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1 Università degli Studi di Pisa, Dipartimento di Matematica, via M Buonarroti 2, 56127 Pisa,
Italy
2 Università degli Studi di Pisa, Dipartimento di Matematica Applicata ‘Ulisse Dini’,
via Bonanno 25/B, 56126 Pisa, Italy

E-mail: ghisi@dm.unipi.it and m.gobbino@dma.unipi.it

Received 7 February 2001
Published 30 July 2001
Online at stacks.iop.org/Non/14/1197

Recommended by P Deift

Abstract
It is well known that the Kirchhoff equation admits infinitely many simple
modes, i.e. time-periodic solutions with only one Fourier component in the
space variable(s). We prove that these simple modes are stable provided that
their energy is small enough. Here stable means orbitally stable as solutions
of the two-mode system obtained considering initial data with two Fourier
components.

Mathematics Subject Classification: 35L70, 37J40, 70H08

1. Introduction

Let H be a real Hilbert space, with norm | · | and scalar product 〈· , ·〉. Let A be a self-adjoint
linear positive operator on H with dense domain D(A) (i.e. 〈Au, u〉 > 0 for all u ∈ D(A)).
We consider the evolution problem

u′′(t) + m(|A1/2u(t)|2)Au(t) = 0 (1.1)

where m : [0, +∞) → [0, +∞) is a smooth function.
Equation (1.1) is an abstract setting of the hyperbolic partial differential equation (PDE)

with a non-local nonlinearity of Kirchhoff type

utt − m

(∫
�

|∇u|2 dx

)
�u = 0 in � × R (1.2)

where � ⊆ R
n is an open set, ∇u is the gradient of u with respect to space variables and � is

the Laplace operator.
If � is an interval of the real line, this equation is a model for the small transversal

vibrations of an elastic string with fixed endpoints.

0951-7715/01/051197+24$30.00 © 2001 IOP Publishing Ltd and LMS Publishing Ltd Printed in the UK 1197

http://stacks.iop.org/no/14/1197


1198 M Ghisi and M Gobbino

In the case where H admits a complete orthogonal system made by eigenvectors of A

(this is the case, for example, in the concrete situation of (1.2) if � is bounded), then (1.1)
may be thought of as a system of ordinary differential equations (ODEs) with infinitely many
unknowns, namely the components of u.

Many papers have been written on equations (1.1) and (1.2) after Kirchhoff’s monograph
[5]: the interested reader can find appropriate references in the surveys [1, 10]. We just recall
that, at present, the existence of global solutions for all initial data in C∞ or in Sobolev spaces
is still an open problem.

In this paper we consider a particular class of periodic global solutions of (1.1). Let us
assume that λ is an eigenvalue of A, and eλ is a corresponding eigenvector, which we assume
to be normalized such that |eλ| = 1. If the initial data are multiples of eλ, say

u(0) = w0eλ u′(0) = w1eλ

then the solution of (1.1) remains a multiple of eλ for every t ∈ R, i.e. we have that
u(t) = w(t)eλ, where w(t) is the solution of the ODE

w′′(t) + λm(λw2(t))w(t) = 0 w(0) = w0 w′(0) = w1.

Such solutions are called simple modes of equation (1.1), and are known to be time periodic
under very general assumptions on m.

In this paper we are interested in the stability of simple modes. This programme is,
however, too optimistic for at least two reasons:

• how can one prove stability if global existence is still an open problem?
• stability problems are often already hard for systems with three unknowns, and we have

seen that (1.1) has infinitely many degrees of freedom.

For these reasons we limit ourselves to considering two-mode solutions. To this end, let
µ be another eigenvalue of A, and let eµ be a corresponding eigenvector with |eµ| = 1. If the
initial data of (1.1) belong to the two-dimensional subspace of H spanned by eλ and eµ, then
the same holds true for the solution, which may be written in the form w(t)eλ + z(t)eµ, where
w and z solve the following system of ODEs:

w′′(t) + λ m(λw2(t) + µz2(t))w(t) = 0

z′′(t) + µ m(λw2(t) + µz2(t))z(t) = 0.
(1.3)

It is clear that simple modes are particular solutions of this system, corresponding to initial
data with z(0) = z′(0) = 0. What we actually study in this paper is the stability of simple
modes as solutions of (1.3).

To this end, let us set

ν := µ

λ
u(t) :=

√
λ w

(
t√
λ

)
v(t) := √

µ z

(
t√
λ

)

so that (1.3) is equivalent to

u′′(t) + m(u2(t) + v2(t))u(t) = 0

v′′(t) + ν m(u2(t) + v2(t))v(t) = 0.
(1.4)

This system (as well as (1.3) and (1.1)) is a Hamiltonian, with conserved energy

H(u, u′, v, v′) := 1

2

{
[u′]2 +

[v′]2

ν
+ M(u2 + v2)

}
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where

M(r) :=
∫ r

0
m(s) ds.

As far as we know, there are at least two other papers on this subject.

• Dickey [3] proved that simple modes are linearly stable provided that their energy is small
enough. Roughly speaking, linearly stable means that v(t) ≡ 0 is a stable solution for
the linearization of the second equation in (1.4). These results extend to systems with any
finite number n of modes, because the n − 1 equations resulting from linearization are
uncoupled.

• A complementary result was proved by Cazenave and Weissler [2]. They showed that
(under suitable assumptions on m) there exists a non-empty set A ⊆ (1, +∞) such that, if
ν ∈ A, then every simple mode of (1.4) with large enough energy is unstable. In the case
where m(r) = 1 + r , and � is an interval of the real line, this result implies the instability
of every simple mode of (1.2) with large enough energy.

In this paper we improve Dickey’s result. Our main result is the following.

Theorem 1.1. Let ν �= 1 be a positive real number. Let m : [0, +∞) → [0, +∞) be a smooth
function such that m(0) > 0 and m′(0) �= 0.

Then there exists ε1 > 0 such that, if H(u0, u1, 0, 0) < ε1, then the simple mode of (1.4)
with u(0) = u0, u′(0) = u1 is orbitally stable.

Roughly speaking, orbitally stable means that every solution (u(t), v(t)) of system (1.4)
with initial data near (u0, u1, 0, 0) remains close to the periodic orbit of the simple mode for
every t ∈ R.

The jump from linear to orbital stability is allowed by the application of KAM theory to
the Poincaré map (see sections 2.2 and 2.3).

We conclude with a few comments on theorem 1.1.

• Assumption m(0) > 0 is necessary. Indeed, for m(r) = r there exists ν > 1 for which
every simple mode of system (1.4) with positive energy is unstable (cf [2, theorem 4.1]).

• Assumption m′(0) �= 0 is not essential. We need it in order to apply KAM theory using
‘only’ the first three terms in the Taylor expansion of the Poincaré map. Considering further
terms, it should be possible to prove the same result assuming only that m(k)(0) �= 0 for
some integer k � 1.

• In this paper we always assume ν �= 1, which corresponds to the case of two modes relative
to distinct eigenvalues of the operator A. In the case ν = 1, our expansions of section 4.2
are inconclusive, and further terms are also needed to prove (or disprove) linear stability.

• Smoothness of m is used only to give to the Poincaré map the smoothness required by
KAM theory. To this end, m ∈ C5 is enough. We do not know any counterexample for
less regular ms.

• Due to the use of KAM theory, at the present there is no hope of extending our argument
to systems with three or more modes. Indeed, for such systems, KAM theory says at
most that, in a neighbourhood of the simple mode, ‘a lot of solutions’ stay on ‘KAM tori
around the periodic trajectory’, but this does not prevent other solutions from exhibiting
an unstable behaviour.

• Since system (1.4) is reversible (if (u(t), v(t)) is any solution, then (u(−t), v(−t)) is
another solution), then a consequence of theorem 1.1 is the following: ‘if the energy of a
two-mode solution of (1.4) is small enough, then it is not possible that asymptotically all
of this energy is absorbed by one of the two components’.
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This paper is organized as follows. In section 2 we give definitions and preliminaries, in
section 3 we state our results and outline the proofs, and in section 4 we give the details of the
proofs.

2. Definitions and preliminaries

In this section we recall the notion of stability, and we describe how it can be proved using the
Poincaré map and KAM theory. General references on these subjects are [4, 6–9].

Before we enter into the details, we fix some notation which will be used throughout this
paper.

We assume that m : [0, +∞) → [0, +∞) is a function of class C5, such that

m0 := m(0) > 0 m′
0 := m′(0) �= 0.

Since the only essential thing is the behaviour of m(r) for small r , we can assume without
loss of generality that inf {m(r): r � 0} > 0.

We denote by M2×2 the set of 2 × 2 matrices. For each A ∈ M2×2, aij is the element in
the ith row and j th column, unless otherwise stated, and Tr A = a11 + a22 is the trace of A.
For every ω ∈ R, Rω denotes the rotation matrix

Rω =
(

cos ω sin ω

− sin ω cos ω

)
.

2.1. Stability

In this section we recall some definitions of stability from the classical theory of Hamiltonian
systems. For the sake of simplicity, we adapt definitions to the case of simple modes for the
system (1.4).

To this end, we consider a simple mode ū solution of the problem

ū′′(t) + m(ū2(t))ū(t) = 0 ū(0) = u0 > 0 ū′(0) = 0. (2.1)

We recall that ū is a periodic function, and so we can assume ū(0) > 0 and ū′(0) = 0
without loss of generality.

Now in the phase space R
4 we consider the energy level

Hū := {
(x1, x2, x3, x4) ∈ R

4: H(x1, x2, x3, x4) = H(u0, 0, 0, 0)
}

and the orbit

$ū := {
(ū(t), ū′(t), 0, 0): t ∈ R

}
.

Definition 2.1. The simple mode ū is said to be orbitally stable if, for every ε > 0 there exists
δ > 0 such that for every solution (u(t), v(t)) of system (1.4), the following property holds: if
the initial datum (u(0), u′(0), v(0), v′(0)) belongs to a δ neighbourhood of (u0, 0, 0, 0), then
for every t ∈ R the point (u(t), u′(t), v(t), v′(t)) lies in an ε neighbourhood of $ū.

Definition 2.2. The simple mode ū is said to be isoenergetically orbitally stable if the condition
of definition 2.1 is satisfied with the restriction that (u(0), u′(0), v(0), v′(0)) ∈ Hū.

Definition 2.3. The simple mode ū is said to be linearly stable if v(t) ≡ 0 is a stable solution
of the linear equation v′′(t) + ν m(ū2(t))v(t) = 0, i.e. for every ε > 0 there exists δ > 0 such
that

‖(v(0), v′(0))‖ < δ �⇒ ‖(v(t), v′(t))‖ < ε ∀t ∈ R.

This linear equation is the linearization of the second equation in (1.4).
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We end with some remarks on the above definitions.

• Due to the reversibility of solutions of (1.4), using t � 0 is equivalent to using t ∈ R in
the definitions of stability.

• Definition 2.1 says that any orbit starting near (u0, 0, 0, 0) remains close to $ū for all
times. It is in general not true that, for every t ∈ R, the corresponding points on the two
trajectories are close to each other.

• As observed in [3], linear stability is equivalent to the following: ‘let (u, v) be a solution
of (1.4); if we represent v as a formal power series in v(0), v′(0) with time-dependent
coefficients, then the linear terms are uniformly bounded for every t ∈ R’.

• It is obvious that orbital stability implies isoenergetic orbital stability. In non-degenerate
situations, isoenergetic orbital stability implies linear stability. Here ‘non-degenerate
situation’ means that (0, 0) is not a parabolic point for the associated Poincaré map (see
sections 2.2 and 2.3 below). It is not essential to explain such a condition now; we just
note that it is satisfied by small energy simple modes.

2.2. The Poincaré map

Let ū be the simple mode solution of (2.1). Let us consider the open set U ⊆ R
2 defined by

U := {
(x, y) ∈ R

2: H(0, 0, x,
√

νm0 y) < H(u0, 0, 0, 0)
}
. (2.2)

For every (x, y) ∈ U , let α(x, y) > 0 be the unique positive number such that

H(α(x, y), 0, x,
√

νm0 y) = H(u0, 0, 0, 0).

Let (u(t), v(t)) be the solution of system (1.4) with initial data

u(0) = α(x, y) u′(0) = 0 v(0) = x v′(0) = √
νm0 y.

Finally, let T := T (x, y) be the smallest t > 0 such that u′(t) = 0 and u(t) > 0. The existence
of such a T is classical up to restricting U ; on the other hand, in our case, writing equation (2.1)
in polar coordinates, the interested reader can verify that such a T exists for every (x, y) ∈ U ,
and is � 2πµ−1, where µ := min {1, inf{m(r): r � 0}}.

The Poincaré map Pū : U → U , relative to the simple mode ū, is defined by

Pū(x, y) := (
v(T ), (νm0)

−1/2v′(T )
)
.

We point out that both v and T depend on (x, y). The coefficient νm0 has been introduced
only to simplify calculations.

When (x, y) = (0, 0), then u(t) = ū(t) and v(t) = 0 for every t ∈ R. It follows that
Pū(0, 0) = (0, 0), i.e. (0, 0) is a fixed point of the Poincaré map.

For the convenience of the reader, we give here a heuristic description of the Poincaré
map.

Let us consider in the phase space R
4 the periodic orbit ū, its initial datum (u0, 0, 0, 0),

and its energy level Hū. The tangent vector to the periodic orbit in the initial point is, up
to constants, the vector (0, 1, 0, 0). If we intersect Hū with the hyperplane in R

4 through
(u0, 0, 0, 0) and orthogonal to (0, 1, 0, 0) (i.e. the hyperplane orthogonal to the orbit in its
initial point), we obtain a set whose connected component containing (u0, 0, 0, 0) is

Oū := {
(α(x, y), 0, x,

√
νm0 y): (x, y) ∈ U}.

In this way U is in one-to-one correspondence with Oū, a subset of Hū orthogonal to the
orbit in its initial point.
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Now for every point Q ∈ Oū, let us consider the solution of system (1.4) which lies in Q

at t = 0. Such a solution meets Oū once again at time T (Q) > 0 in a point P(Q). The map
Q → P(Q) is the Poincaré map read in Oū.

Definition 2.4. Let U ⊆ R
2 be an open set containing (0, 0), and let P : U → U be a map

such that P(0, 0) = (0, 0). The fixed point (0, 0) is said to be stable if for every ε > 0 there
exists δ > 0 such that

(x, y) ∈ U ‖(x, y)‖ < δ �⇒ ‖P n(x, y)‖ < ε ∀n ∈ N

where P n denotes the nth iteration of P .

It is heuristically clear that the stability of ū as a periodic solution is related to the stability
of (0, 0) as a fixed point of Pū. These relations are explicitly stated in theorem 2.6 below.

2.3. KAM theory for planar maps

The stability of planar maps has been studied over the last 40 years. In this subsection we
summarize the basic results we need in the following. Let U ⊆ R

2 be an open set containing
(0, 0), and let P : U → U . The theory of planar maps has been developed for very general
maps P ; however, we state the results under suitable assumptions which allow one to simplify
some notation, and are trivially satisfied in our case. Therefore, let us assume that:

P1 P ∈ C5(U, U) and P(0, 0) = (0, 0);
P2 P is area-preserving;
P3 if P(x, y) = (a, b), then P(a, −b) = (x, −y);
P4 P(−x, −y) = −P(x, y).

The first object to look at in order to study the stability of the fixed point (0, 0) is the
differential of P at (0, 0), which we denote by L. It is well known that the canonical form of
L is one of the following three:

•
(

λ 0
0 λ−1

)
for some λ ∈ R, |λ| > 1. In this case (0, 0) is said to be hyperbolic and it is unstable.

•
( ±1 a

0 ±1

)
for some a �= 0. In this case (0, 0) is said to be parabolic. The map L is unstable, but
nothing can be said about P . However, we will not find this degenerate case in this paper.

• Rω for some ω ∈ R. In this case (0, 0) is said to be elliptic. The map L is stable, but this
is in general not enough to guarantee the stability of P .

Therefore, L gives only necessary conditions for stability (i.e. non-hyperbolicity). KAM
theory provides sufficient conditions in the case of elliptic fixed points. To describe such
conditions, it is better to write P in polar coordinates up to terms of order three. If we choose
coordinates where L is written in the canonical form of a rotation, then, in the corresponding
polar coordinates, P becomes

P

(
ρ

θ

)
=
(

ρ + a(θ)ρ3

θ − ω + b(θ)ρ2

)
+ o(ρ3)
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where ω is the same as in the linear term L, and a(θ) and b(θ) are trigonometric polynomials
of degree four. The absence of even powers of ρ in the first component, and of odd powers of
ρ in the second component, is due to (P4). Finally, we set

γ (P ) := 1

2π

∫ 2π

0
b(θ) dθ. (2.3)

Then we have the following KAM result [4, 7, 9].

Theorem 2.5. Let P : U → U be a planar map satisfying (P1)–(P4). Let (0, 0) be an elliptic
fixed point, and let ω and γ be defined as above.

Let us assume that

(KAM 1) ekiω �= 1 for every k ∈ {1, 2, 3, 4};
(KAM 2) γ (P ) �= 0.

Then (0, 0) is stable for P according to definition 2.4.

The following result relates stability, Poincaré maps and KAM theory [4, 7, 9]. It is the
fundamental tool in our analysis.

Theorem 2.6. Let ū be a simple mode of system (1.4), and let Pū be the associated Poincaré
map. Then:

• ū is linearly stable if and only if (0, 0) is an elliptic fixed point of Pū;
• ū is isoenergetically orbitally stable if and only if (0, 0) is a stable fixed point of the

Poincaré map Pū;
• if (0, 0) is an elliptic fixed point of Pū, and Pū satisfies (KAM 1) and (KAM 2), then ū is

orbitally stable.

Thanks to theorems 2.5 and 2.6, the orbital stability of a periodic solution in the four-
dimensional space can be proved by verifying that a planar map satisfies two algebraic
conditions.

3. Statements

In this paper we consider the simple modes uε of system (1.4) which solve the problem

u′′
ε (t) + m(u2

ε(t))uε(t) = 0 uε(0) = ε > 0 u′
ε(0) = 0. (3.1)

Let us recall once more that we can assume uε(0) > 0 and u′
ε(0) = 0 because uε(t) is a

periodic function.
We also remark that the smallness of ε is equivalent to the smallness of the energy of uε.
Let us denote by Pε : Uε → Uε the Poincaré map associated with uε as in section 2.2, and

by Lε its differential at the fixed point (0, 0).
In the next result we sum up the main properties of Pε and Lε.

Theorem 3.0. For every ε > 0, let Pε and Lε be as above. Then

(1) Pε satisfies (P1)–(P4);
(2) det Lε = 1;
(3) if L

ij
ε are the entries of Lε, then L11

ε = L22
ε .
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We do not give a proof of such properties here, since they are well known in the literature.
We only note that (P2) follows from the Hamiltonian character of the system, (P3) is a
consequence of reversibility, while (P4) is a consequence of the following fact: if (u(t), v(t))

is a solution of (1.4), then (−u(t), −v(t)) is also a solution; finally (2) and (3) are once again
consequences of reversibility (for details, see the proof of [2, lemma 3.3]).

The main result of this paper (theorem 1.1) is that uε is orbitally stable if ε is small enough.
Thanks to theorems 2.6 and 2.5, the main result will be proved if we show that Pε satisfies
assumptions (KAM 1) and (KAM 2) of theorem 2.5.

Assumption (KAM 1) follows from statements (1)–(3) of the following result, where the
behaviour of Lε for small ε is considered.

Theorem 3.1. Let ν �= 1 be a positive real number. For each ε > 0, let Lε be the differential
in (0, 0) of the Poincaré map Pε associated with the simple mode uε.

Then there exist ε1 > 0, ω : (0, ε1) → R, and δ : (0, ε1) → (0, +∞) such that

(1) for every ε ∈ (0, ε1) the eigenvalues of Lε are
{
e±iω(ε)

}
;

(2) ω(ε) → 2π
√

ν as ε → 0+;
(3) ω(ε) �= 2π

√
ν for ε small enough;

(4) setting

D(ε) =
(

1 0
0 δ(ε)

)
we have that

[D(ε)]−1 LεD(ε) = Rω(ε)

(5) δ(ε) → 1 as ε → 0+.

Statements (2) and (3) prevent eiω(ε) from being a kth root of 1 for k ∈ {1, 2, 3, 4} and ε

small. Indeed, if e2π
√

νki �= 1 for k ∈ {1, 2, 3, 4}, then by (2) the same holds true for eω(ε)ki,
provided that ε is small enough; if in contrast e2π

√
νi is a kth root of 1 for some k ∈ {1, 2, 3, 4},

then for ε small eω(ε)i is not because of (3). This shows, in particular, that (0, 0) is an elliptic
fixed point of Lε for ε small.

Statements (4) and (5) say that Lε can be written in the canonical form by a diagonal
matrix D(ε) which approaches the identity as ε → 0+. These last two properties of Lε will be
fundamental in the proof of theorem 3.3 below.

Remark 3.2. The differential Lε has already been studied in the mathematical literature. In
particular:

• Dickey [3] proved statements (1) and (2) and statement (3) in the case where ν = n2 for
some integer n > 1. In such a way he proved the linear stability of uε for ε small.

• Cazenave and Weissler [2] proved (under suitable assumptions on m) that there exists a
non-empty set A ⊆ (0, +∞) such that, if ν ∈ A and ε is large enough, then (0, 0) is a
hyperbolic fixed point of Pε, and therefore the simple mode uε is unstable.

The following result implies that Pε satisfies assumption (KAM 2) for ε small.

Theorem 3.3. Let Pε be the Poincaré map associated with the simple mode uε, and let
γε := γ (Pε) be as formula (2.3).

Then

lim
ε→0+

γε = −m′
0

m0

π

2

√
ν.

In particular, γε �= 0 for ε small enough.

We have therefore reduced the proof of theorem 1.1 to the proof of theorems 3.1 and 3.3.
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3.1. Strategy of the proofs

For the convenience of the reader, we sketch in this subsection the guidelines of the proof of
theorems 3.1 and 3.3. The full details are given in section 4.

The proof of theorem 3.1 is divided into two parts.

• Part 1. For ε fixed, we write Lε(x, y) in terms of x and y, following [2, section 2].
• Part 2. We consider the behaviour of Lε as ε → 0+. We prove, in particular, that

Lε = Rω0 + ε2B + o(ε2)

where ω0 = 2π
√

ν, and B is a matrix which we compute in terms of ν, m0, m′
0. At

this point, theorem 3.1 follows from the properties of B by a general linear algebra result
(proposition 4.1).

The strategy of the proof of theorem 3.3 is analogous, but we need the expansion of Pε

near (0, 0) up to terms of order three.

• Part 1. For ε fixed, we write Pε in polar coordinates (since the constant γε we need
to compute has a simple expression in polar coordinates). We determine (as solutions
of suitable Cauchy problems) functions α1, α3, β0, β2 such that, in a neighbourhood of
(0, 0),

Pε

(
ρ

θ

)
=
(

α1(ε, θ)ρ

β0(ε, θ)

)
+

(
α3(ε, θ)ρ3

β2(ε, θ)ρ2

)
+ o(ρ3)

where the first summand is simply Lε written in polar coordinates (when a rotation is not
in canonical form, it is not so good in polar coordinates!). If we now change variables in
order to put Lε in the canonical form (using what in Cartesian coordinates is the change
of variables given by the matrix D(ε) of theorem 3.1), then Pε takes the form (with an
abuse of notation, we also denote by ρ, θ the new coordinates):

Pε

(
ρ

θ

)
=
(

ρ

θ − ω(ε)

)
+

(
a(ε, θ)ρ3

b(ε, θ)ρ2

)
+ o(ρ3).

In this representation the first summand looks more familiar (a clockwise rotation by ω(ε))
and moreover (cf (2.3))

γε = 1

2π

∫ 2π

0
b(ε, θ) dθ.

• Part 2. We now consider the behaviour of γε as ε → 0+. Unfortunately, we do not have
a good expression for b(ε, θ). However, we prove that the limit of b(ε, θ) coincides with
the limit of β2(ε, θ), hence

lim
ε→0+

γε = lim
ε→0+

1

2π

∫ 2π

0
b(ε, θ) dθ = lim

ε→0+

1

2π

∫ 2π

0
β2(ε, θ) dθ.

The last equality, proved formally in section 4.4.7, can be justified heuristically as follows:
b is obtained from β2 by changing coordinates via D(ε). By statement (5) of theorem 3.1
we know that D(ε) tends to the identity as ε → 0+, and so the asymptotic behaviour of b

and β2 is the same.
Therefore, in order to prove theorem 3.3 we only need to compute the limit of the function
β2(ε, θ) found in part 1, and then compute the average in [0, 2π ] of this limit.

Remark 3.4. We observe that considering the limit of Pε as ε → 0+ makes no sense, since the
open sets Uε where Pε is defined shrink to the point (0, 0). What makes sense is considering
the limit of the linear and the cubic term in the expansion of Pε (they are defined on the whole
plane). This is exactly what we do in the proofs of theorems 3.1 and 3.3.
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4. Proofs

In this section we prove theorems 3.1 and 3.3, according to the strategy described in section 3.1.
In all the proofs, we need expansions of solutions of Cauchy problems depending on some
small parameter. We will always work formally as follows. Assume that the Cauchy problem
is

Z′ = F(Z, µ) Z(0) = 5(µ) (4.1)

where µ is the small parameter, and Z(t) ∈ R
k is the unknown. Then we look for an expansion

like

Z(t) = Z0(t) + Z1(t)µ + Z2(t)µ
2 + · · · + Zh(t)µh + o(µh). (4.2)

We replace Z in (4.1) with this expression, and using the Taylor formula, we also write
F(Z, µ) and 5(µ) as polynomials of degree h in µ (in the first case the coefficients depend on
Z0, Z1, . . . , Zh) plus o(µh). Finally, considering the coefficients of µ0, µ1, . . . , µh, we find
the Cauchy problems solved by Z0, Z1, . . . , Zh.

It is well known that, if F and 5 are smooth enough, then this procedure can be rigorously
justified, and that (4.2) turns out to be uniform on bounded time intervals.

In order to avoid terms which are not useful in writing the expansion (4.2), we always
omit from the beginning the terms which a posteriori would turn out to be zero.

4.1. Proof of theorem 3.1, part 1

In this first part of the proof, ε and the simple mode uε are considered fixed. Let Pε be the
Poincaré map associated with uε, and let Lε be its differential in (0, 0). Then the linear operator
Lε : R

2 → R
2 can be characterized in the following way.

Given (x, y) ∈ R
2, let vε(t) be the solution of the linear problem

v′′
ε (t) + ν m(u2

ε(t))vε(t) = 0 vε(0) = x v′
ε(0) = √

νm0 y. (4.3)

This problem is the linearization of the second equation of system (1.4). Then we have
that

Lε(x, y) := (
vε(τε), (νm0)

−1/2v′
ε(τε)

)
where τε is the period of uε. We point out that τε depends only on ε, while vε depends on x,
y and ε.

We do not give the proof of this characterization, since it is completely analogous to the
proof of [2, proposition 2.1]. However, Lε is the first term in the Taylor expansion of Pε. In
the proof of theorem 3.3, we find the first three terms in the Taylor expansion of Pε, and then
we focus our attention on the term of order three. The interested reader can verify that the
term of order one found in section 4.4 is exactly Lε.

4.2. Proof of theorem 3.1, part 2

We now consider the asymptotic behaviour of Lε as ε → 0+. The fundamental tool is the
following linear algebra result.

Proposition 4.1. Let ε0 > 0, and let A : (0, ε0) → M2×2. Let us assume that

(a) det A(ε) = 1 for every ε ∈ (0, ε0);
(b) a11(ε) = a22(ε) for every ε ∈ (0, ε0);
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(c) there exists ω0 ∈ R, and B ∈ M2×2 such that, for ε → 0+,

A(ε) = Rω0 + ε2B + o(ε2);
(d) ω0 and B satisfy one of the following:

1. ω0 �= kπ for every k ∈ Z, and Tr B �= 0;
2. ω0 = kπ for some k ∈ Z, Tr B = 0, and b12 = −b21 �= 0.

Then there exist ε1 ∈ (0, ε0), ω : (0, ε1) → R, and δ : (0, ε1) → (0, +∞) such that

(1) for every ε ∈ (0, ε1) the eigenvalues of A(ε) are
{
e±iω(ε)

}
;

(2) ω(ε) → ω0 as ε → 0+;
(3) ω(ε) �= ω0 for ε small enough;
(4) setting

D(ε) =
(

1 0
0 δ(ε)

)

we have that

[D(ε)]−1 A(ε)D(ε) = Rω(ε)

(5) δ(ε) → 1 as ε → 0+.

Proof. In order to prove statements (1)–(3) it is enough to show that

C1 |Tr A(ε)| < 2 for ε small enough;
C2 Tr A(ε) �= 2 cos ω0 for ε small enough.

Indeed, by (a) the eigenvalues of A(ε) are either
{
λ, λ−1

}
for some λ ∈ R\{0}, or

{
e±iω

}
for some ω ∈ R. However, in the first case we would have that

|Tr A(ε)| = ∣∣λ + λ−1
∣∣ � 2

which contradicts (C1). This proves statement (1). At this point we have that

Tr A(ε) = eiω(ε) + e−iω(ε) = 2 cos ω(ε) (4.4)

and since

lim
ε→0+

Tr A(ε) = Tr Rω0 = 2 cos ω0

then it is clear that we can choose ω(ε) in such a way that (2) is satisfied.
Statement (3) follows trivially from (C2) and (4.4).
At this point statements (4) and (5) follow with

δ(ε) = sin ω(ε)

a12(ε)
(4.5)

provided that we prove that

C3 a12(ε) �= 0 for ε small enough;
C4 the limit of the right-hand side of (4.5) is 1.
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Indeed, by (C3) and (C4), δ(ε) is well defined and �= 0 for ε small, so that D(ε) is
invertible. With simple calculations it turns out that

[D(ε)]−1 A(ε)D(ε) =

 a11(ε) sin ω(ε)

a12(ε)a21(ε)

sin ω(ε)
a22(ε)


. (4.6)

Now from (4.4) and assumption (b) we have that a11(ε) = a22(ε) = cos ω(ε). Moreover,
from (a) it follows that

1 = det A(ε) = a11(ε)a22(ε) − a12(ε)a21(ε) = cos2 ω(ε) − a12(ε)a21(ε)

hence

a12(ε)a21(ε) = cos2 ω(ε) − 1 = − sin2 ω(ε).

This proves that the right-hand side of (4.6) is the rotation matrix Rω(ε). Finally, statement
(5) is exactly (C4).

In order to prove (C1)–(C4) we distinguish two cases.

Case 1. ω0 �= kπ for every k ∈ Z. In this case we have that

lim
ε→0+

|Tr A(ε)| = ∣∣Tr Rω0

∣∣ = |2 cos ω0| < 2.

This proves (C1). Moreover, from (c) we have that

Tr A(ε) = Tr Rω0 + ε2 Tr B + o(ε2)

so that (C2) follows from assumption (d-1).
Using (c) once again we see that a12(ε) → sin ω0 �= 0, and this proves (C3). Finally, (C4)

is satisfied since both the numerator and the denominator in (4.5) tend to sin ω0 �= 0.

Case 2. ω0 = kπ for some k ∈ Z. Let us assume that k is even, hence Rω0 is the identity (a
similar argument works when k is odd). Let us look at expansion (c). By (b) it follows that
b11 = b22, hence by assumption (d-2) b11 = b22 = 0. Now let r11, r12, r21 : (0, ε0) → R be
functions (infinitesimal as ε → 0+) such that

A(ε) =
(

1 + ε2r11(ε) b12ε
2 + ε2r12(ε)

b21ε
2 + ε2r21(ε) 1 + ε2r11(ε)

)
.

From (a) it follows that

1 + 2ε2r11(ε) − ε4b12b21 + o(ε4) = 1

so that

2r11(ε)

ε2
− b12b21 +

o(ε4)

ε4
= 0.

By (d-2) we therefore have that

lim
ε→0+

r11(ε)

ε2
= b12b21

2
= −b2

12

2
< 0. (4.7)

This proves that r11(ε) < 0 for ε small enough. Since Tr A(ε) = 2 + 2ε2r11(ε), both (C1)
and (C2) are proved. Since b12 �= 0, and a12(ε) = ε2(b12 + r12(ε)), then (C3) is also proved.
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In order to prove (C4) we first note that in this case we can choose ω(ε) in such a way that
sin ω(ε) has the same sign as b12. Then recalling that a11(ε) = cos ω(ε), we have that

lim
ε→0+

sin ω(ε)

a12(ε)
= lim

ε→0+

√
1 − a2

11(ε)

|a12(ε)| = lim
ε→0+

√
1 − (1 + ε2r11(ε))2

ε2 |b12 + r12(ε)|

= lim
ε→0+

1

|b12 + r12(ε)|

√
−2

r11(ε)

ε2
+

o(ε4)

ε4
=
√

b2
12

|b12| = 1.

This proves (C4) in the second case. �

In the following we prove that Lε satisfies the assumptions of proposition 4.1. To this end,
we consider the asymptotic behaviour of all the quantities involved in the definition of Lε.

4.2.1. Asymptotic behaviour of τε. Let τε be the period of the simple mode uε. Then, as
ε → 0+,

τε = 2π√
m0

− 3π

4

m′
0

(m0)3/2
ε2 + o(ε2). (4.8)

In order to compute τε we recall that for a periodic solution which satisfies an energy
equality [

u′
ε(t)

]2
+ M(u2

ε(t)) = M(ε2)

the period is given by

τε = 4
∫ ε

0

dx√
M(ε2) − M(x2)

= 4
∫ 1

0

ε dy√
M(ε2) − M(ε2y2)

. (4.9)

Computing the Taylor expansion of this integral is just an exercise in calculus, so we only
sketch the main points.

Since M(r) = m0r + m′
0r

2/2 + o(r2), then

M(ε2) − M(ε2y2) = m0(1 − y2)ε2

{
1 +

m′
0

2m0
(1 + y2)ε2 + o(ε2)

}

hence

ε√
M(ε2) − M(ε2y2)

= 1√
m0

1√
1 − y2

{
1 +

m′
0

2m0
(1 + y2)ε2 + o(ε2)

}−1/2

= 1√
m0

1√
1 − y2

− m′
0

4(m0)3/2

1 + y2√
1 − y2

ε2 + o(ε2).

Substituting this expression in (4.9), and computing the integrals, we obtain (4.8).

4.2.2. Asymptotic behaviour of uε and m(u2
ε). As ε → 0+ we have that

uε(t) = ε cos
(√

m0 t
)

+ o(ε) (4.10)

m(u2
ε(t)) = m0 + m′

0 cos2
(√

m0 t
)
ε2 + o(ε2) (4.11)

uniformly on every bounded time interval.
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Indeed, setting uε(t) = εu1(t) + o(ε) in (3.1) we have

εu′′
1 + m(o(ε))εu1 + o(ε) = 0 εu1(0) + o(ε) = ε εu′

1(0) + o(ε) = 0.

Since m(o(ε)) = m0 + o(ε), considering the coefficients of ε we find that u1 solves

u′′
1 + m0u1 = 0 u1(0) = 1 u′

1(0) = 0

hence u1(t) = cos(
√

m0 t).
Expansion (4.11) follows from (4.10) and the Taylor expansion of m.

4.2.3. Polar coordinates for vε(t). Let us write (4.3) as a first-order system. To this end we
set

xε(t) = vε(t) yε(t) = (νm0)
−1/2v′

ε(t)

so that (4.3) becomes

x ′
ε(t) = √

νm0 yε(t) y ′
ε(t) = −(νm0)

−1/2 ν m(u2
ε(t)) xε(t)

with initial data

xε(0) = x yε(0) = y.

If (x, y) �= (0, 0), then (xε(t), yε(t)) �= (0, 0) for every t ∈ R. We can therefore study
this system, introducing polar coordinates ρε(t), θε(t) such that

xε(t) = ρε(t) cos θε(t) yε(t) = ρε(t) sin θε(t).

In a standard way it turns out that ρε and θε solve the following system:

ρ ′
ε = √

νm0 ρε sin θε cos θε

{
1 − m(u2

ε)

m0

}
(4.12)

θ ′
ε = −√

νm0

{
sin2 θε +

m(u2
ε)

m0
cos2 θε

}
(4.13)

with initial data

ρε(0) = ρ θε(0) = θ

such that x = ρ cos θ , y = ρ sin θ .

4.2.4. Asymptotic behaviour of ρε and θε. We look for functions ρ0, ρ2, θ0, θ2 such that

ρε(t) = ρ0(t) + ρ2(t)ε
2 + o(ε2) (4.14)

θε(t) = θ0(t) + θ2(t)ε
2 + o(ε2) (4.15)

as ε → 0+, uniformly on every bounded time interval.
Indeed, from (4.11) we have that

1 − m(u2
ε)

m0
= −m′

0

m0
cos2

(√
m0 t

)
ε2 + o(ε2).

Using this expression, (4.14) and (4.15), in equation (4.12) we obtain that, up to o(ε2),

ρ ′
0(t) + ρ ′

2(t)ε
2 = −m′

0

m0

√
νm0 cos2

(√
m0 t

)
ρ0 sin θ0 cos θ0 ε2.
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Working in an analogous way with (4.13) we have that, up to o(ε2),

θ ′
0(t) + θ ′

2(t)ε
2 = −√

νm0

{
1 +

m′
0

m0
cos2

(√
m0 t

)
cos2 θ0 ε2

}
.

Considering the terms without ε in these two equations, we find that ρ0 and θ0 solve the
following problems:

ρ ′
0 = 0 ρ0(0) = ρ (4.16)

θ ′
0 = −√

νm0 θ0(0) = θ (4.17)

while, considering the terms in ε2, we find that ρ2 and θ2 solve the following problems:

ρ ′
2 = −m′

0

m0

√
νm0 cos2(

√
m0 t)ρ0 sin θ0 cos θ0 ρ2(0) = 0 (4.18)

θ ′
2 = −m′

0

m0

√
νm0 cos2(

√
m0 t) cos2 θ0 θ2(0) = 0. (4.19)

From (4.16) and (4.17) we easily obtain that

ρ0(t) = ρ θ0(t) = θ − √
νm0 t. (4.20)

Inserting (4.20) in the right-hand sides of (4.18) and (4.19), after some integrations we
obtain that

ρ2(t) = −m′
0

m0

√
ν

16
ρ

{
2√
ν

cos
(
2θ − 2

√
νm0 t

) − 2
2ν − 1√
ν(ν − 1)

cos 2θ

+
1√

ν − 1
cos

(
2θ − 2

√
νm0 t + 2

√
m0 t

)

+
1√

ν + 1
cos

(
2θ − 2

√
νm0 t − 2

√
m0 t

)}
(4.21)

θ2(t) = −m′
0

m0

√
ν

16

{
4
√

m0 t + 2 sin
(
2
√

m0 t
)− 2√

ν
sin
(
2θ − 2

√
νm0 t

)

− 1√
ν − 1

sin
(
2θ − 2

√
νm0 t + 2

√
m0 t

)
+ 2

2ν − 1√
ν(ν − 1)

sin 2θ

− 1√
ν + 1

sin
(
2θ − 2

√
νm0 t − 2

√
m0 t

)}
. (4.22)

4.2.5. Asymptotic behaviour of Lε. Setting t = τε in (4.20)–(4.22) and using (4.8), after
some calculations we obtain that, as ε → 0+,

ρ0(τε) = ρ θ0(τε) = θ − 2π
√

ν +
3π

4

m′
0

m0

√
ν ε2 + o(ε2) (4.23)

ρ2(τε) = − m′
0

8m0

2ν − 1

ν − 1
ρ
{
cos(4π

√
ν − 2θ) − cos 2θ

}
+ o(1) (4.24)

θ2(τε) = − m′
0

8m0

√
ν

{
4π +

2ν − 1√
ν(ν − 1)

[
sin 2θ − sin(2θ − 4π

√
ν)
]}

+ o(1). (4.25)
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We are now ready to study the asymptotic behaviour of vε(τε). Indeed, by (4.14) and
(4.15), we have that

vε(τε) = ρε(τε) cos θε(τε) = [
ρ0(τε) + ε2ρ2(τε)

]
cos

[
θ0(τε) + ε2θ2(τε)

]
+ o(ε2)

= ρ0(τε) cos θ0(τε) + {ρ2(τε) cos θ0(τε) − ρ0(τε)θ2(τε) sin θ0(τε)} ε2 + o(ε2)

so that, using (4.23)–(4.25) and some trigonometry, we finally obtain that

vε(τε) = ρ cos(θ − 2π
√

ν) +
m′

0

4m0
ρ

×
{
−π

√
ν sin(θ − 2π

√
ν) − 2ν − 1

ν − 1
sin θ sin

(
2π

√
ν
)}

ε2 + o(ε2). (4.26)

With analogous computations:
1√
νm0

v′
ε(τε) = ρ sin(θ − 2π

√
ν) − m′

0

4m0
ρ

×
{
−π

√
ν cos(θ − 2π

√
ν) +

2ν − 1

ν − 1
cos θ sin

(
2π

√
ν
)}

ε2 + o(ε2). (4.27)

Now let us denote by L
ij
ε the entries of the matrix Lε. Then (L11

ε , L21
ε ) =(

vε(τε), (νm0)
−1/2v′

ε(τε)
)
, where vε has initial data x = 1, y = 0, corresponding to ρ = 1,

θ = 0. From (4.26) and (4.27) we obtain that

L11
ε = cos(2π

√
ν) +

m′
0

4m0
π

√
ν sin(2π

√
ν)ε2 + o(ε2)

L21
ε = − sin(2π

√
ν) +

m′
0

4m0

{
π

√
ν cos(2π

√
ν) − 2ν − 1

ν − 1
sin(2π

√
ν)

}
ε2 + o(ε2).

Making the same computations with initial data x = 0, y = 1, corresponding to ρ = 1,
θ = π/2, we find that L22

ε = L11
ε , and

L12
ε = sin(2π

√
ν) +

m′
0

4m0

{
−π

√
ν cos(2π

√
ν) − 2ν − 1

ν − 1
sin(2π

√
ν)

}
ε2 + o(ε2).

We have thus proved that

Lε = Rω0 + ε2B + o(ε2)

where ω0 = 2π
√

ν, and B is a matrix whose entries are

b11 = b22 = m′
0

4m0
π

√
ν sin(2π

√
ν)

b12 = m′
0

4m0

{
−π

√
ν cos(2π

√
ν) − 2ν − 1

ν − 1
sin(2π

√
ν)

}

b21 = m′
0

4m0

{
π

√
ν cos(2π

√
ν) − 2ν − 1

ν − 1
sin(2π

√
ν)

}
.

4.2.6. Properties of B. If ω0 �= kπ for every k ∈ Z (i.e. 2
√

ν �∈ N) then Tr B �= 0. If
ω0 = kπ for some k ∈ Z, then

B = ±m′
0

m0

π
√

ν

4

(
0 −1
1 0

)
and therefore Tr B = 0 and b12 = −b21 �= 0.

In any case B satisfies assumption (d) of proposition 4.1.
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4.2.7. Conclusion. From theorem 3.0 and the results of sections 4.2.5 and 4.2.6, we have that
Lε satisfies all the assumptions of proposition 4.1. Therefore, statements (1)–(5) of theorem 3.1
follow from the corresponding statements of proposition 4.1.

4.3. Proof of theorem 3.3, part 1

In this first part of the proof, ε will be fixed. We compute the first three terms in the Taylor
expansion in a neighbourhood of (0, 0) of the Poincaré map Pε associated with the simple
mode uε given in (3.1). In order to fix notation, we write once again the definition of Pε,
following section 2.2.

Let Uε ⊆ R
2 be defined in analogy with (2.2). Given (x, y) ∈ Uε we consider the solution

of the system,

U ′′ + m(U 2 + V 2)U = 0 U(0) = α U ′(0) = 0 (4.28)

V ′′ + ν m(U 2 + V 2)V = 0 V (0) = x V ′(0) = √
νm0 y (4.29)

where α is the positive solution of

m0 y2 + M(α2 + x2) = M(ε2). (4.30)

Let T be the smallest t > 0 such that U ′(t) = 0 and U(t) > 0. Then

Pε(x, y) := (
V (T ), (νm0)

−1/2V ′(T )
)
.

Since we plan to use polar coordinates we assume in the following that x = ρ cos θ ,
y = ρ sin θ .

Formally this definition is very similar to the definition of Lε. However, the situation is
much more complicated here, because α depends on ε, ρ, θ , hence U , V and T also depend
on ε, ρ, θ .

We use capital letters to avoid confusion with the corresponding functions used in the study
of the linear term. We also write U(ε, ρ, θ, t), α(ε, ρ, θ), and so on, to recall the dependence
on all of these variables. The symbol ′ will always denote differentiation with respect to the
time variable t .

In this first part of the proof we consider the asymptotic behaviour of these functions as
ρ → 0+ (ε fixed). All the terms o(ρk) we introduce are uniform on θ ∈ [0, 2π ], and on t

belonging to any bounded time interval (when the functions we develop depend on t).

4.3.1. Asymptotic behaviour of α. We prove that, as ρ → 0+,

α(ε, ρ, θ) = ε −
{

cos2 θ

2ε
+

m0

2εm(ε2)
sin2 θ

}
ρ2 + o(ρ2). (4.31)

Indeed, if ρ = 0 then α = ε. So we look for an expansion like

α(ε, ρ, θ) = ε + α2(ε, θ)ρ2 + o(ρ2).

Inserting this expression in (4.30) and using the Taylor formula for M(r) in r = ε2, we
obtain that

M(ε2) = m0ρ
2 sin2 θ + M(ε2 + 2α2(ε, θ)ερ2 + ρ2 cos2 θ + o(ρ2))

= m0ρ
2 sin2 θ + M(ε2) + M ′(ε2)

{
2α2(ε, θ)ε + cos2 θ

}
ρ2 + o(ρ2)

from which (4.31) follows, recalling that m is the derivative of M .
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4.3.2. Polar coordinates for V . We argue as in section 4.2.3. Setting

X(ε, ρ, θ, t) = V (ε, ρ, θ, t) Y (ε, ρ, θ, t) = (νm0)
−1/2V ′(ε, ρ, θ, t)

and using polar coordinates R(ε, ρ, θ, t), <(ε, ρ, θ, t) such that X = R cos <, Y = R sin <,
it turns out that R and < solve the following system:

R′ = √
νm0 R sin < cos <

{
1 − m(U 2 + R2 cos2 <)

m0

}
(4.32)

<′ = −√
νm0

{
sin2 < +

m(U 2 + R2 cos2 <)

m0
cos2 <

}
(4.33)

with initial data

R(ε, ρ, θ, 0) = ρ <(ε, ρ, θ, 0) = θ.

4.3.3. Asymptotic behaviour of U , R, <. We look for functions U0, U2, R1, R3, <0, <2 such
that, as ρ → 0+,

U(ε, ρ, θ, t) = U0(ε, θ, t) + U2(ε, θ, t)ρ2 + o(ρ3) (4.34)

R(ε, ρ, θ, t) = R1(ε, θ, t)ρ + R3(ε, θ, t)ρ3 + o(ρ3) (4.35)

<(ε, ρ, θ, t) = <0(ε, θ, t) + <2(ε, θ, t)ρ2 + o(ρ3). (4.36)

Using these expansions, we have that

m(U 2 + V 2) = m
(
U 2

0 + (2U0U2 + R2
1 cos2 <0)ρ

2 + o(ρ3)
)

= m(U 2
0 ) + m′(U 2

0 )(2U0U2 + R2
1 cos2 <0)ρ

2 + o(ρ3). (4.37)

Setting (4.34), (4.37) and (4.31) in equation (4.28), and looking at the terms without ρ,
we find that U0 solves

U ′′
0 + m(U 2

0 )U0 = 0 U0(ε, θ, 0) = ε U ′
0(ε, θ, 0) = 0 (4.38)

while, looking at the terms in ρ2, we find that U2 solves

U ′′
2 + m(U 2

0 )U2 + m′(U 2
0 )
(
2U0U2 + R2

1 cos2 <0
)
U0 = 0 (4.39)

with initial data

U2(ε, θ, 0) = −
{

cos2 θ

2ε
+

m0

2ε m(ε2)
sin2 θ

}
U ′

2(ε, θ, 0) = 0. (4.40)

From (4.38) we can see that U0 is just the simple mode uε. In particular, it is independent
of θ , and so from now on we write U0(ε, t) or uε(t), instead of U0(ε, θ, t).

Setting (4.35)–(4.37) in equation (4.32), and looking at the terms in ρ, we find that R1

solves

R′
1 = √

νm0

{
1 − m(U 2

0 )

m0

}
R1 cos <0 sin <0 R1(ε, θ, 0) = 1. (4.41)

In an analogous way, looking at the terms without ρ in (4.33), we find that <0 solves

<′
0 = −√

νm0

{
sin2 <0 +

m(U 2
0 )

m0
cos2 <0

}
<0(ε, θ, 0) = θ. (4.42)
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Finally, using in equation (4.32) expansions (4.35)–(4.37), and recalling that by Taylor’s
formula

sin2 < = sin2 <0 + 2ρ2<2 cos <0 sin <0 + o(ρ2)

cos2 < = cos2 <0 − 2ρ2<2 cos <0 sin <0 + o(ρ2)

looking at the terms in ρ2, we find that <2 solves

<′
2 = −√

νm0

{
2<2 cos <0 sin <0

[
1 − m(U 2

0 )

m0

]

+
m′(U 2

0 )

m0
cos2 <0

[
2U0U2 + R2

1 cos2 <0
]}

<2(ε, θ, 0) = 0. (4.43)

We do not write the equation for R3 because we do not need it in the following.

4.3.4. Asymptotic behaviour of T . We prove that, as ρ → 0+,

T (ε, ρ, θ) = τε + T2(ε, θ)ρ2 + o(ρ3) (4.44)

where τε is the period of the simple mode uε, and

T2(ε, θ) = U ′
2(ε, θ, τε)

ε m(ε2)
. (4.45)

It is natural to look for an expansion such as (4.44) since for ρ = 0, U is exactly the
simple mode uε. Replacing the expansions of U and T in the condition U ′(T ) = 0 we obtain
that

0 = U ′(ε, ρ, θ, T (ε, ρ, θ))

= U ′
0(ε, T (ε, ρ, θ)) + ρ2U ′

2(ε, θ, T (ε, ρ, θ)) + o(ρ3)

= U ′
0(ε, τε) + ρ2

{
U ′′

0 (ε, τε)T2(ε, θ) + U ′
2(ε, θ, τε)

}
+ o(ρ3). (4.46)

Since U0 is the simple mode uε, and τε is its period, then U ′
0(ε, τε) = U ′

0(ε, 0) = 0, so
that the first summand is zero. Moreover, by equation (4.38)

U ′′
0 (ε, τε) = U ′′

0 (ε, 0) = −m
(
U 2

0 (ε, 0)
)
U0(ε, 0) = −ε m(ε2).

Setting the coefficient of ρ2 in (4.46) equal to zero, and using the last equality, we obtain
(4.45). It is easy to see that with this choice the condition U(T ) > 0 is also satisfied for ρ

small.

4.3.5. Asymptotic behaviour of the Poincaré map. Using the expansions we have found in
sections 4.3.3 and 4.3.4, we obtain that

<(ε, ρ, θ, T (ε, ρ, θ)) = <0(ε, θ, T (ε, ρ, θ)) + <2(ε, θ, T (ε, ρ, θ))ρ2 + o(ρ3)

= <0(ε, θ, τε) +
{
<′

0(ε, θ, τε)T2(ε, θ) + <2(ε, θ, τε)
}

ρ2 + o(ρ3)

and similarly

R(ε, ρ, θ, T (ε, ρ, θ)) = R1(ε, θ, τε)ρ +
{
R′

1(ε, θ, τε)T2(ε, θ) + R3(ε, θ, τε)
}

ρ3 + o(ρ3).

Therefore, in polar coordinates the Poincaré map is

Pε

(
ρ

θ

)
=
(

R(ε, ρ, θ, T (ε, ρ, θ))

<(ε, ρ, θ, T (ε, ρ, θ))

)
=
(

α1(ε, θ)ρ

β0(ε, θ)

)
+

(
α3(ε, θ)ρ3

β2(ε, θ)ρ2

)
+ o(ρ3)
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where

α1(ε, θ) = R1(ε, θ, τε)

α3(ε, θ) = R′
1(ε, θ, τε)T2(ε, θ) + R3(ε, θ, τε)

β0(ε, θ) = <0(ε, θ, τε)

β2(ε, θ) = <′
0(ε, θ, τε)T2(ε, θ) + <2(ε, θ, τε). (4.47)

4.4. Proof of theorem 3.3, part 2

In this second part of the proof we consider the asymptotic behaviour as ε → 0+ of the
functions introduced in the first part. We are interested, in particular, in the limit of β2, but
this limit involves the limits of <0, <2, T2, which in turn require the limit of R1 and U2. In the
following, all the terms o(εk) are uniform on θ ∈ [0, 2π ], and on t belonging to any bounded
time interval when needed.

4.4.1. Asymptotic behaviour of τε, U0, m(U 2
0 ). Since U0(ε, t) = uε(t) is the simple mode

we are considering, and τε is the period of uε, from (4.8), (4.10) and (4.11) we just recall that

τε = 2π√
m0

− 3π

4

m′
0

(m0)3/2
ε2 + o(ε2) (4.48)

U0(ε, t) = ε cos
(√

m0 t
)

+ o(ε) (4.49)

m(U 2
0 (ε, t)) = m0 + m′

0 cos2
(√

m0 t
)
ε2 + o(ε2). (4.50)

4.4.2. Asymptotic behaviour of R1 and <0. We have that, as ε → 0+,

R1(ε, θ, t) = 1 + o(1) (4.51)

<0(ε, θ, t) = θ − √
νm0 t + o(1) (4.52)

<′
0(ε, θ, t) = −√

νm0 + o(1). (4.53)

Indeed, passing to the limit in problems (4.41) and (4.42), it turns out that R1(ε, θ, t) and
<0(ε, θ, t) converge with their derivatives to functions R1l(θ, t) and <0l(θ, t), which solves
the following problems:

R′
1l = 0 R1l(θ, 0) = 1

<′
0l = −√

νm0 <0l(θ, 0) = θ

so that (4.51)–(4.53) easily follow.

4.4.3. Asymptotic behaviour of U2. We prove that, as ε → 0+,

U2(ε, θ, t) = − 1

2ε
cos(

√
m0 t) + W2(θ, t)ε + o(ε) (4.54)

where W2(θ, t) is equal to

m′
0

64m0

{
19 cos(

√
m0 t) + 20

√
m0 t sin(

√
m0 t) − 3 cos(3

√
m0 t)

}
+ ?(θ, t) (4.55)

and ∫ 2π

0
?(θ, t) dθ =

∫ 2π

0
? ′(θ, t) dθ = 0. (4.56)
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To this end, we look for an expansion like

U2(ε, θ, t) = 1

ε
W1(θ, t) + W2(θ, t)ε + o(ε) (4.57)

where the term in ε−1 is required by the initial datum (see (4.40))

U2(ε, θ, 0) = − 1

2ε

{
cos2 θ +

m0

m0 + m′
0 ε2 + o(ε2)

sin2 θ

}

= − 1

2ε
+ ε

m′
0

2m0
sin2 θ + o(ε).

Using (4.49), (4.51), (4.52) and (4.57), we see that(
2U0U2 + R2

1 cos2 <0
)
U0 = ε

{
2 cos

(√
m0 t

)
W1(θ, t)

+ cos2
(
θ − √

νm0 t
)}

cos
(√

m0 t
)

+ o(ε).

Using this expression and (4.50) in equation (4.39), and considering the terms in ε−1, we
find that W1 solves the following problem:

W ′′
1 + m0W1 = 0 W1(θ, 0) = − 1

2 W ′
1(θ, 0) = 0 (4.58)

while, considering the terms in ε, we find that W2 solves

W ′′
2 + m0W2 + m′

0

{
3 cos2(

√
m0 t)W1 + cos2(θ − √

νm0 t) cos(
√

m0 t)
} = 0 (4.59)

with initial data

W2(θ, 0) = m′
0

2m0
sin2 θ W ′

2(θ, 0) = 0. (4.60)

From (4.58) we have immediately that

W1(θ, t) = − 1
2 cos(

√
m0 t).

Now it is possible to find W2 explicitly by integrating the Cauchy problem (4.59) and
(4.60), but this leads to cumbersome calculations. We prefer to set

W 2(t) := 1

2π

∫ 2π

0
W2(θ, t) dθ

so that

W2(θ, t) = W 2(t) + ?(θ, t)

where ? satisfies (4.56). In order to compute W 2(t) we take the average on [0, 2π ] of (4.59)
and (4.60), and we find that W 2(t) is the solution of

W
′′
2 + m0W 2 + m′

0

{− 3
2 cos3(

√
m0 t) + 1

2 cos(
√

m0 t)
} = 0

with initial data

W 2(0) = m′
0

4m0
W

′
2(0) = 0.

The solution of this Cauchy problem is written in (4.55).
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4.4.4. Asymptotic behaviour of T2. We prove that

lim
ε→0+

T2(ε, θ) = m′
0

(m0)3/2

π

4
+ 5(θ) (4.61)

where 5 : [0, 2π ] → R is a periodic function whose average is zero.
Indeed, the denominator in (4.45) is

εm(ε2) = εm0 + o(ε). (4.62)

Now let us consider the numerator in (4.45). From (4.54) we have that

U ′
2(ε, θ, τε) =

√
m0

2ε
sin
(√

m0 τε

)
+ εW ′

2(θ, τε) + o(ε)

=
√

m0

2ε
sin

(
2π − 3π

4

m′
0

m0
ε2 + o(ε2)

)
+ εW ′

2

(
θ,

2π√
m0

)
+ o(ε)

=
√

m0

2ε

(
−3π

4

m′
0

m0
ε2 + o(ε2)

)
+ εW ′

2

(
θ,

2π√
m0

)
+ o(ε)

= −3π

8

m′
0√

m0
ε + εW ′

2

(
θ,

2π√
m0

)
+ o(ε). (4.63)

Now from (4.55) we have that

W ′
2

(
θ,

2π√
m0

)
= 5π

8

m′
0√

m0
+ ? ′

(
θ,

2π√
m0

)
.

Setting

5(θ) := 1

m0
? ′
(

θ,
2π√
m0

)

formula (4.61) follows from (4.62), (4.63) and (4.56).

4.4.5. Asymptotic behaviour of <2. Passing to the limit as ε → 0+ in problem (4.43) it turns
out that <2(ε, θ, t) converges to a function <2l(θ, t) which solves the following equation:

<′
2l = − m′

0√
m0

√
ν
{
cos4(θ − √

νm0 t) − cos2(
√

m0 t) cos2(θ − √
νm0 t)

}
(4.64)

with the initial condition <2l(θ, 0) = 0. The convergence is uniform on θ ∈ [0, 2π ] and on
bounded time intervals.

4.4.6. Asymptotic behaviour of β2. From (4.47) and the results of sections 4.4.2–4.4.5, we
have that

lim
ε→0+

β2(ε, θ) = −√
νm0

{
m′

0

(m0)3/2

π

4
+ 5(θ)

}
+ <2l

(
θ,

2π√
m0

)
.

Now we compute the average in [0, 2π ] of the two summands. Since the average of 5 is
zero, then the average of the first summand is clearly

−m′
0

m0

π

4

√
ν. (4.65)
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For the second summand, let us first note that using (4.64) and a simple change of variables

1

2π

∫ 2π

0
<′

2l (θ, t) dθ = − 1

2π

m′
0√

m0

√
ν

∫ 2π

0

{
cos4 θ − cos2(

√
m0 t) cos2 θ

}
dθ

= − m′
0√

m0

√
ν
{

3
8 − 1

2 cos2(
√

m0 t)
}

so that, reversing the order of integration,

1

2π

∫ 2π

0
<2l

(
θ,

2π√
m0

)
dθ = 1

2π

∫ 2π

0

∫ 2π/
√

m0

0
<′

2l (θ, t) dt dθ

=
∫ 2π/

√
m0

0

1

2π

∫ 2π

0
<′

2l (θ, t) dθ dt

= − m′
0√

m0

√
ν

∫ 2π/
√

m0

0

{
3
8 − 1

2 cos2(
√

m0 t)
}

dt

= −m′
0

m0

π

4

√
ν. (4.66)

From (4.65) and (4.66) we conclude that

lim
ε→0+

1

2π

∫ 2π

0
β2(ε, θ) dθ = −m′

0

m0

π

2

√
ν.

4.4.7. Asymptotic behaviour of γε. In this final part of the proof, we show that the limit of
β2(ε, θ) coincides with the limit of b(ε, θ). We recall that b is defined in the following way:
assume that the Poincaré map is written in Cartesian coordinates (X, Y ) where Lε takes its
canonical form Rω(ε); then, in the corresponding polar coordinates (I, σ ), the Poincaré map
becomes

P ∗
ε

(
I

σ

)
=
(

I

σ − ω(ε)

)
+

(
a(ε, σ )I 3

b(ε, σ )I 2

)
+ o(I 3).

We know that the coordinate change from (X, Y ) to the original coordinates (x, y) is given
by the diagonal matrix D(ε) introduced in statement (4) of theorem 3.1. The expression of the
corresponding change D∗(ε) from (I, σ ) to (ρ, θ) is not so simple: it is given by

ρ = α∗(ε, σ )I θ = δ∗(ε, σ ) (4.67)

where α∗(ε, σ ) = {
cos2 σ + δ2(ε) sin2 σ

}1/2
, and δ∗(ε, σ ) = arctan(δ(ε) tan σ) for σ ∈

(−π/2, π/2), and similarly for all other values of σ . In particular,

α∗(ε, σ ) → 1 δ∗(ε, σ ) → σ
∂δ∗
∂σ

(ε, σ ) → 1 (4.68)

as ε → 0+, uniformly in σ . The same holds true for the inverse change D∗(ε) := [D∗(ε)]−1,
whose components α∗(ε, θ)ρ and δ∗(ε, θ) are defined in analogy with α∗, δ∗, but with δ−1(ε)

instead of δ(ε). Considering the second component of P ∗
ε = D∗(ε)PεD∗(ε) we have that, up

to o(I 3),

σ − ω(ε) + b(ε, σ )I 2 = δ∗ [ε, β0(ε, δ∗(ε, σ )) + β2(ε, δ∗(ε, σ )) · α2
∗(ε, σ ) I 2

]
so that, making the Taylor expansion of the right-hand side and looking at the coefficients of
I 2, it turns out that

b(ε, σ ) = ∂δ∗

∂σ
[ε, β0(ε, δ∗(ε, σ ))] · β2(ε, δ∗(ε, σ )) · α2

∗(ε, σ ).

Therefore, the thesis follows from (4.68).
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