THE FIRST COEFFICIENT OF THE CONWAY POLYNOMIAL

JIM HOSTE

ABSTRACT. A formula is given for the first coefficient of the Conway polynomial of a link in terms of its linking numbers. A graphical interpretation of this formula is also given.

Introduction. Suppose that L is an oriented link of n components in S^3 . Associated to L is its Conway polynomial $\nabla_L(z)$, which must be of the form

$$\nabla_L(z) = z^{n-1} [a_0 + a_1 z^2 + \cdots + a_m z^{2m}].$$

Let $\tilde{\nabla}_L(z) = \nabla_L(z)/z^{n-1}$. In this paper we shall give a formula for $a_0 = \tilde{\nabla}_L(0)$ which depends only on the linking numbers of L. We will also give a graphical interpretation of this formula.

It should be noted that the formula we give was previously shown to be true up to absolute value in [3]. The author wishes to thank Hitoshi Murakami for bringing Professor Hosakawa's paper to his attention.

We shall assume a basic familiarity with the Conway polynomial and its properties. The reader is referred to [1, 2, 4, 5 and 6] for a more detailed exposition. The fact that $\nabla_I(z)$ has the form described above can be found in [4 or 6], for example.

1. A formula for $\nabla_L(0)$. Suppose $L = \{K_1, K_2, ..., K_n\}$ is an oriented link in S^3 . Let $l_{ij} = \operatorname{lk}(K_i, K_j)$ if $i \neq j$ and define $l_{ii} = -\sum_{j=1, j \neq i}^n l_{ij}$. Define the linking matrix \mathscr{L} , or $\mathscr{L}(L)$, as $\mathscr{L} = (l_{ij})$. Now \mathscr{L} is a symmetric matrix with each row adding to zero. Under these conditions it follows that every cofactor \mathscr{L}_{ij} of \mathscr{L} is the same. (Recall that $\mathscr{L}_{ij} = (-1)^{i+j} \det M_{ij}$, where M_{ij} is the (i, j) minor of \mathscr{L} .)

THEOREM 1. Let L be an oriented link of n components in S^3 . Then $\tilde{\nabla}_L(0) = \mathcal{L}_{ij}$, where \mathcal{L}_{ij} is any cofactor of the linking matrix \mathcal{L} .

PROOF. Let F be a Seifert surface for L. We may picture F as shown in Figure 1.1. Let $\{a_i\}$ be the set of generators for $H_1(F)$ shown in the figure and define the Siefert matrix $V=(v_{ij})$ in the usual way. Namely, $v_{ij}=\operatorname{lk}(a_i^+,a_j)$, where a_i^+ is obtained by lifting a_i slightly off of F in the positive direction. Then if $a_i \cap a_j = \emptyset$ we have $v_{ij}=v_{ji}=\operatorname{lk}(a_i,a_j)$. If $a_i \cap a_j \neq \emptyset$, then $\{i,j\}=\{2k-1,2k\}$ for some

Received by the editors August 14, 1984 and, in revised form, December 28, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M25.

Key words and phrases. Knot, link, Conway polynomial.

300 JIM HOSTE

 $1 \le k \le h$ and $v_{2k-1,2k} = v_{2k,2k-1} - 1$. Hence V is of the form

$$V = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix},$$

where A is a $2h \times 2h$ matrix and C is a symmetric $(n-1) \times (n-1)$ matrix.

Now a_{2h+i-1} is parallel to K_i for i > 1. Hence $v_{2h+i-1,2h+j-1} = l_{ij}$ for $i \neq j$ and i, j > 1. Furthermore,

$$l_{1i} = -\sum_{j=2}^{n} v_{2h+i-1,2h+j-1}$$

$$= -(l_{i2} + l_{i3} + \dots + l_{i,i-1} + v_{2h+i-1,2h+i-1} + l_{i,i+1} + \dots + l_{i,n}).$$

Therefore, we have

$$v_{2h+i-1,2h+i-1} = -\sum_{i=1,i\neq i}^{n} l_{ij} = l_{i,i}$$

Hence we have that C is the (1,1) minor of \mathcal{L} .

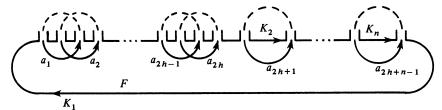


FIGURE 1.1

Now the Conway polynomial can be defined as $\nabla_L(z) = \det(tV - t^{-1}V^T)$, where the right-hand side of this equation is a polynomial in $z = t - t^{-1}$. Hence we have

$$\begin{split} \tilde{\nabla}_L (t - t^{-1}) &= \det(tV - t^{-1}V^T) / (t - t^{-1})^{n-1} \\ &= \det \left(\frac{tA - t^{-1}A^T}{(t - t^{-1})B^T} / (t - t^{-1})B \right) / (t - t^{-1})^{n-1} \\ &= \det \left(\frac{tA - t^{-1}A^T}{B^T} / (t - t^{-1})B \right). \end{split}$$

So,

$$\tilde{\nabla}_L(0) = \det \begin{pmatrix} A - A^T & 0 \\ B^T & C \end{pmatrix}.$$

But

$$A - A^{T} = \begin{bmatrix} 0 & -1 & & & & & \\ 1 & 0 & & & & 0 & \\ & 0 & -1 & & & & \\ & 1 & 0 & & & & \\ & & & \ddots & & & \\ & & 0 & & & 0 & -1 \\ & & & & 1 & 0 \end{bmatrix}$$

so that $\tilde{\nabla}_L(0) = \det C = \mathscr{L}_{1,1}$. Since all the cofactors of \mathscr{L} are equal, the theorem follows. \square

2. A graphical interpretation of $\tilde{\nabla}_L(0)$. Let $\Gamma(L)$ be the complete graph with n vertices. Label the vertices K_1, \ldots, K_n and label the edge connecting K_i and K_j with their linking number l_{ij} . Let G be the set of all subgraphs of Γ consisting of n-1 distinct edges together with their vertices. Let T be the subset of G consisting of those graphs which are trees. If $g \in G$ let \overline{g} be the product of the n-1 linking numbers associated to the edges of g.

Theorem 2. Suppose L is an oriented link in S^3 with n components. Then $\tilde{\nabla}_L(0) = (-1)^{n-1} \sum_{g \in T} \bar{g}$.

PROOF. It follows from Theorem 1 that $\tilde{\nabla}_L(0)$ is a finite sum of terms, where each term is a product of n-1 linking numbers together with some integer coefficient. Now each term is actually the product of n-1 distinct linking numbers. For consider some l_{ij} . It appears in only four entries of \mathcal{L} , namely l_{ii} , l_{ij} , l_{ji} , and l_{jj} . Hence l_{ij} appears only once in the (i,i) minor of \mathcal{L} and so cannot appear to any power greater than one in \mathcal{L}_{ii} . Thus we have shown that

(2.1)
$$\tilde{\nabla}_{L}(0) = \mathcal{L}_{ij} = (-1)^{n-1} \sum_{g \in G} \varepsilon(g) \bar{g},$$

where $\varepsilon(g)$ is some integer.

We want to show that $\varepsilon(g)$ is one if g is a tree and zero otherwise.

Let \mathscr{L}^q be the matrix obtained from \mathscr{L}^g by setting each l_{ij} equal to 1 or 0 depending on whether l_{ij} is associated to g or not. Furthermore, let L^g be any link having \mathscr{L}^g as its linking matrix. Now it follows from (2.1) that $(-1)^{n-1}\varepsilon(g) = \tilde{\nabla}_{L^g}(0)$.

Now suppose that g is not a tree. Then g is either disconnected or misses a vertex of Γ . For suppose that g is connected but is not a tree. Then g contains some loop. This loop has an equal number of edges and vertices. Adding the remaining edges of g cannot increase the number of vertices beyond the number of edges. Hence g has at most n-1 vertices since it has n-1 edges. Therefore we may choose a split link L^g with linking matrix \mathcal{L}^g . But the Conway polynomial of a split link is zero and hence $\varepsilon(g)=0$.

Thus it only remains to show that $\varepsilon(g) = 1$ if g is a tree. We shall do this by inducting on n. If n = 2 it is shown in [4] that $\tilde{\nabla}_L(0) = -l_{12}$. This starts the induction. Now suppose that L has n components and that the theorem is true for links with fewer components. Since g is a tree, there is some outermost vertex, say K_i , which is connected by an outermost edge to K_j . Now choose L^g so that it appears in part as shown in Figure 2.1. Changing and smoothing the indicated crossing as illustrated in the figure gives $\nabla_{L^g}(z) = -z\nabla_{L'}(z)$ and hence $\tilde{\nabla}_{L^g}(0) = -\tilde{\nabla}_{L'}(0)$.

¹ Note that a slightly different definition of $\nabla_L(z)$ is used in that paper than here; namely that, $\nabla_L(z) = \det(t^{-1}V - tV^T)$ with $z = t - t^{-1}$.

302 JIM HOSTE

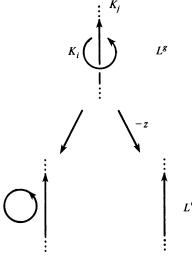


FIGURE 2.1

But L' has n-1 components and so by our inductive hypothesis, and the fact that $\Gamma(L')$ has only one subtree h for which $\bar{h} \neq 0$, we have $\tilde{\nabla}_{L^g}(0) = (-1)^{n-1}$. Hence $\varepsilon(g) = 1$. \square

As a final remark, note that the number of terms in $\sum_{g \in T} \overline{g}$ is given by $(-1)^{n-1} \overline{\mathscr{L}}_{ij}$, where $\overline{\mathscr{L}}_{ij}$ is the (i, j) cofactor of the matrix $\overline{\mathscr{L}}$ which is obtained from \mathscr{L} by setting the linking numbers equal to 1. It can easily be shown that this number is n^{n-2} .

REFERENCES

- 1. J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, pp. 329-358.
 - 2. C. Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270 (1982), 75-109.
 - 3. F. Hosokawa, On ∇-polynomials of links, Osaka Math. J. 10 (1958), 273–282.
 - 4. J. Hoste, The Arf invariant of a totally proper link, Topology Appl. 18 (1984), 163-177.
 - 5. L. H. Kauffman, The Conway polynomial, Topology 20 (1981), 101-108.
- 6. H. Murakami, *The Arf invariant and the Conway polynomial of a link*, Math. Seminar Notes, Vol. 11, Kobe University, 1983, pp. 335-344.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903