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Asymptotic Behaviour for the Kirchhoff Equation (¥).

M. GHIsi

Abstract. ~ In this paper we study the asymptotic behaviowr of the solution w of the Kirchhoff
aguation with small dote. More precisely we show that -

Jina (V¥ — v)]s + ]]V"('u — k=0 for every ke N

whare vis a a-mmble solution of an appropriaie wave aquatwn. Moreover wa give some esti-
mates on lim V2]l

1. - Introduciion.

Given a function m of class C! satisfying:
o zv>0, Vr=0

we congider the Canchy probleni on R/:

M | uu—m(.j|Vu|2)Au=0',
. 7 )
@ - u(0, :c)‘= By uz(O,_ &y =y,

where g, 4, € CF° (B9,

In the case j =1 and m{s) =1 + 8 equation (1) has been proposed by G. KIRCH-
HOFF [9] as a model equation for the transversal motion of a stretched siring, After
the pioneering paper of 8. BERNSTEIN {4] who proved local existence for initial data in
suitable Sobolev spaces and the global existence for real analytic data, several au-
thors have studied this (ore related) problem. We refer to A. AR0310[1] and 8. Spa-
GNoLo [10] for & complete bibliography. : :

(*) Entrata in Redazione il 20 marzo 1995.
Indirizzo dell’'A.: Scuola Normale Superiore, Piazza Cavalieri 7, Pisa.
Thiz work was partially supported by the Vigoni program of C.R.U.L
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We remark that for the equation (1) there exists a conserved energy:
@ Bt w = 5| [lul*+u [ 1Va?)| = B0, w
C\R R
with
Ms) = [ mir)dr.
g

The global existence for (1)<2) with (non analytic) small data has been proved by J. M.
GREENBERG and 8. H. HU [7] in the case j = 1 and extended to the ease § = 2'in the fol-
lowing sense: : _ '

THEOREM 1 (P. D'ANCONA and S. SPaGNoLo [SHE]). — For all > 1 there exists
some ;> 0 (depending on the function m) for which (1), (2) has e unique, global,
smooth solution u(t, x) as soon as: - ’ '

o ifj=1 | |
@ P ]chl + 18[00 [+ |D*us [ dn <, .
o ifj>1 | ’
®) P lﬂjj(l_{r |z [20+ D) [ Doug |2 + !D'é'z_al Pdo<e;.

Moreover the function c(t) defined os

c(t). = (m (Rj |Vu']'2))1f=

satisfies the estimaie

°ifj=1 -
®) le"(8)] < K(L+8)78
Jor some K = K(m, ug, u);
e ifi>1 ' o .
i) Ic.‘(t')l SK(1+¢)-U+D

for some B = K(m, 4y, wy).

Actuzlly in [6] the estimate (7) was proved only for k < j, however the extension to the
case k<j+1 can be easly proved by a simple modification” of . Lemma A in [6].
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The purpose of the present paper i to complete this existence result by studying

- the asymptotic behaviour of the solution %(f, ) for t — o,

In order to state our result, we define, for any (ug, u,) satisfying (4)-(5) the con-
stant ¢, = ¢. (ity, %;) given by: 7

g2 1= Jim eZ(t)
(the existence of a finite limit being assured by (6)-(7)) and we consider the corre-
sponding wave equation;
® vy~eidv=90.
We have then:

THEOREM 2. - Let ¢; be as in Theorem 1. Then, for all {u,, u,) satisfying (4)-(5)
thers exists a solution v of the equation (8) such that(})

®

@ Jin [V*(u ~ o) + |IVEu = v} h=0  for every ke N;

(i) the limits
Ji [Vuf = lim =5

do exist in R and are related with c., by the equalities:

® b.=cla., c=mia,),
e
10)  (etan+ Mial)) = B0, w);
(i) let us define:

Flr) = -%-(m(‘r)'r + M(r).

Let ue suppose that F is nondecreasing or F satisfies:

© (HP) there ewists 0 <7 such that F is nondecreasing in [0, 7] and nonin-
creasing in @ right neighbourhood of 7.

Then
' @ =min {r; F(r)=E0, u)}.

{*) In the present paper we shall use the following notation:
07llp = £ lleems -
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REMAREK 3. — The equalities (10) and (8) allow us to caleulate a, and hence ¢, in
terms of the initial energy E(O, u).

Moreover we can rewrite (10) as Fla.) = E(0, u). I'n the special case when F is one -

to one, or eqmmlenﬂy (since F'(r) = m(r) + (1/2)rm'(r) = (1! 2"')(’?'27"'("')) ) provid-
ed that r>mir) is strictly increasing, we have:

B = F1{E(0, u)) .

We note that F is always strictly increasing in o vight neighbourkood of v = 0. For in-
stance in the Kirchhoff oviginary case m{r) =1+ r we have:

6% = ~31- + --§—(1 + SE(0, w))2 .

REMARK 4 (see after the proof of Theorem 2). — Under the assumptions of Theorsm

2 we have contimuous dependence from the initial date in the following sense: if
(tton (), Uzn (%)) = (1o (), %, (2)) im H™, and u, (£, x) and u(t, =) ore the corvespond- -

ing solutions of (1) we have:
Jim (V¥ C — )l + |9 (o0 u); BY=0 keN.

Moreover denoting

an Geyn= Jim [V B, @ = lim [Vulf
we oblain
(12) Gu,5—* G0 Jor -,

REMARK B (see after the proof of Theorem 2). — Let us assume F(r) satisfies
(HP).

Themn it is posaible to find & < F(7) in such o way that for every initial data uy and
" u, with energy E(D, uy, w;) < @ the following properties are verified:

i} the problem (1)<2) hos a global solution,
i} the estimate (10) is verified,
i) we have (12) for Up,x = Autip ond %y, =24, A, ~>Ae[0, 13
Furthermore until B0, uy, uy) < @, in (10) we have
(13 = min {r: F(r) = B0, w)}.

Moreover 1), 1), iii) con not be verified szmultmneausly Jor every initial date uy and
with energy E(0, wy, wy) = @

REMARK 6. — We can treat the case when t— — « Like the case t — + . Indeed we, .

have u(t, £) = wi—1t, x), where u is the solufion of (1)-(2) and w is the solution of (1}
with date wy ond —u;.
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Moreover let us dencte by F the map: _
F: C,— (H®(R)) x H™(R))

- where

C, = {(sg, ) € (C5* (RT) X CF° (RY))  satisfying (4} and (5)}

and P{(uy, u1)) = (v, %) where (v, ) are the data of the solution v of the wave
equation in Theorem 2 Now we have the following result:

TrrorEM 7. ~ The map F is well defined and continuous in the H™ topology.

The proof of Theorem 2 iz based on a representatmn of the Founer’s transform of

_ the solutions of the equation (1). .

In the proof of Theorem 7 we use an «exphclt» representation of the Fourier's
transforms of (=, ¥y).

_2. - Proofs,

. ProoF OF THEOREM 2.

1) We prove the hm'a.t (9). We adapt the argument in [2], to the case of unbound-

ed domains.
Let us denote by y(t, £) the Fourier transform of the solution  of (1)-(2). We

have:
y"+ A ®|EPy =0,

a8 w0 =7; #'O0)=u.
Let us fix &, there exist a(&) and @(E) such that (see [3]):
. _ ¥
(15) Jim y—asm(igl Ic(t)dt+ tp) =0,
S _ 0
_ ) .
s Tim: y' -~ a|&|c. cos 15|Ic(t)dt+«p =0.

The constants a(£) and (&) are not unique, nevertheless, since ¥ and ' are continu-
ous functions of the parameter &, we can choose them in such a way that, as functions
of £ they are continuous.

Thanks to (6)-(7) we have:

an o p= [ @<+,

0
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Let us define ¢ =@ + |£| f(c(t) — ¢, ) dt, then
i :
Jim ¢~ asin(|&tca +¥) =0,
- Jim ¥’ — a]&|ca cos(|E|te. + ) =0.-

Let us define (%, £) = asin(}§lc. +1p); We obtain _
(18) lim y(t, &) —2(t, =0 and. lm y'(t £ -2’ £)=0.

Moreover z is a solution of the Fourier transform of the equation (8). We need to prove-

that z is the Fourier transform of a sclution # of (8) that verifies (9).

(@) Now let us given some estimates for the funetion y. We remark that, since.

j [(c*(®))'|dt < + =, it is easy to prove, by multiplying (14) for |£[%*, that there
%xdsts constant @, by (ke N) such that:

° |
B, u(t, &) = 2 DIEI* 22t B + |51%y 2, B < 0B, 400, B),
o _ o _
19 Eilt, & = [£[% 2920 ) + [E1%9720, ©) S 4B (0,8).
Moreover _ ' ' .
W2 =2(y' # —2c2 (1) |E|*y* < 28, B, 0(0, &)
then ]
(20) g B s aoE,,oéo,*g)t? + 2ypy b + .

(b) Now let us find an «explicit» representation of z. Let us denote:

i
® h(t) = J oft)dr,
4]

+ =

o r(t, &) = [ y(z, B8l cos (£l e Rz,

3

® s(t, &) = [y(r, H]&| sin (|E| RN e’ (s,
¢

We remark that #(t, £) and s(¢, &) are finite for every (¢, £). Indeed it. is enough to ap-
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. ply Holder's inequality to

le" @[ (e' ()| €l Twlz, DY),

and use (19).. :
By [3] page 137 we have

Yty B) = 2, (t, E) + oyeos ([ELR®) + osin (| §]A(E) = 2 (¢, £) + alt, £),

where
€ — &(t) ; -1
ov= (=722 -, ) G0l
0y = ( et 5)) CO

and ‘ .
oy = e®IED (ot £ cos (|E[RD) + (8 ~ s(t, £)sin (||,
for y(&) and (&) suitable functions of & By the previous equalities we have:
p(E) = Yo (D) El +m(0, &) and () =y + 8(0, §).
Now it is easy to caleulate oy (0, &) and 03(0, E):
| 01(0, &) = (e — e(0)) 63 %o — (e |£]) 7170, ),
30, £) = (6w = c(0))(e(0)|&|ea ) g1 — (|&lea)25(0, £)).

_ Then:

@1) 2,00, &) = (|E|ca Y 1 (Yo |Ele(0) + (0, £),
2{(0, &) = e o(0)n + 5(0, £)).

Moreover

21(t, B) = (|E[en )Ty cos (| E| (D)) + (| Ele. ) Ssin (|E|(E)) =
= 2,(0, &) cos ([£] A + (JE]c(0) "1 2{ (0, &) sin (|E|AE))

" Now let us define

(0, . *
(22) L, £)=2,(0, E)cos(c. | 5|t + |E]B) + %([";@&T)Sﬂl(cmlﬂﬂ |£]5).

Then z is a solution of the Fourier transform of (8).
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By (21) and (22) we have:

[ 4m .
e |(t, DI s4(c2(0)|yo|2 +( [ uG, 5)c'<s>|ds) +
0 .

sin(ea |E|E + |£]8) |
+|c,t+ﬁ|2( e Elt + IEI ) (y |2+ Is(O &)|* ))

Therefore:

. . e ) 2 .
i flatt, Ol < 4(::2(0)"% P+ j-( [ lut, s)c'(sn_czs) df +
R\ O .

+(te. + 6P ("1{1 B+ [ lsto, E)ng)).
. -2
Now let us set

n=| ( rlms, ’s')c'(s)lds)zda,

by Holder’s ineiuality we have:
+m +? . .
< [le@™ds | [ le'@* |y, B dsdz.
] R0 : o

Therefore by (20) there exists a constant b; such that
7 < By 181wl + Nye B + o lB) -

In the same way we can obtain

[ tato, &)12de < Dol 11w B + 2 1B).
R’

Hence there exists a constant b = b{uy, %) such that
llztt, - < b(1 + ).
In the same way one can prove that

Il&tka(t, I < + o for every t and keN.
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Moreover

z'(t, E) = —51(0 E)lé‘[cmsm(]&icnt-ﬁ- [£18) + 21 (0, £)—= (0) ——cos ([E[cat + |£]B).

Therefore we ean easily prove that - _
[1&1*z'@, g < + =  for every ¢ and ke N.
By this fact 2(%, -) iz the Fourier transform of a solution of (8) with data mn H*".

(¢) Let us show (9), Let v the reverse transform of 2. Since u, and v e L%(R)
one has:

I =) < |ty — 20§ + bz — 2B = |2l + 21 — 2] .
Moreover we have

_ - ‘
v]alt, £)] < K@e. (1 + )" c(0)|yo| + I |#(s, §)| |c’(8)|ds | +
. 1]

+ [ lats, )l 16" @)\ds + KIA® @ea (1 + )7y ] + 1500, D+

i
+.= . C
+ 101 [ lyte, gl @)]ds.
-#

Hence, by Holder’s inequality we have for some constants ¢; and ¢p:

vhatt, VB <er Ul B+ 115 lwo i + o )

+ o
x((1+.t)"‘ j e’ (s)|=/5dsj(1+s)-u/sds)

t ¢

t

R ) . o+ 2
a1 8]y [ + llv: n%)((l_ +57 +( | lc'(s>|ds) )

Therefore
' Jim flalf=0.
Moreover 7
[t ) — (2, £)| = [2,(0, &) |cos (|E1R(®) — eonlea |5t + |£18)] +

|’-'1 (0, &) I

BECOR (|&1aE) — sin (e |E[E + |E1B)] <

< (1 (0. &1 + 100, O 121 + 5] [ 1etor = o s
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Hence

|z~ 2} <

S2("(|§|+c—(107)z1(0, -)”:+"(l§|fc_(167)z“0’ .)lt)x(r%(lJm_zds)z'

By this we obtain
B oy~ 2= 0.
In the same way we can prove that )
Jm |9 ~ o)lf = i [ |E14alf =0 for every ke N,
Now we can prove in the same way that . y .
' Jim [V¥(u ~)E=0 for evary keN,
or, otherwise, it is enough to-prove that in |

[ 161, & -2, EPa
F

have
Jm (y'(t, £) —2{ (4, £) =0 and - Jim (2 (2, £) - 2"(0, £)) = 0..

Furthermore we can use the Lebesgue’s theorem for the dominated convergence,
thanke to estimates on energy of (14) (see (19)) and the conservation of energies for
the Fourier transform of equation (8).

2) Now let us prove (ii). By (38), (39), (43) of [6], we have:
(23) _ ' [IVulf) | < M1 +8)-2
for some constant M. Therefore there exists )
Jim |Vaef=a. .
Thanks to[8] if v is a solution of (8) we have:
| ¢ Jim [Voff = im o, B < + o
Thanks to (9) of Theorem 2 we obtain that there exists:
‘]iﬂl lloe I = b, _

Wwe can pass to the limit under the integral. Indeed it is easy to see that for every £ We _. |
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and that
e e = b -

3) Now let us prove (iii). We need some preliminaries.
(@) Let us define:

Byt w) = 5 (V[ + 2 @)l 4ulp).

Thanks to (6)-(7) there exists a constant H such that:

(24) By (b, w) < H(I 4+ 8)72 By (F, w);
therefore
(25) S E{(t, u) < 3 B3 (0, ).

T (b) Let.(uﬂﬂ: 'M'In) —’ (ﬁ(}: ui) in Hm (With (u[)nr uln) and (uﬂl u.l) satisfying (4)1
(5)) and 'Iet-u,,(t, x) and u{t, ) be the corresponding solutions of (1); we have:

‘]-_i.n}u "V(’un - ’“)"2 + ”('Um —uk "2 =0,

Indeed, let us define w™ = » — u,. We have:
wl — | Vulf) 400" = (| Valf) — ol Ve [83) e
Let us‘deﬁnhe
5(t) = lfwp (O + miVu) B Voo™ ()] .

We remark that in (6)-(7) the constant X depends continuously by the initial data.
Then the constant H in (24) depends continuously by the data. Therefore it is easy to
see that S8'(f) < CS(t), since m(s) is a locally Lipschitz function, where C is a constant

" independent.of », By this we obtain Jim 8(¢) =0 for each ¢, then

(26) Jim oo ) + [[Vw™ (0 = 0.

(¢) Let us define
Gopn= Jm [V B, 0. = Jim [Valf

we obtaitt 0, 50, for n— @, )
Indeed let us fix £ > 0, by (23) there exists #, independent of n (since M in (23) de-
pends continuously on the data), such that:

ayg+= !a'wm - "Vun(te)”% I e

a1 i=faa — [|Vut)[E | <e.
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Moreover thanks to (26) there is n; such that, for n = n,, we have:
azn = |[|Vun () — | Vet ) | <

Hence
|dm|“ . = a.l,,, +agqt+a; S 3e.

Now we show (iii). L.et us remark that, since F is an increasing function near the
origin, Fi(r) # 0 for r > 0 and . 11'111” F(r) = + o, for small data there exists only a sol-

ution of F{r) = E(0, u). Let %, and «, be a8 in (4) and (5). Let us denote by %, the sol- -

ution of (1) with data wg = Awy and %, = Au;, and energy E(0, 4;). Let us de-
fine

0= Jim [[va; [
and let us indicate
Ay=sup{i < 1: o, =min{r: F(r) = E(0, u;)}}. .

We show that A; = 1. Let us remark that if ; and z; (2, = z,) are such that F(z,) =

= F{zz) = E(0, u,,) then |z; — 25| > ky > 0. By this and 3c)1t1seasytoprovethat)|.11sa.

maximum.

In a similar way, if F is nondecreasing we can prove that, if we suppose

L=< 1,
o= min {T: F('r) = E(O: ‘u.l)}

in a neighbourhood of 1,, and then it is not a maximum.

If F patisfies HP we remark that E(0, ») € F(F). Otherwise, let E(0, u;) = F(P),

then, as in the previous case, 1,22 and if A, >3, 1,1, F(r,) = E(0, u,,) then
7» — 7> h >0, in contrast to 3c). Therefore as in previous case 1, =1.

ProoF oF REMARK 4. — This proof for the eases of
Jm 1V —wl + e —u) =0, sod  im e..-a.

is contained in part 3h) and 8¢) of the proof of Theorem 2. In the other cases, that
is: : -

Jm (7 G — ) + [V (ot — [ = 0
the proof is the same. We remark that, since:

(loaw = [ < 2lleen — el (20 — ;[
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then for some constant C; we have

[lw — llz < flttn, 0 — un o + Cret (| Vs, o — uo)e + ll2tu, 1 — 21 ) -

Proor oF REMARK 5. — By Theorem 2 part 3 there exists o> 0, eventualiy
@ = + w, such that for (0, 1y, %) <7, i), ii), ili} of Remark 5 are verified. Moreover

" let uy and u, by such that E(0, ug, #1) < @, and let » be the corresponding solution of
- (1), As in the proof of 3 of Theorem 2 we can show that u satisfies (13).

If & = F(¥), (13) is in contrast with iii}, because E(0, %) = F(¥) is a point of discon-
tinuity, indeed i F(r) = F('r), r>7, and there exists r™—r such that F(»*) > F(r)
then |r—7| >k >0.

PROOF OF THEOREM 7. — First, we remark that the map F is well defined, that is,
for any (uy, %)  C, there exists only one solution of (8) asymptotic to u in the sense of
(9). Indeed if v snd 7 are two such functions, then they are asymptotic, but w =v — %
is a solation of (8), for which we have:

Bo(t, w) = |lwi flo + o2 |Vl = By (0, w)

Therefore Ey(0, w)'= 0, henee w=20. .
Now let us prove that the map F is continuous in F7
" Let us suppose that

(ud, uf)eC,—(ug, w)eC, for n-»+o in H”,

We uze the same notations of the proof of Theorem 2 and if the congidered quanti-

ties are related to (ud, ") we add the index =.
Then, by Remark 4, .

et —C, form—+w,

. Moreover we have:

lfwf: — o [§ = flz" 0, ) — 20, )[E = llel} -

Furthermore, by (21) and (22) we ohtaih

1]

@D (& <cs ’icos(l&lﬂ)—cos(l&iﬁ")l(c(f’)l?fﬂ + [ luts, 5’”"“”‘“)*

Ch —Cw
CoCa

_ o
+ (cCO)Iyul + [ luts, E)c’(s)|ds)
o

+(eR) (O o = w8 | + |95 |1e(0) — e (D)) +
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+@2) [ lyte, &)~ 4™ (s, )l le'(5)|ds +
o .

+2)™ [ 576, £)Ie'(6)] Joos (1£1A(sY) — cos (£l (0)]ds +
0 |

A [ 155, B 10'60) = (e [ds +
. 0

+

+(ca [ED)7 |sin|£]8) - sin([&]6)| (Jm + [ Iy, B lel'!c'(s)lds). -

[

sin ({£]8")

* [&]8™ 16*1 c::—c:,, ([m [+ f [y(s, E)IIEIIc'(s)]d;s)+

L]

+[B™M 2 ) i~ ol | + {8% [(c3)? f [&] [u(s, &) — y™(s, §)|.|c'(s)fds+-

0

+187 1237 [ 1y o, 1 1e ()] 1€] [sin (o(e) — sin (| 8| ™ (o3 s +
6 _ ' .

187 1) [ £l 1™ O] le'(9) ~ ()’ |ds.
g _
Let us remark that there exists a constant ¢; such that:. .

”yﬂ "E!" Iglyﬂ "gs ” IEIE?/U "%! "yl IEI%! U(O), Cew .

ld 18, 118108 18, Iy B, 121208 [8, (0, c2 <o, .

Now let us give some estimates (as in f)roof of 18), 1¢) of Theorem 2) on the terms |

of (27), -
1) Let us set

l . . . Fw 4
2y =e3* [ |cos(|£16) = con CLE16™) [ cluo | + [ [uto, )] fe*]ds)] a.
2 ] . :

We have for gome constant ¢;: .

08 ap < 5 1B = 8% 1] [£lyo [B + [ IB)..
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Let us remark that
lim (ci?) -c*(tN =0 for every t.

Indeed, since

oft) = ol [Vulp)*,  ¢"@) = (m({Vur By
it iz enongh to prove that '
| Jim_[IVal - [9u" [ =0 for every .
Now let us remark that « — u, satisfies the following equation:
(29) 1y — c2(E) Aw = (c2(£) — (e (8)) Au, .
Let us set

By (t) = [l [B + e (0| Vol .

" We have, for some constant d;, independent of :

Ey(t) < d B, (D).
Hence.
B, () < B, (0)eht,
Therefore
ot Vel - Vet =0 for every &,
_Moreover in ' .

+=
lB-6"1 = | [ (et~ ca—cn(t) + el )t

i . ' ]

we ean pass to the limit under the integral, sinee:

| Hence
. H.ﬂl ﬂ.o'—'—'o.

f—s +m

2) Let us set

no__ 2 - he ¥
S hree J(cc0)|y0l+uf ¥, &)1 [e(s)]ds | d.

fe(t) —ce ~ ™ (@) 4+ €2 | < |e(t) — o | + |c™(E) —ch | <2K(14+8)72.
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There exists a constant ¢g such that:

. €2 —Ca |® 2 2 é
ay <6 pr (lyo fE + [1&lyo 1 + g ).
Then |
]im aq =O.
R—t +@

3) Let us denote

ay = [ () elOyo ~ 8 | + |38 | [e€0) - (YD) k.
# .

There exists a constant ¢; such that;

az < crlllyo — w8 5+l § 12(0) — e*(0)[2).

Moreover since {m(s))'/ is a loeally Lipschitz function, there exists & constant cg such
that: .

le(0) — e™()} < g |[|Vaao [ — Ve 1B | < 204 04| Vot — Y [ -

Hencg
az < or(uo — ug [ + 40 cf [Vueg — Vu [B).
Therefore -
ulvi.[ilﬂ g = 0 .
4) Now let us evaluate:
+= 2
ag={c )‘zj J |uls, &) —y™ (s, &)] Ic'(s)lds) dE.
R 1] : )

Let w be a golution of (29), then we obtain for some constant d,:
EL(6) < dp((1 + )™ By (t) + |e(t) — c*(B)]).
Hence for some constant d; we obtain

. t
(30) . B, ()< (E,,,(o) + j |eca) ~ ¢ (s)lds).
0

Furthermore:

() < 2fwlalloog fl .
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Therefore, for someé constant dy we have:

b 1/2
(31) lleolle < ds |lloag — w2 + t(E.,,(m + j le(s) — ¢* (s)lds)
’ [1}
Then we have _
o : t® w
(32) ag S Gy (c2) 7" j & (83" lleo(e)|F ds j (1+ )55t
R ’ [}

Now let us remark that, by (31) in (32) we can pass to the limit for n — + ® by using

" the Lebespue’s theorem for the domin_ate eonvergence, hence;

lim g~
5) Furtilennore let us denote: _

= ’ 2
ag=(c2)"" I( [lyts, &)11e"@)1 | cos I8 1Re) - eos((lslh"csnlds)) ds.
AT I . '

We. have:

@ . 2
(33) ms(c.,,)"’f( f ly™(s, E)ilc'(s)li-’:llh(s)~h"<s)ld8) dg.
RO

Hence for some constant dj:

60 - a<d;| o (8)] % | s) — h» (5D ds [ o' @) #o (I 1815 I + lup [B)-
g ' 3
Moreover we have:
.]h(s) - h"‘(s)l = J le(r) — e (r)|dr.
-0

Therefore in (34) we can pass to the limit for 7 — + o by using the Lebesgue’s theo- B

- rem, and then

limn a4=0.

n-++=

6) Let us sef:

Y 2
2= [ 2 [ G, Dlle'0) = e o) 1ds | dk.

B 1]
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We have for some constant dg:

e[ [l D11~ oy (/5 ds d J10%6) = o #0as <

R 0

< dy([lyd 1§ + | IEI% &+ lyr B> f (1'+ £yt f le'(s) ~ (c“(s))' (s,

Now we need to estimate j c'(8) = (c™(8))’ [*% ds. We remark that, as in the previous

cases it is possible to paas to the limit by using the Lebesgues theorem
Moreover we have:

Je'(s) ~ (c™ () | < dy |m’ UVulf)] [(Vu, Vug) — <Vu" Vm )I +
+dg [(Vo®, Vul ) [m ' ([Vul§) — m' (Ve )] +
+do [mll| V) — || Vulf) |2 <
< dg [(Vlu — ™), Vo) + (Vue™, V(u ~ w* ) +
o+l [m (V) ~ ' (1 [B)] + e | Vacft — | Varn B+ <
- SV~ w) | Vo [l + [ Vu® [ V0 — e, [, +
| ([VulB) ~ m (|Vur B) + |V — um)[32)

and (as in 5) of this theorem) it is easy to see that:

lm IV — wm) e + | Vu - u™)p =0 for every t;
then
. "-]_.'I;IEN 223 =_0.

7) Let us set

o =J’ Isin(lélﬁ)—sm(lélﬁ")lz
{c. &

L | )
PRE I ly(s, E)H&l_lc’(s)lds) dk.
We obtain, for some constant e,

Se[f—pgm|2 ("?I1"2+"|5|?{0”2

and, as in 1) (of this theorem)
lim oy = 0 .

R"— @
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8) Let us set
” — 2 +m 2
=.j | lln(l'flﬁ iﬂulz 62" Can !?h' + J ]y(s, ‘E)”H |C'(8)1d8 d
NG ¢t ;

Then we have for some constant ey:
arSeglon —co |2(ﬂ‘!h I+ £l IB).

Hence
lim a;=10
s+ ™
'9} Let us define
| ag= B (el - v B
Then we have:
linJ_}m ag=0.

10) Let us consider
o ,
_'as=f|ﬁ"l2(c2)‘2( f (&t Hyls, &) —y™ (s, §)||c'(s)|ds) d
B 0

As in 4).(of this theorem) one can prove (by using (30)) that:
lim dg = 0.

n—+=

11) Let us set:

. z
aw= j —-—"3”'2( [ 1y, £0'(0)| |81 sin (£1co) —sin«wm"(smds)) .

: (ch ¥
We obtam for some. constant e:

ay s 84[ le!(s)|5 Ih(s) - h“(s)'zd‘qJ- le" @A UE Py 1B+ I 1E]w? §|2)ds.-

Therefore as in 5):
lim L 5T 0.
, L R
" 12) Let us define:
2

au=[ 181222 | [ 18]19"(s, ©)]le'(s) - () |ds | d
R 0
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There exists s constant ¢; such that:

+ @
ay < e [E[29 B+ 11817 1) J- le’(8) — (c™)'{s}| ds.
¢

Therefore as in 6) (of this theorem) we have:
n-]-ijtrhlm an = 0.

By 1)-12) we have:
l.ir:l a:0+a1+'a2+as+a4+a5+a5+a7+aa+a9+am+an={l.
n = o

Therefore
lim |of - wlE=0.
n— +mo

In the same way we can prove that, for every ke N: '
Jm [VEf - wo)lf = I [181*(=¢0, ) = 2"(0, D=0

m |Vh@f - w)lE= lm l1815G0(0, ) - 570, )Y [E=0.
Therefore (v?, v})— (v, v) in H=.
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