2),

‖xn − x∞‖XB
= sup {|u′

n(t) − u′(t)| : t ≥ B} ≤
∣∣A1/2(u0n − u0)

∣∣
√

δB
.

This completes the proof of Theorem 2.1.

3.5 Proof of Theorem 2.3
In this proof, we use the Fourier series to reduce problems (1.1) and (1.2) to ODEs. For this
reason, we begin with an ODE estimate which will be applied to Fourier components.
Lemma 3.3 Let ε, δ, λ > 0, let u0 ∈ R, let uε be the solution of the ODE

εu′′
ε (t) + δu′

ε(t) + λuε(t) = 0, uε(0) = u0, u′
ε(0) = 0,

and let u be the solution of the limit problem δu′(t) + λu(t) = 0, u(0) = u0.
Then, for every T > 0, we have that

lim inf
ε→0+

1
ε
‖uε − u‖L∞([0,T ];R) ≥ λ|u0|

δ2
. (3.23)

Proof In order to prove this inequality, we remark that, for ε small enough,
‖uε − u‖L∞([0,T ];R) ≥ |uε (−ε log ε) − u (−ε log ε)| ,

and then we compute the right-hand side using the explicit expressions for uε and u. In such
a way, passing to the limit becomes a (long but standard) calculus exercise.
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Let us consider the operator Au = −uxx (with zero Dirichlet boundary conditions) in
H = L2(]0, 2π[). Let {ei} be an orthonormal system in H made by eigenvectors of A, so that
Aei = i2ei. Let ai be the component of u0 with respect to ei, so that

|Aαu0|2 =
∞∑

i=1

i4αa2
i , (3.24)

for every α ≥ 0.
Denoting by uiε(t) and ui(t) the components of uε(t) and u(t) with respect to ei, then for

every n ∈ N, we have that

|A1/2(uε(t) − u(t))|2 =
∞∑

i=1

i2 (uiε(t) − ui(t))
2 ≥ n2 (unε(t) − un(t))2 ,

so that, applying Lemma 3.3 with λ = n2, we have that

lim inf
ε→0+

1
ε
‖uε − u‖L∞([0,T ];D(A1/2)) ≥ n · lim inf

ε→0+

1
ε
‖unε − un‖L∞([0,T ];R) ≥ n3|an|

δ2
,

for every T > 0 and every n ∈ N. It follows that

lim inf
ε→0+

1
ε
‖uε − u‖L∞([0,T ];D(A1/2)) ≥

1
δ2

· sup
{
n3|an| : n ∈ N

}
. (3.25)

Therefore Theorem 2.3 is proved provided we find a sequence {ai} such that
(i) The supremum on the right-hand side of (3.25) is +∞;
(ii) The series in (3.24) converges for every α < 3/2.
Let us set

ai :=

{
i−32

√
log2 i, if i = 2k2

for some k ∈ N,
0, otherwise.

Then
sup

{
n3|an| : n ∈ N

}
= sup

{
2
√

log2 i : i = 2k2
for some k ∈ N

}
= +∞,

which proves (i). On the other hand,
∑∞

i=1 i4αa2
i =

∑∞
k=0 2k2(4α−6) · 22k, which converges for

every α < 3/2. This proves (ii), and completes the proof of Theorem 2.3.
A similar argument works with initial data (0, u1).

3.6 The Non-coercive Case
When dealing with the non-coercive case, the first step is to derive an estimate for |uε(t)| in
terms of the initial data. To this end, multiplying by 2uε(t) the equation in (1.1), we obtain
that

2ε〈u′′
ε (t), uε(t)〉 + 2δ〈u′

ε(t), uε(t)〉 + 2〈Auε(t), uε(t)〉 = 0,

so that
(2ε〈u′

ε(t), uε(t)〉 + δ |uε(t)|2)′ − 2ε |u′
ε(t)|2 + 2|A1/2uε(t)|2 = 0.

Integrating in [0, T ], and using the standard energy estimate, we find that

δ |uε(T )|2 ≤ 2ε〈u1, u0〉 + δ |u0|2 − 2ε〈u′
ε(T ), uε(T )〉 + 2ε

∫ T

0

|u′
ε(t)|2 dt

≤ 2ε〈u1, u0〉 + δ |u0|2 +
δ

2
|uε(T )|2 +

2ε2

δ
|u′

ε(T )|2 +
ε

δ
(ε|u1|2 + |A1/2u0|2).

Using the energy estimate once more, after some computations we obtain that, for every
t ≥ 0,

δ

2
|uε(t)|2 ≤ 2δ|u0|2 +

4ε

δ
(ε|u1|2 + |A1/2u0|2). (3.26)

The second step is to decompose H. For a fixed σ > 0, by means of spectral decomposition
we can write H as a direct sum of 3 closed A-invariant subspaces H = H1 ⊕ H2 ⊕ H3, where
H1 is the kernel of A, the restriction of A to H2 is a bounded operator with norm ≤ σ, and
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the restriction of A to H3 is a coercive operator (with ν ≥ σ). Moreover, the H2-projection of
every element of H tends to zero as σ → 0+.

In this way, uε and u can also be written as a sum of their 3 components, each one satisfying
the same equation with the corresponding initial data. Moreover, by (3.26) the H2-component
of uε(t) tends to zero as σ → 0+, uniformly in t. The same holds true for the H2-component of
u(t) and θε(t).

Now let us begin with Theorem 2.2. In order to complete the proof of Section 3.2 in the
non-coercive case, it is enough to show that there exists a constant C such that

|rε(t)|2 ≤ Cε2, ∀ t ≥ 0. (3.27)
This estimate can be proved on remarking that:
• It is true for the H1-component of rε (in this case uε and u can be explicitly computed

by solving ODEs);
• It is true for the H3-component of rε, with a constant C independent on σ: indeed on H3

we can apply estimate (3.5) to the function A−1/2uε;
• The H2-component of rε tends to zero as σ → 0+, because the same holds true for the

corresponding component of uε, u and θε.
In the proof of Theorem 2.4, we used coerciveness only to prove (3.22), where we estimated

u′
2ε(t). In the non-coercive case we can prove the same on remarking that:

• Estimate (3.22) is trivial for the H1-component of u′
2ε, which is constantly zero;

• Estimate (3.22) is true for the H3-component of u′
2ε, since on H3 the operator A is coercive;

• The H2-component of u′
2ε tends to zero as σ → 0+ (just use the standard energy estimate).

It remains to complete the proof of Theorem 2.1. To this end, we have to show only that
uε uniformly converges to u. This can be done with the same technique of Section 3.4, using
the Banach space X := L∞([0, +∞[; H), and estimates (3.26) and (3.27).
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