Asymptotic Analysis 40 (2004) 25-36 ’ 25
IOS Press .

Global existence and asymptotic behaviour

for a mildly degenerate dissipative

hyperbolic equation of Kirchhoff type

Marina Ghisi* and Massimo Gobbino?

® Universiti degli Studi di Pisa, Dipartimento di Matematica, via M. Buonarroti 2, 56127 Pisa, Italy
E-mail: ghisi@dm.unipi.it

Y Universita degli Studi di Pisa, Dipartimento di Matematica Applicata “Ulisse Dini”,

via Bonanno 25/B, 56126 Pisq, Italy

E-mail: m.gobbino @ dma.unipi. it

Abstract. We investigate the evolution problem
u” + 8u + m A uhydu = g,

u#(0) = ug, u’(O) =y,

where H is a Hilbert space, A is a self-adjoint non-negative operator on & w:th domain D(A), § > Oisa parameter, and
m: [0, +oo[ — [0, +oof isa locally Lipschitz continuons function. We prove that this problem has a unigne global solution for

" positive times, provided that the initial data (g, u1) € D(A) x D{AY/: % satisfy-a suitable smaliness assumption and the non-

degeneracy condition m(|A'/2uy)?) > 0. Moreover (w8, 4" () — (00,0, 0) in D(A) x DIAY?)y % Hoast — oo,
where |Al/ Lo () AL/ Ztiea|?) = 0. These resules apply to degenernte hyperiolic PDEs with noa-lpcal non-linearities.

Keywords: hyperboiic equations, dégenerate hyperbolic equations, dissipative equations, glabal existence, asymptotic
behaviour, Kirchhoff equations : :

. 1. Introduction

Let H be a real Hilbert space, with nom [ | and scalar product {).letAbea self-adjoint linear
non-negative operator on H with dense domain D(4) (i.e., (Au, u} = 0forally D(A)). We consider
the Cauchy problem :

{u”(t) + 6u' () + m(| AV 2u@) ) dut) =0, >0, a
u(l) = ug, " w(0) = uy,

where & > 0, and m : J0, +00[— [0, +col is a locally Lipschitz contnuous function,
Problem (1.1) is an abstract setting of the initial-boundary value problem for the hyperbolic PDE with
a non-local non-linearity of Kirchihoff type :

g + Sup — m(j;? | Vuf? d:z:)Au =0, inf2x [0, o], (1.2)
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where £2 C R™ is a (nop-necessarily bounded) open set, Vu is the gradient of u with respect to space
variables, and A is the Laplace operator. t :
If {2 is an interval of the rea] line, this equation is 2 model for the damped small transversal vibrations

of an elastic string with fixed endpoints (see, e.g., [4] where this conerete equation is considered in the'

.case m(r) = a + br, with g, b > 0).

The case § = 0 (free vibrations) has long beén studied: the interested reader can find appropriate
references in the surveys [1,8]. -

The non-degenerate case (i.e., m{r) = v > O forall v = 0, which in the physical model corresponds
to a pre-stressed string) with § > 0 was considered by [2,3,5,9]: they proved that for small initial data
(20,11} € D(A) x D(A'/?) there exists a unique global solution of (1.1) that decays exponentially as
1 — 400,

Degeneratz equations (m(r) = 0 for all r > 0) were considered by 16]. In the case where m(r) = 7
(y = 1), and A is a coercive operator with a discrete spectrum, they proved existence and uniqueness

. of a glabal solution of (1.1) for small initial data (up, u1) € D(A) % D(AY2) with ug # 0. They also
, proved that

(u(t), w'(£), " (2)) - (0,0,0) inD(AV) x Hx H (1.3)

with a polynomial rate as ¢ — -+oo, and that | Au(z)] is uniformiy bounded. Note that the functional
space considered i (1.3) is ot the natural space where the solution is defined.

The main argument of [6] relies on the smallness of some ad hoe energies, and seems to work only if
m(r) = r7 or m behaves near zero like 7.

In this paper we consider problem (1.1) where m is any non-negative locally Lipschitz continnous
function, and A is any non-negative operator. We prove that there exists a unique glebal solution provided
that (uy, u;) € D{A) x D(A'/?) satisfy a suitable smallness assumption (cf. Theorem 2.2) and the non-
degeneracy condition m(|A'/?up|?) > 0. In the general case this solution may not decay to zero as
t — +-00. However we prove that - . .

{u(), '), 4" (®)) - (400, 0,0) in D(A4) x D(A'?) x H (1.4

a5 ¢ — 400, and that | A" ?u| - m(] 420 %) = 0 (cf. Theorem 2.3).

In particular, if the operator A is coercive and m(r} > 0 forevery r > 0, then necessarily o, = 0.

‘We point out that our asymptotic result (1.4) is stated in the natural space, and therefore it is stronger
then (1.3).

The abstract results may be applied in a standard way to the concrete equation (1.2); for example for
the Cauchy problem with homogeneous Dirichiet boundary conditions it is enough to take H = I2(f2),
D(A) = B> () Hj(12), D(AV?) = H)($2), and 4 = —A.

2. Statement of the results
In this section we state the main results of this paper. For completeness shake, we recall the following

local existence result, which may be proved by fixed point theorems (a sketch of the proof is included in
Section 3 for the convenience of the reader). :

e IR
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Theorem 2.1 (Local existence). Lerd .0, let m: 10, +oo[ — [0, +oo[ be a locally Lipschitz continu-
ous function, and let (up, u1) € D(A) x D(A'2) with m{| A ug|?) > 0.
Then there exists T > 0 such that problem (1.1) has a unigue solution

u € C¥(10, TT; H) N ([0, TT; D(AY2)) n C°([0, TT; D(A)).

Moreover, u can be uniguely continued to g maximal solution defined in an interval [0, T,[, and at
least one of the following statements is valid:
{) T, = +o0;
(i) Lmsup, . |AV2W/ @] + | Au®f = -+oo;
(iif) liminft_,T_- m(|AY Zu(t)®) = 0.

We remark that the dissipative term plays no role in this local existence theorem. On the contrary, it
plays a crucial role in the following result,

Theorem 2.2 (Global existence). Let § > 0, and ler m.: [0,-+ool — [0, +oal be a locally Lipschitz
continuous function. Let us assume that the initial data (ug,w;) € D(4) x D(A/2) satisfy the non-
degeneracy condition

m(|AY2ug*) > 0, ' (2.1)

and the smallness assumption

o ] 2 } g \

(I’ zo=ro, oy max { (A gy’ FVFOVFO) < o, (2.2)
where

’ _ Josg [* 1 aL/2, 12 - | A2 2 2

O g ATl PO = gy Ml

Tﬁen problem (1.1) admits a unique global solution
u € C2([0, +ool; H) N C'{[0, col; D{A'?)) N CO([0, ool; D(4)).

As & consequence of Theorem 2.2 we have that, if the initial data (ug, ) € D(A) x DAV %) satisfy
the non-degeneracy condition (2.1), then problem ¢1.1) has a global solution for every large enough 8.

‘Theorem 2.3 (Asymptotic behaviour). Let us assume that all the hypotheses of Theorem 2.2 are satis-
fied.
Then we have that:

) m{ A2 > Oforallt = 0;
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(ii) there exists uy, € D(A) such that

u(l) — uoy  in D{A), _ ) 2.3)
W@ =0 in D{AY?), (24)
(@) —0 inH, ' 2.5)

as t — +o0. Moreaver | A" g | - m]A' 2u[2) = 0.

The proof of Theorem 2.3 relies on 4 result about the asymptotic behaviour of solutions of the lin-
earization of (1.1) (cf. Lemma 3.2 for the precise statement)."

3. Proofs
Proof of Theorem 2.1. Since the argument is standard, we only sketch the main steps of the proof.
Step 1. Let us set . L
mg = m(|APu[Y,  m, = max{l, —2—},
Mg
By = [u + molAPugl’, By o= | AV 2 + mo) Augl,
= ||m/|| Lo go.2m. - '
Let us consider the fqncﬁonal space
X7 = {a € Lip([0, T R): a(0) = mo, [|a'||zeqoy < L},
with o

_ -In2 '
L 1= 2em.(Ey + Fp), T:= F%—- 3.1

Since LT < mg/2 it follows that

a(t) > -"22 VYa € Xrr, Vt € [0, T). (3.2)

‘We can therefore define
[#(@)] @) = m(JAuct)]*),

where u € C([0, T]; HYNC'([0, T, DA ) N CO([0, T1: D(A)) is the unique solution (see, e.g., [8])
of the linear problem

{ u'(t) + ou' (@) +a®Au®) =0, >0, e 33)
u(Q) =up, . U 0) = uy.
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Step 2. We show that & maps X ¢ into itself,
To this end, it is enough to show that forall o € X L7 we have that

[#)'@)| <L forae.t e 0,17, ' ' (3.4)

Let us introduce the functions |

B = W@ +a®)|APut)’,  Fa) = |4V 0 + alt)] Auft)].
In a standard way it is possible to prove that
E(t) < BT/, F(t) < FyeXTimo
bence by (3.2) and (3.1)
W@ + |4 26 < maBoetlT/m = om, 5,
|40 @) + | Au) < ma Fpe LT/me = o, By,
Therefore
[e@]' @ = |2 (|4"2u)) (A, w'®))| < (| Au® + WD) < 2ema(B + Fy) = L,
and (3.4) is proved.

Step 3. With a standard argument it is possible to prove that & is continuous with respect to the norm
of the space C%([0, T; R). Since X L7 is a compact and convex subset of CY[0, TT; k), by Schavder’s
fized point theorem it foilows that & has at least one fixed point a. The corresponding solution w of (3 3}
is a solution of (1.1).

Since m is locally Lipschitz continuous, uniqueness of the solution foliows in a standard way.

Siep 4. Let us prove the last part of the statement.

Let [0, T,[ be the maximal interval where the solution exists, and let us assume by contradiction that
(i), (i), and (iii) are false. Then there exist two constants v, M such that m{ APyt > v > 0ina

left neighborhood of 7,,, and |AY22/()]2 + iAu(t)? < M for every ¢ € [0, T.[. From this inequality it
follows that

£
[A2u(t)] = )Al/zuo + _L Al (7 drl < JA Py + MV2T, (3.5)
Moreover, since the function
2 [lAueP
HO = W'o)f + [ mis) ds
0

is non-increasing, we have that 4’ B < H(0), hence by (3.5) there exists a constant N > 0 such that

W' + m{| A 2uw) )| A 2u 2 < N
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for all ¢ € [0,7.[. By (3.1) it follows that, for all S in a left neighborhood of T, the life span of the
selution of '

{w‘”(t) + 5w ) + m(|AV2w(t)*) Awit) =0, £> 8,
w(S) = u(S), w'(8)=1u'(9), K

is larger then a strictly positive quantity independent of 5. This contradicts the maximality of 7,. O
In the sequel we need the following comparison result for ODEs (the simple proof is omitted).

Lemma 3.1, Let T > 0, and let f € CY([0, TL; R). Let us assume that f(t) 0in [0, T, and that there
exist two constants ¢; > 0, ¢g 2 0 such that .

FO < —VFOe Vi) —c) Vielo,TL

Then
VB € maX{x/.'f—(tﬁ. ?—1}

forailt e [0,TT.

Proof of Theorem 2.2. Step 1. Let us assume that m € ([0, +-oal; R), and let [0, T...'[ be the maximal
interval where the solntion exists. Let us set

o) i= m(|A2u)]?),

and

) E?_ : }
Rﬁ— -.<._ 2, C(t) >0Vt€[0,'r] .

Let us consider the functions .

@l |A ' )
e(?) o)

‘With simple computations it follows that

T.= sup{'r € [0,T.[:

I'M'(t)l

+ A Pun,  Fi)= %0

B = 1— +|Au (t)l .. G :=

_ IO |2 ' | @6
El)=- (t)(2‘5+ (t))|u(t)|,
)

"= 2 )| A2 ) 3.7
Fty=— (t)(26+c(t))|A u' @), ) @7

®

(A< —G(t){ (6 + E) Gty - 2|Au(t);}, . (.8)

forevery t € [0, T[.
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Step 2. We show that T = T,,.
Let us assume by contradiction that T' < T.. Since |¢/@®)] < (6/2)c{t) in [0, T we have that

0 < e(@e™ 5772 < o(T) < e(0) T2, ' (3.9
Since ¢ and ¢’ are continuous functions, by the maximality of T' we have that necessarily

d(@) '
oT)

From (3.6) and (3.7) it follows that E and F' are non-increasing functions, hence

(3.10)

[4um)l < Bty < EQ), (3.11)
|[Au®)* < Ft) < F(O). (3.12)

Moreover by (3.8) we have that
(63 t) < —GNECR) - 2V/FD)
hence, by Lemma 3.1 with f = G2,
Gty < max{G(O), %/F(D)}, YVt € [0,T]. {3.13)
By (3.11)—(3.13), and the smallness assumption (2.2), we have that

| (7))
e(T)

ax Im'@)

/ 1/5_ AY
C’(T)’=[2m(|A wT)| )(H(T),Au(T))i | Au(T)]

(T} o)
5
S2, max |m(r)| max {G(O),E\/F(D)}\/F(D)< .

This contradicts (3.10).
Step 3. Let us assume by contradiction that T, < 4-0c. By (3.9) and (3 12) it follows that

UsrgE{U}

]Jm1|3fm(|A'/2u(t)| } = m{|A2up?) =12 5 0,

nmsuijWu'(m +]Au)” < max{1, e(0) ! 12} F(0) < -+co.

i—T5

By the last statement of Theorem 2.1 this is a contradiction. This completes the proof if m' is contin-
uous.

Step 4. If m is only locally Lipschitz continzous, thesis follows from a standard approximation argu-
ment. O
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In order to study the asymptotic behaviour of the solutions of (1.1), we consider the linearized problem

() + V) + @A) =0, 20, ' _
{v(O) =u, VO=mwn. . (3.14)

In the following lemma we examine the asymptotic behaviour of the solutions of (3.14).

Lemmn 3.2. Let § > 0, and let c:10,+oo[ — 10, +oc[ be a Lipschitz continuous bounded function
such that .

c (t)

c(t) = jforaetz0O

Let v be the unigue global solution of (3.14) with (vo, vy) € D(A4) x D(AV/2).
Then there exists v € D(A) such that

v(l) = v in D(A), ‘ (3.15)
V)= 0 in D(4AY), | (3.16)
V=0  inH, _ (.17

ast — +oco. Furthermore, if Avo, # 0, then necessarily e(f) — O ast — 4-o00.

Proof. We divide the proof in several steps, according to the following strategy In Steps 1-6 we prove
that

Auv(t) has a limit w., in H ast — +oo0, o : (3.18)

A2ty = 0'in H as £ — oo, ' (3.19)
e(t)| Av(t)| — O ast — +oo, ' (3.20)

If the operator A is coercive (i.e., there exists v > 0 such that {Au, u) > v|uf* forall u € D(A)), then
Lemma 3.2 is proved.
If A is not coercive, it remains to prove (Step 7) that

v(t) has a limit v, in H as ¢ — +oo, (3.21)
v'(f) >0 inHast— +oo. ' (3.22)

Indeed, since A is closed, from (3.18) and (3.21) it follows t.hat Uo € D(A) ey = Ateg, and
v(t) — oo n D(A).
Step 1. Let us consider thie fanction

| A2y (t)lz

FO ="

+ |Av (t)|
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A simple computation shows that

Pty = (25 + c’(t)) |A1/2v'(t)12 < _3X|Al/2‘i'-f"(t)|2.

e(t) T e

o® $-3 , (3.23)
In particular, the function F'(f) is non-increasing, hence there exists

Foo = t_].}_lil_1w Ft).

If F, = 0, then (3.18) holds trize with w,, = 0, while (3 19) and (3.20) follow from the boundedness

" ofe.

Now in Steps 2-6 we deal with the case Fo > 0 (in parncular in Step 4 we show that in this case
necessarily c(t) — 0).
Step 2, We show that

./u. |A'/2'u"'(t)|2 dt < +oa. ' : . (3.24)

Indeed, integrating (3.23) we have that

[,
[} o(f)

Since the function c is bounded, (3.24) follows from this inequiality.
Step 3. We show that .

f Pyt = —(F(O) F).

fu * )| Av)| dt < +oo. (325)
Indeed, takiqg the scalar product of the equation with Av, we obtain that |
0= ("(2), Av(t)) + 8(v'(£), Av(®)) + c(t)| Av(t)|
1
= (('u'(t), Auv(t)) + g|A'/2v(t)|2) ~ 4% @) + c()| At
Integrating in [0, T it follows that
T 12
f o(t)| Av(e)|” dt
0
) T
= (v;, Avg) + g-]A'/Zuof — (V'(T), Au(T)) — glAllz‘u{T)Iz + fu | A2 )| it
' 8 1 T
< (o1, Avg) + oA 2wl’ + 54 D + fo | A2y )| di

) 1 T
< {onAw) + 51420 + | clloaF(0) + fo |42 )2 de.
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Passing to the limit as T' — -}-00, (3.25) follows from (3.24),
Step 4. From (3.24) and (3.25) it follows that

f * c()F(t)df < +o0.
i
Since F(t) = Fy > 0, then also
oo .
f e®)dt < +oo. (3.26)
[

Since ¢ is Lipschitz continuous, it follows that ¢(f) — 0 as ¢ — +-co, hence (3.20) is proved. Since
| A2 ()2 < c(£)F(0), then also (3.19) is proved. :

Step 3. We show that (3.18) holds rue with the additional assumption that (vg, ) € D(A%)x D(A43/%),

To this end, let us introduce the function

S |A3/2,uf(t)|2 2 2
F) = et + |A*u(B))".

As in Step I, it is possible to prove that Fis non-increasing, hence
|42 < B

for every t > 0. Now let us consider the function

o AV
Gy = =5 j
Then we have that
Gty < —Gw){2( 6+ = 18ty — 2| 42ut)| | < —B)! 68 — 2/ F o)},
g & |

hence, by Lernma 3.1 with f = G2, it follows that
~ - 2 /=
G@) < max{G(O), EVF(U)}'
By (3.26), this implics that
oo
f | A2'¢t)| dt < +eo
0

and therefore Awv(¢) has a limit as ¢ — +o0.
Step 6. We show that (3.18) hold true for every initial data (vo, m) € D(A4) x D(A'/?).
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To this end, let us consider a sequence {(on, in)} C D(A%) x D(A%2) converging to (vg, v1) in
D(A) x D(AY?), Let {v,} be the corresponding solutions of (3.14), and let vs set Wy, 1= ¥ — uy,. Since
tly, is a solution of (3.14), we have that

A2yt )P 2 _ | A (v — v))?
| Awn @) < LW;— + |Awa @) < l—%‘—l + | ACtn — wo)|*.

This proves that { Av,} — Av uniformly in [0, +oo[. Since Avn(t) has a limit as t — ~+oo for every
1 € N (see Step 5), then necessarily Av(t) has a limit as ¢t — 00,

This completes the proof of (3.18).

Step 7. Let us prove (3.21) aod (3.22) in the case where A is not coercive, Let us consider the function

. P 1/2, 0072
E(t) = B + AV )"

Arguing as in Step 1, it is possible to prove that, for every T > 0,
' T .2 2 2
[ vera< Sidemo, WP < idoEo.
. Moreover, taking the scalar product of (3.14) with v, and arguing as in Step 3, it follows that

T T
fn c(t)|A1/’-v(t)|2da+g|u(T){2= fu |v’(t)f2dt+g|vu|2+(v;,vu)——(w’(T),v(T))

T, g 5, 1 TN T
é/ﬂ '@ dt + Zlul + Slwol* + o=l P + 7o) + 35O

hence

2_ 4 5|!c||m(|v,|2 12, 2 2, 1,
e < F{5= (B 200 + 1 +55lm . 627

Now we use the spectral decomposition of A, following the notations of [7].
Let us fix ¢ > 0. Let E be the resolution of the identity associated with A, and let us consider the
orthogonal decomposition
H=N,& N & Ng,
where

Na=R(E({0})), N§=R(E(0,0D)), N = R(E(lo, +oof)).

Let va(t), vg(?), vo(f) be the components of #(t). Since N4 is the kernel of A, then v 4 solves the

"ODE

v +6vy =0,
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hence by a direct computation we see that v 4{Z) has a limit as £ — +o00. .

Since the restriction of A to N§ is coercive, by the results of Steps 1-6 it follows that also v (£) has
4 limit as t — +oc0.

Moreover, applying (3.27) to the function vp, we have that

3llelloe £ Jm)a)? 12 2) 2, 1 -2}
_35_(—6-(6)—+_|A sl ) +élwo)al + 5z |wal

el < 3
forevery t = 0. )
This proves that jvp(t)] is small, uniformly in £, provided that & is small enough. Since v4 and vg
have a limit for every o > 0, then (3.21) follows by a standard argument.
The proof of (3.22) is completely analogous. 0O

Proof of Theorem 2.3. We use the same notations as in the proof of Theorem 2.2. Let us first remark
that « is the solution of (3.14) with :

oty = m(|APu®),  (wo,01) = (uosw).

In Step 2 of the proof of Theorem 2.2, we showed that c(t) > 0 for every t > 0 (this proves state-
ment (i), and i

dw)| 6
|@ <5 wso

Since (3.11) holds true for every ¢ > 0, it foliows that ¢ is bounded. Since m is local]gf Lipschitz
continvous, and [AV*/(1)? < F(H)e(t) < F(0)c(t) (see (3.12)), then it turns out that ¢ is globally
Lipschitz continuous.

By Lemma 3.2, there exists ue, € D(A) such that (2.3)(2.5) are satisfied. If A'/2u,, 5 0, hence
Atigg 7 0, then by the last statement of Lemma 3.2 we have that e(#) — 0 as ¢ — 400, and therefore

¥
0= lim m(|A"2u@f) = m(|A%u,[). O
i—-+too -
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The three divergence free matrix fields
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Ahstract. We prove that for any connected open st 2 C R™ and for any set of matrices K = { A, Ay, 42} C M™*", with

m 2 nand rank(A4; — Ay} = nfor i # 4, there is no non-constant solution B € L2, M™*"), called exact solution, to the
problem

DivB=0 inD'(2.E™ and B(z)e K ae infl.

In contrast, Garroni and Nesi [10] exhibited an example of set K for which the above problem admits the so-called approximate
soluticns. We give further examples of this type. We also prove non-existence of cxact solntions when K is an arbitrary set of
matrices satisfying a certain algebraic condition which is weaker than simuitaneous diagonalizability.

Keywords: differential inclusions, phase transitions, homogenization

1. Intreduction

The problem of characterizing solenoidal matrix fields which take values in a finite set of matrices,
has been recently considered by Garroni and Nesi. This kind of problem is analogous to that on corl free
matrix fields in which one asks whether a Lipschitz mapping using a finite number of gradients exists,

“ Here the differential constraint of being the gradient of a mapping, and hence a curl free matrix field, is

replaced by that of being a divergence free matrix field (i.e., a matrix valued function whose rows are

. divergence free in the distributional sense). To describe the problem we begin with some definitions.

Definition 1. Given two integers m,n > 2, a set of real m x n matrices K € M™*" and a bounded
open set {2 in R™, we say that any B € L°°(£2, M™*") satisfying

DivB =0 in (02, E™),
Bzye K a.e. in £2, (1.1}
B is non-constant,

is an exact solution of (1.1). We say that K is rigid for exact solutions if there is ne solution to (1.1),

sCl.)rmc;l:u:u'm'lil'lg author.
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