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The Cauchy-Kovalevsky Theorem and

Noncompactness Measures

By Marina Ghisi

Abstract. We give an abstract version of the Cauchy-Kovalevsky
Theorem for the equation u′ = A(t, u) where A is a Caratheodory op-
erator having properties based on noncompactness measures, including
Lipschitz and compactness conditions. We give an application of this
result to the equation ∂nt u+

∑
i=1,n fi(u)B

(n−i+1)∂i−1
t u = 0 that gen-

eralizes the Kirchhoff equation for the vibrating string, when B is not
a compact operator. Our technique is based on Nagumo’s weights and
on Tonelli delayed problems.

1. Introduction

We give a version of the abstract Cauchy-Kovalevsky Theorem for the

local existence of a solution of the problem:

u′ = A(t, u) (t ∈ I)(1.1)

u(0) = u0 ∈ Xr0(1.2)

where I = [0, a], (·)′ =
d

dt
and, for every t ∈ I, A(t, ·) is a continuous (but

not necessarily Lipschitz) operator in a scale of Banach spaces (Xr)0<r≤r0

(cf. Def 2.1).

Equation (1.1) is the abstract version of the system of partial differential

equations ∂tu = F (t, x,∇u) that has been considered by [15], [25], [16], and

[26] (see also [41]).

The problem of existence of local solutions of (1.1)–(1.2) has been consid-

ered in the autonomous linear case by [21], and in the nonautonomous linear

case by [32], assuming that A is continuous and ‖A(t, u)‖s ≤ C(t)‖u‖r(r−
s)−1. The case when A is a nonlinear operator continuous in t and Lipschitz
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continuous in u, that is, for u, v ∈ Br,R, s < r:


‖A(t, u) −A(t, v)‖s ≤ C ‖u− v‖r (r − s)−1

‖A(t, 0)‖s ≤M(r0 − s)−1;

(1.3)

where Br,R is the ball of radius R in Xr, has been treated by [33], [29],

[30], [23] and [10] (see also [42]). Later on, [8] proved existence of local

solutions for a functional generalization of equation (1.1) under conditions of

Lipschitz type and [13] treated (1.1)–(1.2) under Caratheodory hypotheses

on a regularizing operator A(t, u) (i.e. A(t, ·) : Xs → Xr, s < r) such that

‖A(t, u)‖r is majored by a linear operator D : Xr → Xs, s < r.

Later, interest arisen upon the question whether the Lipschitz type con-

dition (1.3) is removable, of course giving up the uniqueness of the solution.

K. Deimling [18] assumed that A(t, u) = B(t)u+ f(t, u) where B(t) is a

linear operator and f is a regularizing, continuous and α-Lipschitz operator

(i. e. there exists a constant k such that αr0(A({t} × B)) ≤ kαs(B) for

every bounded subset B of Br,R, where α is the Hausdorff noncompactness

measure (see Def 2.2)), whose image lies in Xr0 .

Later on, [11] considered the case in which (Xr)r is a scale of holomorphic

functions and proved local existence of solutions by assuming that A(t, u)

preserves the order of singularity in the scale, i.e. for every s < r:

‖A(t, u)‖s ≤
M

r − s if ‖u‖r ≤
R

1 − s.

V. I. Nazarov [28] treated problem (1.1)–(1.2) when A is a continuous non-

linear operator A : Xr → Xs (s < r). Moreover he supposed that the

imbeddings i : Xr ↪→ Xs (s < r) are compact and

‖A(t, u)‖s ≤
C‖u‖r
r − s +

M

r0 − s
.(1.4)

M. Reissig [35] treated problem (1.1)–(1.2) assuming that A is a continu-

ous operator defined only on the balls Br,R and that the imbeddings are

compact. Moreover he supposed that A satisfies an estimate stronger that

(1.4):

‖A(t, u)‖s ≤
C‖u‖r
r − s +

M

(r0 − s)ε
(1.5)
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with 0 < ε < 1 and, for technical reasoning, u0 = 0.

In the case when (1.1) is an ordinary differential equation (i.e. the

spaces of the scale coincide), many authors have considered the Cauchy

problem under hypotheses that generalize both conditions: A is Lipschitz

continuous and A is compact operator, by using the Hausdorff measure of

noncompactness.

In this case, [2] proved local existence of solutions by supposing that A is

uniformly continuous in (t, u) and α-Lipschitz in u. Later on, [38] considered

the case when A is a continuous operator and there exists a constant K such

that, for every bounded subset W of X:

α(A(I ×W )) ≤ K α(W ),(1.6)

where α is the Hausdorff measure of noncompactness.

Many other authors treated this case by assuming an hypothesis of

Kamke type, that generalize (1.6), but we can not treat this case by our

technique. Some other authors considered the weak noncompactness mea-

sure αw (see Def. 2.3), instead of noncompactness measure (for further

information see [19]).

At this point it is natural to consider (1.1)–(1.2) under hypotheses of

noncompactness type, like (1.6). In fact, the Cauchy problem (1.1)–(1.2)

has at least a solution under two sets of hypotheses:

1. (Theorem 2.4) A is a Caratheodory operator and:

• ‖A(t, u)‖s ≤
C‖u‖r +M

r − s (s < r, u ∈ Xr);

• there exists a constant K such that for every bounded subset C

of Xr:

αs(A(I × C)) ≤ Kαr(C)

r − s (s < r);

where αr is the Hausdorff measure of noncompactness in Xr.

2. (Theorem 2.5) A is a weakly Caratheodory operator and:

• ‖A(t, u)‖s ≤
C‖u‖r +M

r − s (s < r, u ∈ Xr);
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• there exists a constant K such that for every bounded subset C

of Xr:

αw,s(A(I × C)) ≤ Kαw,r(C)

r − s (s < r);

where αw,r is the weak noncompactness measure in Xr.

Our technique is based on Nagumo’s weights [26] (as in [10]) and on the

introduction of Tonelli delayed problems (see [39]). We also use the method

of [19] mixed with the method of [34].

This paper is organized as follows:

in section 2. we state the result;

in section 3. we give the proofs;

in section 4. we give an application of the result when (Xr) is the scale of

B-analytic vectors obtained by a selfadjoint positively defined operator B

on a Hilbert space H, and the considered equation is:

∂nt u+
∑
i=1,n

fi(u)B
(n−i+1)∂i−1

t u = 0 (t > 0).(1.7)

This equation is a generalization of the concrete equation, already consid-

ered by [37]:

utt −m
(∫

Ω
f(u,∇xu, . . . ,∇ν

x) dξ

)
�xu = 0 x ∈ Ω, t ≥ 0, ν ∈ N.

This equation for n = ν = 1, and f(u,∇xu) = |∇xu|2, has been introduced

by [24] (see [22]) as a nonlinear model for the small vibrations of an elastic

string fixed at the extremes (see [12], [14], [27], [31]).

2. Preliminaries and main theorem

Definition 2.1. A scale of Banach spaces is defined as a family of

Banach spaces (Xr)0<r≤r0 with norms ‖ ·‖r, such that Xr ⊆ Xs and ‖ ·‖s ≤
‖ · ‖r for s ≤ r.

Let X be a Banach space, C a bounded subset of X. We recall the

following:
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Definition 2.2. The Hausdorff measure of noncompactness of C is:

α(C) := inf{ε > 0 :

C can be covered by a finite number of balls of radius ε}.

Let us denote by KW the set of weakly compact subsets of X. Then

Definition 2.3. The weak noncompactness measure of C is:

α(C) := inf{ε > 0 : there exists K ∈ KW such that C ⊆ K + εB},

where B is the ball of center 0 and radius 1 in X.

Notations. Let C be a subset of X, let us denote cl(C) its closure in

X and co(C) its convex hull.

Let us recall some properties of α (for the proofs see [1], [9], [36]). Let

A and B be bounded subsets of X, then:

1. α(co(B)) = α(B);

2. α(cl(B)) = α(B);

3. α(A ∪B) ≤ max{α(A), α(B)};

4. α(A) = 0 if and only if A is relatively compact;

5. α(λB) = |λ|α(B) for every λ ∈ R;

6. α(A+B) ≤ α(A) + α(B);

7. α(B) ≤ α(A) if B ⊆ A.

The same properties hold true, with respect to weak topology, for αw (see

[17]).

If φ : (a, b) → (0,+∞[ is a nonincreasing function, we define:

C((a, b); φ) :=
⋂

t∈(a,b)

C◦((a, t];Xφ(t)).

Let I := [0, a0], let A be an operator such that A : I ×Xr → Xs for every

0 < s < r ≤ 1. We assume that A verifies the following properties:



632 Marina Ghisi

– for s < r, for every u in Xr

A(·, u) : I → Xs is strongly measurable;(2.1)

– for s < r, for almost every t in I

A(t, ·) : Xr → Xs is continuous;(2.2)

– there exist two constants C and M such that

‖A(t, u)‖s ≤
C‖u‖r +M

r − s for s < r, u ∈ Xr;(2.3)

– there exists a constant K such that for every bounded subset C of Xr:

αs(A(I × C)) ≤ K αr(C)

r − s (s < r).(2.4)

Now we can state the result:

Theorem 2.4. Let us assume that hypotheses (2.1)–(2.4) are satisfied.

Then the Cauchy problem (1.1)–(1.2) has at least a solution.

Let I := [0, a0], let A be an operator such that A : I ×Xr → Xs for

every 0 < s < r ≤ 1. We assume that A verifies the following properties:

– for s < r, for every u in Xr

A(·, u) : I → Xs is weakly measurable(2.5)

– for s < r, for almost every t in I

A(t, ·) : Xr → Xs is weakly continuous(2.6)

– there exist two constants C and M such that

‖A(t, u)‖s ≤
C‖u‖r +M

r − s for s < r, u ∈ Xr;(2.7)

– there exists a constant K such that for every bounded subset C of Xr:

αw,s(A(I × C)) ≤ K αw,r(C)

r − s (s < r).(2.8)
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Now we can state the result:

Theorem 2.5. Let us assume that hypotheses (2.5)–(2.8) are satisfied.

Then the Cauchy problem (1.1)–(1.2) has at least a solution.

Remark 2.6. We can reduce the case r0 �= 1 to the case r0 = 1.

We give some examples in which hypothesis (2.4) is verified.

Proposition 2.7. For simplicity we consider that A is autonomous.

The condition (2.4) is verified if:

1. A is Lipschitz continuous, that is:

‖A(u) −A(v)‖s ≤
C ‖u− v‖r
r − s (u, v ∈ Xr),

or

2. A is compact, that is A takes bounded subsets of I×Xr into relatively

compact subsets of Xs,

or

3. A = A1 + A2 where A1 is a Lipschitz operator and A2 is a compact

operator,

or

4. A(u) = F (u, u) where F : Xr × Xr → Xs, (s < r) and F (·, v) is

Lipschitz continuous uniformly in v (with Lipschitz constant ≤ C)

and F (u, ·) is compact for every u.

Now we give some examples in which hypothesis (2.8) is verified.

Proposition 2.8. For simplicity we consider that A is autonomous.

The condition (2.8) is verified if:

1. A is Lipschitz continuous and weakly continuous,

or
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2. A is weakly compact, that is A takes bounded subsets of I × Xr into

weakly relatively compact subsets of Xs,

or

3. A = A1 +A2 where A1 is a Lipschitz, weakly continuous operator and

A2 is a weakly compact operator,

or

4. A(u) = F (u, u) where F : Xr ×Xr → Xs, (s < r) and F (·, v) is Lip-

schitz and weakly continuous uniformly in v (with Lipschitz constant

≤ L) and F (u, ·) is weakly compact for every u.

Remark 2.9. The operator A in Proposition 2.8 is weakly compact

if it is weakly continuous and the spaces of the scale are reflexive Banach

spaces.

3. Proofs

Proof of Theorem 2.4.

Step 0 Preliminaries

If M = 0 and C = 0, then A = 0 identically, therefore a solution is the

constant u0. Therefore we can assume M + C > 0.

a) We can assume that u0 = 0. Indeed, if this is not the case, we define

v := u− u0, and we obtain the equivalent problem:

v′ = A∗(t, v),(3.1)

v(0) = 0,(3.2)

where A∗(t, v) := A(t, v+u0). It is easy to verify that A∗ verifies (2.1)–(2.4).

b) By extending if necessary A, we can assume that a0 = +∞.

c) Plane of the proof.

Let R > 0.

Let (εn) be a sequence such that, for every n, 0 < εn <
1

2
and εn → 0.

We fix εn, and for simplicity we denote εn only by ε. We show that problem

(1.1)–(1.2) has at least a solution vε,R with:

vε,R ∈ C([0, aε,R]; φR − 2−1 − ε),(3.3)
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where

LR := max{4K + ε, 4(C +MR−1)}
aR := L−1

R

aε,R := aR(2−1 − ε)

φR(t) :=

{
1 if t ≤ 0

1 − tLR if t > 0

Let us denote

SR := max{4K, 4(C +MR−1)}.

We show, by a diagonal argument, that problem (1.1)–(1.2) has at least a

solution u ∈ C([0, (2SR)−1[;
1

2
− SRt). Then we show that the problem has

at least a solution u ∈ C([0, (2S)−1[;
1

2
− St), where

S := max{4K, 4C}.

Step 1 Approximating solutions of Tonelli type

Let a1 := S−1. We introduce for n ∈ N the following approximating

problems of Tonelli type:

(Pn)



un(t) = 0 for t ≤ 0

un(t) =

∫ t

0
A(τ, un(τ − a1

n
)) dτ for 0 ≤ t ≤ a1.

We show that for every n ∈ N the problem (Pn) has a solution on the

interval [0, a1]. At this end, we define tk :=
ka1
n

for k = 0, . . . , n and

we show by finite induction on k that (Pn) has a solution on the interval

]−∞, tk]. Since problem (Pn) is a delayed problem and A is defined on the

whole Xr (for every r), it is enough to show that the integrals in (Pn) exist.

Thanks to the boundedness of A on the bounded sets, it is enough to show

(see [20], p. 212, Prop. 4 and [3]) that:

un ∈ C(] −∞, 0], 1) k = 0

un ∈ C(]0, tk], 1 − Stk) k = 1, . . . , n.

(3.4)
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Expression (3.4) is true on ] − ∞, 0]. If (3.4) is true until k, then un is a

bounded function from ]−∞, tk] to X1−Stk , therefore (Pn) has a solution

on ] −∞, tk+1], with values in X1−Stk+1
and this solution is continuous.

Step 2 basic estimate

We remark that actually un(t) ∈ X1−St for each 0 ≤ t ≤ a1 and therefore

un(t) ∈ XφR(t) for each 0 ≤ t ≤ aR. Let us define for 0 < r ≤ 1:

|||v|||r,t := ‖v‖r (1 − r − LRt).

We need the following basic estimate:

|||un(t)|||s,t ≤
R

2
∀ t ≤ aR, ∀ s < φR(t).(3.5)

Now we prove (3.5) by finite induction. Let (tk)k=1,...,n as in step 1.

For t ≤ min{t1, aR} by (2.3) we have:

‖un(t)‖s ≤
∫ t

0

M

1 − s dτ =
Mt

1 − s
then

|||un(t)|||s,t ≤
R

2
.

Now let us suppose that (3.5) is true until min{tk, aR}.
Following [26] (see [10]) we define for 0 < r ≤ 1:

hr(t) :=




1 if t < 0,
φR(t) + r

2
otherwise.

Let us fix tk ≤ t ≤ min{tk+1, aR}. Let us consider 0 < s < φR(t). We

have:

s < hs(τ) < φR(τ) ∀ 0 < τ ≤ t.
By (2.3) we obtain:

‖un(t)‖s ≤
∫ t

0
‖A(σ, un(σ − a1

n
))‖s dσ(3.6)

≤
∫ t−a1

n

−a1
n

M

hs(τ) − s
dτ +

∫ t−a1
n

0

CR

2(hs(τ) − s)2
dτ

≤
∫ t

0

M

hs(τ) − s
dτ +

∫ t

0

CR

2(hs(τ) − s)2
dτ

≤ 2 (CR+M) aR
(1 − s− LRt)

.
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Thanks to (3.6) we have:

|||un(t)|||s,t ≤ 2 (CR+M) aR =
R

2
.

Step 3 compactness of the sequence un
Let us fix 0 ≤ t ≤ aR. Let us define:

Ω(0, t) :=
⋃

τ∈[0,t]

{un(τ) : n ∈ N};

α(Ω(0, aR)) := sup
0≤t≤aR

{αs(Ω(0, t))(1 − s− LRt) : 0 < s < φR(t)}.

Now let us fix m ∈ N. Following [34], let us divide [0, t] in m equal parts

[tj , tj+1]. For 0 ≤ τ ≤ t, tk(τ) ≤ τ ≤ tk(τ)+1 we have:

un(τ) =
∑

j=1,k(τ)

∫ tj+1

tj

A(σ, un(σ − a1
n

)) dσ +

∫ τ

tk(τ)

A(σ, un(σ − a1
n

)) dσ.

Let us fix 0 < s < φR(t), and let us indicate cls the closure in Xs. We have:

Ω(0, t) ⊆
⋃

τ∈[0,t]




 ∑
j=1,k(τ)

(tj+1 − tj)clsco(A([0, tj+1] × Ω(0, tj+1)))




+(τ − tk(τ))clsco(A([0, τ ] × Ω(0, τ)))
)
.

We recall that if 0 ∈ A is a convex subset of a vector space, and if 0 < b ≤ c
then we have bA ⊆ cA. Furthermore if A1, . . . , An are subsets of a vector

space, k(τ) is an integer ≤ n, then⋃
τ∈[0,t]

∑
j=1,k(τ)

Aj ⊆
∑
j=1,n

(Aj ∪ {0}).

Therefore:

Ω(0, t) ⊆
⋃

τ∈[0,t]




 ∑
j=1,k(τ)

(tj+1 − tj)clsco(A([0, tj+1] × Ω(0, tj+1)))




+(tk(τ)+1 − tk(τ))clsco(A([0, tk(τ)+1] × Ω(0, tk(τ)+1)) ∪ {0})
)

⊆
∑

j=1,m

(tj+1 − tj)clsco(A([0, tj+1] × Ω(0, tj+1)) ∪ {0}).
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By properties 1)–3), 5)–6) of the Hausdorff measure of noncompactness and

by (2.4) we have:

αs(Ω(0, t)) ≤
∑

j=1,m

(tj+1 − tj)αs(A([0, tj+1] × Ω(0, tj+1)))

≤ K
∑

j=1,m

(tj+1 − tj)(hs(tj+1) − s)−1αhs(tj+1)(Ω(0, tj+1))

≤ K
∑

j=1,m

(tj+1 − tj)α(Ω(0, aR))(hs(tj+1) − s)−2.

Since
∑

j=1,m(tj+1 − tj)(hs(tj+1) − s)−2 is an integral sum of (hs(·) − s)−2,

passing to the limit for m→ +∞, we obtain:

αs(Ω(0, t)) ≤ Kα(Ω(0, aR))

∫ t

0
(hs(τ) − s)−2 dτ(3.7)

≤ 4K aR
α(Ω(0, aR))

(1 − s− LRt)
.

By (3.7) we have:

α(Ω(0, aR)) ≤ 4K aRα(Ω(0, aR)).

Thanks to our choice of aR:

α(Ω(0, aR))(1 − 4K aR) ≤ 0 if and only if α(Ω(0, aR)) = 0.(3.8)

By (3.8), αs(Ω(0, t)) = 0 for every s < φR(t), then by property 4) of the

Hausdorff measure of noncompactness, Ω(0, t) is a relatively compact subset

of Xs.

There exists a solution vε,R
Let us fix m = m(ε) ∈ N such that:

|φR(t) − φR(τ)| < ε
3

if |t− τ | ≤ aε,R
m
,

and let us define:

T1 :=
aε,R
m
.

Let us define s0 := φR(T1) − 2−1. We have:

s0 > 0, and s0 ≤ φR(t) − 1

2
for 0 ≤ t ≤ T1.
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Therefore |||un(t)|||s0,t is defined for 0 ≤ t ≤ T1, and by (3.5) we have:

‖un(t)‖s0 ≤ 2R

2
= R.

Thanks to (2.3), A(Bs0,R) is bounded in Xs0− ε
3
. Therefore by the integral

form of problems (Pn), the functions un are equicontinuous and take their

values in this space. Therefore by step 3 the sequence (un) is compact

in Xs0− ε
3
. By Ascoli Theorem, there exists a subsequence (unk

) of (un)

that converges uniformly in [0, T1] to a function vε,1,R ∈ C◦([0, T1];Xs0− ε
3
).

Then, by the Lebesgue Theorem for the dominate convergence in the space

Xs0− 2ε
3
, we pass the limit under the integral, and we see that vε,1,R is a

solution of problem (1.1) - (1.2). By our choice of m, we have:

vε,1,R ∈ C([0, T1];φR − 2−1 − ε).

Now we repeat the previous argument on the interval [0,
2aε,R
m

] with

respect to the sequence (unk
). We obtain a solution vε,2,R of (1.1)–(1.2)

that extends vε,1,R and such that:

vε,2,R ∈ C([0,
2aε,R
m

];φR − 2−1 − ε).

Since s0 is always positive, we can repeat m times the previous argument

and we obtain a subsequence of (un) that converges to a solution vε,R of

(1.1)–(1.2).

Step 5 There exists a solution v

Let (εk) be a sequence like in step 0. We indicate by vεk,R a solution

of (1.1) - (1.2) satisfying (3.3) where ε = εk. Since the sequence (un) of

solutions of the problems (Pn) does not depend on ε, we use the following

argument. We denote by (u1
n) the subsequence of (un) converging to vε1,R.

We repeat step 2, step 3, and step 4 with respect to (u1
n), where ε = ε2. We

find a subsequence (u2
n) of (u1

n) converging to vε2,R. We find vεk,R for every

k in the same way. Then, by a diagonal argument, we obtain a subsequence

of (un) that converges to a solution vR of (1.1) - (1.2), with

vR ∈ C([0, (2SR)−1[;
1

2
− SRt).
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Now let Rk → +∞. By a diagonal argument, like the previous, it is easy

to obtain a solution

v ∈ C([0, (2S)−1[;
1

2
− St)

of the problem (1.1)–(1.2). �

Proof of Theorem 2.5.

We can follow the outline of the proof of Theorem 2.4 by using the weak

noncompactness measure instead of the Hausdorff noncompactness measure,

but it is necessary to specify some technical details.

The integrals in problems (Pn) are Pettis integrals.

The step 4 of the proof is almost as in Theorem 2.4, by applying the

Lebesgue Theorem for the dominate convergence to

〈ψs,
∫ t

0
A(s, un(s− a1

n
)) ds〉

for each ψs in X ′
s (= dual space of Xs) and s = s0 −

2ε

3
. �

Proof of Proposition 2.7.

We observe that 1), 2), 3) =⇒ 4). We prove 4) =⇒ (2.4).

Let V, W be bounded subsets of Xr. Let s < r, η > αr(V ), v1, . . . , vn
be the centers of a finite covering of V of radius η. Let ε > 0, and wj,k

(j = 1, . . . ,mk; k = 1 . . . n) be the centers of a finite covering of radius ε in

Xs of F (vk,W ). Let us fix (v, w) in V ×W . Let vk, wh,k be such that:

‖v − vk‖r ≤ η, ‖F (vk, w) − F (vk, wh,k)‖s ≤ ε.

We have:

‖F (v, w) − F (vk, wh,k)‖s ≤ ‖F (v, w) − F (vk, w)‖s
+‖F (vk, w) − F (vk, wh,k)‖s

≤ C η

r − s + ε.

Since η, ε are arbitrary, we obtain:

αs(F (V,W )) ≤ C αr(V )

r − s .



A Note on the Cauchy-Kovalevsky Theorem 641

Therefore αs(A(V )) = αs(F (V, V )) ≤ C αr(V )

r − s . �

Proof of Proposition 2.8.

It is obvious that 1), 2), 3) =⇒ 4). Let us show that 4) =⇒ (2.8).

Let us indicate by Br the unit ball in Xr. Let V, W be bounded subsets

of Xr. Let s < r, η > αw,r(V ). Let K be a weakly compact subset of Xr

such that:

V ⊆ K + ηBr.

Then

F (V,W ) ⊆
⋃

w∈W
F (K,w) +

LηBs

r − s

= F (K,W ) +
LηBs

r − s .

Let us show that F (K,W ) is relatively weakly compact in Xs. Let us show

equivalently that it is relatively sequentially weakly compact. Let us set

xn := F (kn, wn), where kn ∈ K, wn ∈ W . There exists a subsequence

(knh
)nh

of (kn)n that weakly converges to some k. Let ynh
:= F (k,wnh

).

This sequence has a subsequence ynhl
that weakly converges to some y in

Xs. Then for each ψ ∈ X ′
s (the dual space of Xs), and for nhl

→ +∞, we

have:

〈ψs, xnhl
−y〉 = 〈ψs, F (knhl

, wnhl
)−F (k,wnhl

)〉+ 〈ψs, F (k,wnhl
)−y〉 → 0.

Therefore αw,s(F (W )) ≤ Lαw,r(W )

r − s . �

4. Application

Let H be an Hilbert space, with inner product (·, ·) (and norm | · |), and

let B : D(B) ⊆ H → H be a selfadjoint, positively defined operator. Let

us define:

D∞(B) :=
⋂
j∈N

D(Bj),

and for u, v ∈ D∞(B) and r > 0 let us define:

(u, v)r :=
∑
j∈N

(Bju, Bjv)r2j(j!)−2.
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Let us consider the family of Hilbert spaces:

Xr := {u ∈ D∞(B) : ‖u‖2
r := (u, u)r < +∞} (r > 0).

The family {Xr : r > 0} is a scale of Hilbert spaces. Now let us consider

for n ≥ 1 the family of spaces (Yr)r>0, defined by:

Yr := (Xr)
n,

that is Yr is the cartesian product of n copies of Xr. Let us assume that Yr
has the following inner product:

((u1, . . . , un), (v1, . . . , vn))Yr =
∑
i=1,n

(ui, vi)r.

The spaces Yr are clearly a scale of Hilbert spaces.

Let us set:

X0+ :=
⋃
r>0

Xr.

let us consider for i = 1, . . . , n the functions fi : X0+ → R such that, for

each i = 1, . . . , n, fi : Xr → R is continuous and there exists a constant K

such that:

|fi(u)| ≤ K for each u ∈ X0+ .

Let us consider for n ≥ 1 the Cauchy problem (1.7), that is:




∂nt u+
∑

i=1,n fi(u)B
(n−i+1)∂i−1

t u = 0 (t > 0),

u(0) = u0

∂tu(0) = u1

. . . . . .

∂n−1
t u(0) = un−1.

(4.1)

Let us assume that u0, . . . , un−1 are B-analytic, that is (see [7]) there exist

two constants r0 > 0 and L such that:

|Bkui| ≤ L
k!

rk0
(k ∈ N, i = 0, . . . , n− 1).

If we consider for k = 1, . . . , n the change of variables:

wk := Bn−k∂k−1
t u,
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and we set W := (w1, . . . , wn), W0 = (w1(0), . . . , wn(0)) = (Bn−1u0, . . . ,

un−1), the problem (4.1) becomes equivalent to the following problem in the

scale Yr: {
W′ = A(W ), (t > 0)

W(0) = W0,
(4.2)

where A : Y0+ → (H)n is defined as follows:

A(w1, . . . , wn) := (Ak)k=1,n(4.3)

where

Ak :=

{
Bwk+1 if k = 1, . . . , n− 1;∑

i=1,n fi(B
−n+1w1)Bwi if k = n,

and where Y +
0 :=

⋃
0<r≤r0 Yr.

We have

Lemma 4.1. Let A be the operator defined in (4.3). Then for 0 < s <

r < r0:

1. A : Yr → Ys;

2. there exists a constant C such that: ‖A(W)‖Ys ≤
C‖W‖Yr

r − s ;

3. A : Yr → Ys is continuous;

4. A satisfies the condition 4) of Proposition 2.7.

For a proof of Lemma 4.1 see Appendix A.

By Lemma 4.1 problem (4.2) satisfies all the hypotheses of Theorem

2.4 (see Remark 2.6 and Proposition 2.7), hence it admits at least a local

solution.

Remark 4.2. A particular case of our problem is given by the equa-

tion:

u′′ +m(|Bu|2)B2u = 0(4.4)

wherem : [0,+∞[→ R is a bounded continuous function or

∫ +∞

0
m(s) ds =

+∞.



644 Marina Ghisi

For this equation [6] proved for B - analytic data u0 and u1, assuming

B−1 compact, local existence by the Riesz - Galerkin method. Later on [4]

showed that hypothesis B−1 compact is removable; Theorem 2.4 allows us to

obtain immediately this result ifm is bounded. Moreover if

∫ +∞

0
m(s) ds =

+∞ it is possible go back to the case m bounded (see [5]) by observing that

one has the conserved energy:

|ut|2 +M(|Bu|2) = |u1|2 +M(|Bu0|2) = E(0)

where M(r) =

∫ r

0
m(s) ds, and therefore |Bu|2 must be bounded (for

example |Bu|2 ≤ c where M(c) = E(0) and M(r) ≥ E(0) if r ≥ c).

A. Appendix

Proof of Lemma 4.1.

We prove 1), 2), 3).

i) We remind that for each W ∈ Yr we have:

‖A(W)‖Ys ≤ (K + 1)


∑

i=1,n

(‖Bwi‖s)2



1
2

.

ii) Let us remark that for each w ∈ Xr and for 0 < s < r we have (for a

proof see Proposition 2.1 of [6]):

‖Bw‖2
s =

∑
j∈N

(
|B1+jw|sj

j!

)2

≤ ‖w‖2
r

(r − s)2 .

From i) and ii), setting C := (K + 1) we get:

‖A(W)‖Ys ≤
C
(∑

i=1,n ‖wi‖2
r

) 1
2

r − s

≤ C
‖W‖r
r − s .
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Furthermore A is continuous, because from ii) we obtain that B : Xr → Xs

is continuous, and B−n+1 is continuous.

Now let us prove 4).

We remark that A(u) = F (u, , u) = (Fi(u, u))i=1,n satisfies 4) of Propo-

sition 2.7 if all Ak satisfies it. Let u, v ∈ Yr, s < r.
iii) For k = 1, . . . , n − 1, Fk(u, v) = Ak(v) is Lipschitz continuous (by

ii) and the linearity of B) in Xs;

iv) Fn(u, v) =
∑

i=1,nHi(u)Gi(v), where, for u = (u1, . . . , un), v =

(v1, . . . , vn):

Hi(u) = fi(B
−n+1u1) and Gi(v) = Bvi.

We observe that, for every i = 1, . . . , n, Hi(·)Gi(v) is a compact function

in Xs, since Hi is a bounded real function. Moreover Gi is a Lipschitz

continuous operator. Then for every i = 1, . . . , n, HiGi, and therefore Fn,

satisfies 4) of Proposition 2.7. �
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