A note on impulse response for continuous, linear,
time-invariant, continuous-time systems

Maurizio Ciampa, Marco Franciosi and Mario Poletti

Abstract—In his paper “Causality and the impulse response impulse response, such a response dogisalways give a
scandal” (IEEE Trans. Circuits Syst., vol. 50, 810-811, 2003), complete description of?, i.e., there may exist continuous

Sandberg proved that, even if a continuous, linear, time-invariant, LTI maps ¥ : # — ¢ different from . with the same
continuous-time system admits an impulse response, such a. :
impulse response.

response doesnot always give a complete description of the ) ) )
system. In this paper, a Theorem of Schwartz is used to define In this paper we consid@ontinuous. Tl maps and face the

an impulse response under almost general assumptions, andtwo problems arising from the results of Sandberg, namely:
to understand what we really know about two systems with Lo to define an impulse response for a continuous LTI map

the same impulse response. These results are applied 10 ay . ;45 ang what we really know about two continuous
survey of systems (significant by themselves and as leading ™~

examples), showing that, apart from three classes of exceptions, 1! Maps.Z, & : .# — & with the same impglse response.
all of them are completely described by their impulse response. In order to exclude spaces of too generic functions (e.g.
Concerning the first two classes of exceptions, counterexamplesthe Banach space of all bounded, measurable or not, complex
were given by Se}ndberg; concerning the remaining third class, a y,31ued functions defined o) but to allow handling more
counterexample is deduced here from the results of Sandberg. - o
general signals (e.g. the derivatives, of any order, of bounded

Index Terms— Continuous-time signals, distributional signals, measurable complex valued functions definedRy and to

continuous linear time-invariant systems, impulse response. guarantee that the mildest available signals are allowed inputs,

we assume:
I. INTRODUCTION Assumption 1..# and ¢ are subspaces of the set of

N SIGNAL PROCESSING theory, a linear, time-invarianfOmMPplex valued distributions ofit, both equipped with a
(LTI), continuous-time system is a map notion of convergence and limit (denoted-lim and -lim
respectively) for sequences, such that if a sequeficés
LI -0 convergent in.# (respectively: in©) with limit f, then f;

o . is also convergent i?’ with the same limitf;
where:.# (input space) and’ (output space) are linear spaces A tion 2-Th & of | lued
of signals defined omR, both closed under translatidnand i ssdur]r:p |3n rIR (_ethspac Ot comp fx_ va ueb ng
Z is a linear map which commutes with translatfon. lons detined orix with compact support, 1S a subspac f
d the notion of convergence ifi is such that if a sequence

In recent papers [1], [2], [3], Sandberg considered tHe . NS .
Banach spac& of bounded uniformly-continuous complex-/* is convergent in with limit £, then f;, is also convergent

valued functions defined oR, equipped with the usual sup—In S with t.he same I|m|tf-. o
norm Concerning the meaning of continuity, we assume the

£l = sup | ()] following - L N
teR Definition 1: A map . is said to becontinuousif it is

and the class of attontinuous(with respect to the sup—norm)Seduentially continuous, i.e., if for every ¢ ./ and every
LTI maps.Z : € — ¢ admitting an impulse response, inS€duencefy, & . such thatf = - lim fy, itis Z(f) =
the sense that there exists a functidnsuch that for every &-lim Z(fx).
sequencef;, of progressively taller and narrower unit-area The preliminary problem of defining an impulse response
functions of ¢, centered att = 0, the sequenceZ(f:) for every continuous LTI mag? : .# — & (obviously under
is pointwise convergent ofit to A. In this class of maps, aAssumptions 1 and 2) is treated in Section Il. A Theorem
Sandberg proved the existence of a non null map (in particulgf, Schwartz allows us to solve this problem in a way that
of a non nullcausalmap) with impulse responsé& = 0. agrees with the usual impulse response for evéty ¢ — ¢

This unexpected result of Sandberg shows in particular thgiimitting one, and with#(5) whenever the Dirac impulsé
even if a continuous LTI mapZ : ¥ — ¢ admits an js a3 member of# and, as usual, there is a sequenge <
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TGARSP:IEg?{(tIi (;I;)seed%under translation when for evefyt) € 2" and about two continuous LTI maps?,¥ : # — O, with
2That is: for everyf € 7 andr € R, definedy(t) = Z(f(1)) it is the same impulse response, is treated in Section lll. By

Lt —7)) =yt —1). (transfinite) induction we construct the widest &&{7, .¥)



of members of# related to2 through limits of sequences,As usual, for everyf € 2’ and everyp € 2, the complex

and we prove that?(f) = ¢(f) for atleastallf € £ (2,.7). numberf(y) is denoted by f, ¢), and, whenevef is a locally
As a consequence of this result, whene¥dr7, ) = .#, integrable function, it is

any continuous LTI mapZ : .# — ¢ is completely described oo

by its impulse response. This result agrees with a recent result (f o) = / f()e(t)dt

of Sandberg concerning a wide and significant class of LTI —0
maps.Z : L — L° continuous with respect to suitable 4 f» be a sequence of members @f, and letf € 7'; if
notions of convergence and limit (see Theorem 1 of [4]). ¢, everyp € 7 it is

To better understand the extent of the above result and
to give methods to determingE (Z,.#), in Section IV we lim (fx, ©) = (f, ¢)
analyze some (in our opinion particularly significant by them- koo
selves and as leading examples) spagésf functions or then we WriteQ’-inm k=1

— 00

distributions, showing in each case whether iti¢7, %) = In this Section we need also the spageof distributions

& or not. _ o with compact support. It is well known thaf’ can be
To be more precise, we prove that the following input Spacgsoquced via a duality pairing as a space of functionals as

I ) follows (see Theorem XXV of Chapter 3 of [5]).
o LPwith1<p<oo . Let & be the linear space &> complex-valued functions
* 7'1» (weak convergence) with < p < oo defined onR. Let ¢, be a sequence of members®fand let
e 9'1» (strong convergence) with < p < oo @ € &; if for every h € IN the sequencéd” ;. converges to
« &I Y D" uniformly on every compact subset B, then we write

(Where 2'.» is the natural extension df? into 2’ and." is ~ £- lim ¢}, = ¢.
the space of tempered distributions) all veliyf 7, .¥) = .7, koo
so proving that for such? every continuous LTI map? :
& — O is completely described by its impulse response.
On the other hand, we prove that the following input spac

&' is the set of the linear and continuous functionals from
& into C. As usual, for everyf € & and everyp € &, the
complex numberf(y) is denoted by f, »), and, whenevelf
fan integrable function with compact support, it is

B
€, L™, 91~ (strong convergence) (o) = /+°° FOo(t)dt
all verify ¥ (2, .7) # .#. As a consequence, whefi is one 7 —o0
of these last spaces, there may exist different continuous LTd; . be a sequence of members &f, and letf € &'; if
maps.?,¥ : .4 — ¢ with the same impulse response. for everyp € & it is
Concerning¥, the result of Sandberg proves that there
really exist different causal continuous LTI map®g,¥ : ler&(fk,¢> =(f, )

% — % with the same impulse response. Concerniiy

an analogous result has been proved by Sandberg in [4].then we Write@@’-klim fx = f; moreover it is well known
Section V, as corollaries of the result of Sandberg@@nwe  that this condition is verified if and only if there exists a
give a new proof that there exist different causal continuogempact subsefX of R such thatsupp f, € K for every
LTImaps.Z,¥ : L> — L with the same impulse responsef, and 2’- lim f;, = f.

and we prove that, whenever’,~ is considered with the |, rger'to handle linear changes of variables for distribu-

strong convergence, there exist different causal continuous lins. we agree to denote an elemgnt 2’ by a function-like
e , . : )
maps.?,¥ : 9’1~ — P~ with the same impulse reSpoNS€symbol f(t), so that the namet™ of the current variable is

pointed out. In this way, for every,a € R such that\ # 0,

- !l IMPULSE RESPONSE ~ we denote byf(\ +a) = f(a + At) the distribution defined
In this section we recall some basic notions on distributio

then, applying a theorem of Schwartz, we give a definition
of distributional impulse response and we show its first re-  (f(At+a),o(t)) = A7 {(f(t),o (A\"1(t —a)))
lation with convolution. Finally we analyze the relation of ) )
this impulse response with the one adopted by Sandberg foF €veryy € Z. In particular, forh =1,a = —7, we obtain
continuous LTI maps? : ¥ — % and with the response to/ (¢ —7) defined by
the Dirac impulse. _ _

Let 2 be the linear space @f> complex-valued functions (=)0t = (f(t) ot + 7))
defined onR with compact support. Lep;, be a sequence of and, forA = —1,a = 7, we obtainf(r — t) defined by
members of7, and lety € Z; if there is a compact subsét
of R such thatsupp ¢ C K for every k, and moreover for (f(r=1),0@1) = (f(t),p (T —1))
everyh € IN the sequenc®” ¢, converges ta"y uniformly
on R, then we Writeg-klin;og),€ = .

Let 2’ be the linear gpace of distributions @ i.e., the
space of the linear and continuous functionals fréninto C. (f*xo)t)=(f(T), ot —71)) = {(f(t —T),0(T))

For everyf(t) € ', ¢(t) € 2, the convolutionf = ¢ is the
C* function defined, for every € R, by



(see Theorem Xl of Chapter 6 of [5]). Observe that, whenever Proof: Fork =1,2,..., let T} be the set of allf € ¥
f(t) is a locally integrable function, this definition agrees witlsuch that

the usual definition f(t) = 0 for everyt € R
+o00 400 Supp f C [_1/k7 1/k}
(f*)(t) = / F(r)elt — )dr = / F(t - )p(r)dr /+oo
o o F(t)dt =1

Concerning continuous LTI maps, the remark following o
Theorem XXIII of Chapter 6 of [5] can be rewritten as: ~ Obviously it isTj, 2 Tj 1.
Theorem 2.1 (Schwartzl:et.¥ : 2 — 2’ be a continuous ~ FOr everyk =1,2,..., and everyr € R, let D, (7) be the

LTI map. Then the following statements hold: diameter of
a) for every sequence, € 2 with é”’—klim o = 6, {(ZH():fen}ce
the sequence? (¢) is convergent in?’, and A = Obviously it is Dy (7) > Dy41(7).
.@’-klim,%(cpk)isindependent of the particular sequence Observe that for everyr € R it is klim Dy(r) =
Orr o 0. Otherwise there would existp > 0 and pos-
b) for everyp € 7 itis ZL(¢) = A x . itve integers k; < ks < --- such that every
This theorem allows us to define an impulse response fgrkj () > 2p. Hence there would exisffi1, fi2,... and
every continuous LTI map (obviously under Assumptions %, fos,... such that, for everyj, it would be fi;, fo; €
and 2).Indeed let Ty, [(Z f15) (1) = (ZL f25) (1)| > p. This is absurd since it
LI =0 is lim (L f1;) (1) = Aus(7), lim (L fo5) (1) = Aus(T).
Jj—o0 J—00
be a continuous LTI map.Then the map As a consequence of the time invariance 9 it is easily
. proven that, for everyk = 1,2,..., everyn € R such that
LD -9 In| < 1/k —1/(k+1) = 1/(k(k + 1)), and everyr € R, it

! —~ . ) is1(Zf)(r): feT Ci(Z +n):9¢€ T,y and
defined by.Z(p) = £ (p) for everyy € 2, is a continuous henée i{?s(lglﬂf(f) ngk}(T +{77()- 9)(7+m) g € T}
LTI map. By Theorem 2.1 applied & we obtain that: Let 2d;, = 1/(k(k+1)); the previous result proves that, for
a) there exists a uniqué\ € 2’ such that, for every everyk, and everyr, it is
sequencep, € 2 with &'-1im ¢, = 4, it is A =
k—o0 Dk+1(7') <

7'-lim £ (1) Dy (t)

inf
te(T—2dg,7+2dy)

and that as a consequence
b) foreveryp € Zitis Z(p) =Axp sup Dy (1) < idnf ) Di(t)
The distributionA will be called theimpulse responsef .Z. te(r—di,7+dk) te(r—di+di)

The following theorems relate the above defined impulseLet K be a compact subset @, and lete > 0. For every
response to the one adopted by Sandberg for continuous ETk K, there existsk, such thatD_(7) < «; hence, for
maps.¥ : ¢ — ¢ and to the response to the Dirac impulseeveryt € (7 —dj._, 7 +dg,) it is Dy, 1(t) < . An usual

Let #/ = & = ¢. Since Assumptions 1 and 2 are verifiedtrick, depending on the compactnessof proves that there
every continuous LTI map? : ¢ — % has an impulse existskx such thatsup,cx Dy, (1) < €.
responseA € 2. As proven by the identity map, it may Let f;, be as in the text of the theorem. Lkt be a compact
be that.Z does not have an impulse response in the usualbset ofR, and lete > 0. Since everyf;, € T}, then for every
sense. The following theorem proves that, whenes&thas k. k, > ki and everyr € K it is

an impulse response in the usual sense, here denotéd, hy
then it iSA,, = A. (L ko) (T) = (L fr,) (T)] < Dy (1) <€

Theorem 2.2:Let £ : ¢ — ¢ be a continuous LTI map, This result proves that the sequencd(f;) is uniformly
admitting an impulse respongg, in the usual sense, and |etconvergent ork, and hence proves statements a) and b).

fr € ¢ be a sequence such that for evényt is: Concerning c), letf, be as above, but with the ulterior
£1(t) = 0 for everyt € R condition that everyf,, € 2, observe thatga’-kli_{gofk =4. By
supp fi C [-1/k,1/k] the definition of impulse response, itds = @’-klim Z (fr)-
+00 Since A, is continuous, it isA,s € 2’. By a) it is also
/ fe()dt =1 Ays = 7'- lim Z (fy,). HenceA = A, |

. _ Let the Dirac impulsed be an allowed input (i.e4 € .%),
The following statements hold: _ let £ : .# — ¢ be a continuous LTI map, and let be its
a) the sequence? (f;) converges toA,; uniformly on impulse response. Then we may expect the impulse response

every compact subset d; of the system being the response of the system to the Dirac
b) A.s is a continuous (not necessarily bounded and unimpulses, i.e., we may expect thak = Z(0).
formly continuous) function; The following unusual example proves that it may he#

c) Ayus =A. Z(5). Let £ be the subspace @’ spanned by.>> and by



the family §(¢t — ), with 7 € R, of the translated of(¢). It b) for1 < i, ¥, (2,.7) is the set of thef € .# such that
is easily seen that every(t) € # may be uniquely written, there exists a sequence
apart from zero summands, in the form

fre U 32,9

+ cpd (t— s
Z nd (6 =) with f = .7~ lim fy
with f(t) € L*®, v € IV, everyc, € C and everyr, € R. A 1S immediately seen that
sequencey,(t) € # will be called convergent in# if there 1) everyX; (Z,.7) is a subspace o/
existv, 71, ..., 7, such that every i) foreveryj <iitis¥;(2,7)C%;(2,7)
iiiy if, for j <iitisX; (2,4) =%, (2, #), then, for every
h suchthatj < hitis £;(2,.9) =%,(2,.7)
As a consequence, since the cardinality of eery%, .7) is
bounded by the cardinality of7, there exists a unique finite
with the sequencefi(t) convergent inL>, and thev se- or transfinite ordinalv > 1 such that
qguencesy, - . ., ¢k, convergent irC; in that case thex -limit iv) for every1 <j <i<uw, itis $;(2,.9) S i (2,.7)

of the sequencey (¢) is defined by v) for everyw < h, it is E (2, j) Sh (2,.9)

v The spaces,, (2,.#) will be denoted by>: (2, .#) and will
- lim gy (t) = L>- lim f,(¢) + Z ( lim Ckh) d(t—7n) be called thesequential closuref 2 in .7.
k—oo k—o0 k—oo . g .
=1 The significance o (2, .#) rests on the following two
Letd € C, and letZ : ¢ — % be the continuous LTI results. _
causal map defined by Theorem 3.1.Let ¥, ¥ : .# — € be two continuous LTI
maps with the same impulse resposeThen, for everyf €

() = fe(t) + ) cxnd (t — 7h)

h=1

v v (9,9),itis Z(f) =94(f).
&z (f(t) + ) end (t - Th)) = f(t)+ ) endd (t— 1) Proof: By transfinite induction orl < i, we prove that
= h=1 forevery f € %, (2,.9) itis Z(f) =9(f).

It is easily seen that Leti = 1, and letf € ¥, (2,9). Sipce there exists
a) the impulse response of is A = 6, a sequencepk: e 2 such thatf = j-klggo%’ then by
b) the response o to ¢ is .Z(6) = do; Theorem 2.1 it is

s0, choosingl = 1 it is .Z(6) = & = A but, choosing for Z(f) = 0-lim Z (¢y) = 0- lim A x gy,

instanced = 0 it is £ (6) = 0 # A. G(f) = O- lim 9 (py) = O- lim A % o
The following theorem gives a usually verified sufficient k=00 k—oo

condition on.# in order thatA = .#(9). Hence.Z(f) =9(f).

Theorem 2.3:Let .¥ : .# — ¢ be a continuous LTI map, Let1l <, and assume that the inductive statement holds for
and let A be the impulse response of. If § € .#, and everyj <i. Let f € ¥; (Z,.#). By definition, there exists a
there exists a sequengg € Z such tha’ré”— lim 5, = § and Sequencefy, fa,... such that every, € ¥, (7,.7), with a
7~ lim o, = 5, then it is.2(5) = A. koo suitablej < i, and thatf = .- lim f; then it is

Proof Let oy € 2 be a sequence such that L(f)=0-1im Z (fr) , 9(f)=0-1im ¥ (f)
&'- hm 0 gy, = = § and .7- hm 0 ), = = §. By definition it is k—oo k—oo

A= . hmiﬂ((pk) By assumptlon it iss- hm n o1, = 5. Since fi, € X, (2,7) and j, < i, by the inductive

hence by contlnuny it is”- hm Z(pr) = ,,2”(6) Slnce by asalér:(?g;](;;s;i;{,})): G- -

Assumption 1,0~ lim f(sﬁk) 7'-lim Z (pp), then itis  Theorem 3.2:Let £ (2,.9) = 7. Let £,9 : .9 — O be
Z(6) = A. m two continuous LTI maps with the same impulse respafise
Thenitis¥ =9.
Proof: The statement is a straightforward consequence
I1l. CONTINUOUSLTI MAPS WITH THE SAME IMPULSE of Theorem 3.1. -
RESPONSE SEQUENTIAL CLOSURE The above theorem proves that, whene¥d?, .#) = .7,
Let.# be an input space. In this section we find a sufficiegvery continuous LTI map? : .# — & is completely
condition on.# in order that every continuous LTI mag’ : described by its impulse response.
# — O is completely described by its impulse response. This result agrees with a recent one obtained by Sandberg
To this aim, for every finite or transfinite ordina with (see Theorem 1 of [4]) concerning a wide and significant class
1<, letX; (2,.7) be the subset of7 inductively defined Of continuous LTI maps?’ : .# — &, where:
by e 7 is L equipped with the following notion of conver-

a) ¥, (2,.7) is the set of thef € .# such that there exists gence and limit for sequenceg:= .7- lim fj, if either
a sequencey, € 2 with f = ﬂ-klim Ok feL®*nL! fpe L°NL'and f = Ll-klim fi, or



f € L*® and fi, = fwi, wherew, is the characteristic It is well known that everyf € L? is the limit of a sequence

function of the interval—k, kJ; of members of?, which implies as a direct consequence that
e ( is againL*> but equipped with the following notion ¥,(2, L?) = L?, hence

of convergence and limit for sequencegs= ﬁ_klggofk (2, 17) = L7

if f=L}.-lim f.
k=00 Let p = oo, and letL>° be the usual Banach space with the

Indeed we have: .
, ) norm defined by
a) 4 and ¢ verify Assumptions 1 and 2, hence every

continuous LTI map? : .# — ¢ admits an impulse | fllco = essential sup | f(¢)]
responseA (in 2’); teR
b) whenever anZ : .# — ¢ is in the class considered The argument adopted f&f prove that
by Sandberg and moreover admits an impulse response oy oy o
h € L' in the sense specified in (a) of Theorem 1 of [4], 2P, L%) =57, L) =% # L
thenh = A; Concerning the spaces of distributiofs, &', ./, by the
c) since forallf € Zitis f = J-klim fwy, and for all  proof of Theorem 1.20, by Corollary 1.5 and by the proof of
fwy, there exists a sequengs,; € Z such thatfw, = Theorem 1.31 of [6] it iS22 (2, 2') = 7', 32(2,&") = &'
- lim ¢y, then it is andX»(7,7") = &'; hence
J—00
ol — o)/ N !/ 7\ i
(D, I) = 50(D, F) = & (2,9')=92', 2(2,8) =8, X(2,Y)=Y
hence every continuous LTI mag : .4 — 0 is com- |
pletely described by its impulse response; in particula{

Last, we consider th&’.» spaces, which we are going to
|Justrate.
. : s T : "For eachl < p < oo the spaceZ’» is the natural extension
glvin a}ny. sequencey € 7 with & kli)n;o(pk = 4, since of L? in the space?’ of distributions, namely the subspace of
A =7" lim Z (¢y), then the behavior of the sequence,s spanned hyr? itself and by the distributional derivatives
Z(¢x) uniquely determines the behavior of; (of any order) of its elements. Despite their easy definition and
d) whenever anZ : .# — & is in the class considered bythe obvious reasons of their introduction—e.g. I#hvoltage
Sandberg, the representation &f(f) for every f € .# across a capacitor results in%i;» current—, in these spaces
given in (8) of Theorem 1 of [4] agrees with the abovglays a fundamental role a phenomenon which is not perceived
remark c) and makes apparent how the behavioizdf working with 2/, &', ',
on particular sequences convergingdétan &”, uniquely  As 2/, & and.#” (for this last, see Section 4 of Chapter 7 of
determines the behavior d¥ on the whole input space [5]), the 2'., spaces can be introduced via a duality pairing, as

S spaces of functionals, as follows (see Theorem XXV, Chapter 6
of [5]).
IV. A SURVEY OF SEQUENTIAL CLOSURES AND Let Z1» be the space of all’™ complex-valued functions
CONTINUOUSLTI MAPS COMPLETELY DESCRIBED BY o defined onR, such thatD"y € L? for any h € IN. Given
THEIR IMPULSE RESPONSE a sequencey;, of members of2.», andp € 2, we will

In this section, in order to apply Theorem 3.2, we test therite @Lp-klim pr =  if for every h € NN, the sequence
condition X(2, .#) = .# where .# is one of the following D"y, converges taD" in LP. For p = oo, Y~ denotes

spaces®’, L?, &",.", 7', Z'L». In our opinion these spacesy,s’ g phspace of7;.~, whose elements are the such that
are particularly significant both as spaces of signals and 38, DPo(t) = 0 for everyh € IN, equipped with a similar
leading examples to determing(Z,.#) for other possible |t|—oo '

choices of.#. notion of convergence an@; ~-lim for sequences.
Concerningé, since it is a Banach space, we have Forl < p < oo, 2'1» is the space of linear and continuous
_ functional f from 2, ,, into C, wherep’ is defined byl /p’ +
2(2,6) =%1(2,%) 1/p = 1. As usual, for everyf € Z'1», ¢ € Z;,/, the complex
Obviously,X(2,%) C 6, wheres, is the space of th§ € ¥ numberf(p) is denoted by f, »), and whenevey € L” it is
such that lim f(¢) = 0; moreover, it is well known that every

+oo
t|—oo _
f € % is the limit, with respect to the sup norm, of a sequence {f0) = / Fe(t)at

of members ofZ. Hence it is¥(2,%) = %, and then i o . i
For p = 1, 91 is the space of linear and continuous

X(2,€)=6#C functionals from%; - into C.

Concerning the spacds’ we distinguish between the case Working with spaces of distributions introduced via a dual-
1 < p < oo and the case = co. ity pairing, two notions of convergence need to be considered:

Let1 < p < oo, and letZ? be the usual Banach space witi? strong convergence and a weak one. As far as we are
the norm defined by concerned with?’, &’ and.#’ and only sequences are taken
into account, there is no distinction: a sequence is strongly
+oo 1/p . P
fll, = | F(6) [Pt convergent if and only if it is weakly convergent (see Theo—
p rem XlII of Chapter 3, Section 7 of Chapter 3 and Section 4

— 00



of Chapter 7 of [5]). But this is no longer true fé';» spaces Proof: Let p € Y1~. Fork =1,2,..., letn, € 2 be
(see Section 8 of Chapter 6 of [5]). Thus we first introducguch that|n,(¢)| < 1 for everyt € R, and thaty,(t) = 1 for
the notion of bounded set i, ,» with 1 < p’ < co and in everyt € [—k,k]. Let o, = npp € 2.

91, and then we explaistrong and weakconvergence for Let o € ;.. Every g0 € L'; for all 7 € R it is

sequences iY'». klim or(T)o (1) = @(7)o(r); moreoverpos € L' and, for
Let1<p' < oo, andletB C 7,,/; Bis called a bounded every i and everyr € R it is o (7)o (7)| < |¢(T)a(7)]. As
such that, for every, € N, it is oo too
Sup{HDhipHp’ L c B} < Mh kli»Holo - wk(t)o(t)dt = /_O<> @(t)a(t)dt
Bounded subsets d¥~ have a similar definition. ie., klim (pr,0) = (p,0). |
Let1 < p < cc. Let f), be a sequence of members®f.», As aooconsequence of Lemma 4.1, 4.2 and 4.3, we obtain
and letf € 2'1». If, for every bounded subse® of Z;,/, it that
is -
i B forl<p<ooitis X (2,w-P'») =
klggo<fk,50> =(f,¥) S0 (2, w-D'w) = D'po
uniformly with respect top € B, then we say that the for 1 <p <ooitis ¥(Z,5-P'1r) = )
sequencef;, strongly convergeso f, and we write %2(2,5P'v) = D'ur

_The analysis ok (7, s-2'.-) is slightly more difficult. Let
" denote the space of distributiofisconvergent td at in-
If, for every p € 2, ,/, it is finity, i.e., of the distributiong’ such that?’- lim f(t— 1) =

5-'pp= lim fi = f

7] =00
: 0.
;}E&U’“’ #) = {F9) Lemma 4.4:1tis ¥ (2,5 P'=) C 'y
then we say that the sequengeweakly convergew f, and Proof: The statement follows from the second and the
write last subsections of Section 8, Chapter 6 of [5]. [ |
w-P'rp- lim fi, = f Lemma 4.5:For every f € .QZ’LOC there exists a sequence
koo i € D1 such thatf = s-Z';- lim ¢y,.
Strong and weak convergence for sequence¥’in have Proof: Let f € & LethOO .
L . . : o r € 9 and o, = f x
similar definitions by using bounded subsets4p- andy € Ur € Py be as in the Proof of Lemma 4.1, so that=

.@LOC.
The sequential closure o in 2,» with respect to the

strong and the weak convergence will be denoted respectivélyand it is |tl‘im DM (f x ) (t) = \tl|im (f * D) (t) =

b .
T n@st) . s @wn) Jim (7(¢ =), D)) = 0: hence everyoy = f + 1 <

9 [ ]

:_n orderAtfolgfa}[lﬁzithefbove':sets, we need g,omtehlemmaﬁ;emma 4.6:For everyyp € QZLQC there exists a sequence
emma 4.1:Llet 1 < p < oco. For everyf € 21» there o € 7 such thatp:s-@iw-klim .
— 00

exists a sequencg, € Zr» such thatf = s-@’Lp-klim Ok
c— 00

L

and hencha such that - Zre- lim oy be as in the Proof of Lemma 4.3. L&t be a bounded subset
Proof: Let f € Z'.». Lety € 7 be such thath(t) >0 o ¢, and let)M, be a positive real such thatip{ ||o]; :

for everyt € R, supp ¢ = [~1,1] and [ ¢ = 1, and consider _ B} < M. For everyo € B it is

the sequence),(t) = ky(kt) € 2. It is easily seen that -

s—@iw—klim . Since?’- lim f(t — ) = 0, then for every

7| =00

Proof: Letp € Zp~, and letn, € 2, pp = nep € 2

s—@’Ll—klim Yy, = 6. Hence, sincg € 2’0, thenypy, = fxiy, [(r, ) — (p,0)| < fj;o Ik (t)p(t) — e(t)] o (t)]|dt <

is a seqﬁgonce of members 6f,» which strongly converges < e — @llos o]l < Mollmre — ©llos

to f in 2'1» (see the results on regularization in Section 8 of ) L , .

Chapter 6 of [5]). - Slnce‘tlllinoccp(t) =0, then it is s-.@Lm-leH;Ogok = . ]

Lemma 4.2:Let 1 < p < oo. For everyy € Z;» there By Lemma 4.6 it is

Xist n h thatp = s-2'1»- li ., an .
exists a sequencg;, € Z such thatp = s-2'; Jim o and 51 (D, 8- Do) D G
hence such thap = w-@’m—klim Ok

Proof: Let ¢ € Zr». Sirﬁ:%o, by Section 8 of Chapter gthen, by Lemma 4.5 it is

of [5] there exists a sequencg, of members ofZ such Y2 (2,5 P~) 2 P}
that o = Zr»- lim ¢y, and it is easily seen that convergence
] .  k—oo L L. so that
in 2.» implies strong convergence i#@’;», then it isy = (9 / =

’ . ( 78'-@L°°)2'@L°°
$-D'rp -khm Pk [ |

Lemma 4.3:For everyp € Zr- there exists a sequenceience, by Lemma 4.4 it is
o € 2 such thatp = w-.@im-kllngowk. (D, 5-D') = Dy o # Do



The above results can be summarized in the following Now let % : ¥ — ¥ be a causal continuous LTI map
Theorem 4.1:(a) Let.# be one of the following spaces such that: % (p) = 0 for every p € 2, and %(1) = 1—
existing by the result of Sandberg—, and consider the causal

p
L, lsp<oo continuous LTI map

» (Strong convergence)l < p < oo
2'1» (weak convergence) 1 < p < oo L =LL AL L — L™
éal,yl7 @/

For everyp € 2, itis ¢ * @9 € Z; henceZ () = 0. Since
“+o00

then (7, ) = 7. po(t)dt =1, itis 1+ ¢y = 1; henceZ(1) = 1, which

(b) Let .# be one of the following spaces

/ concludes the proof. m
¢, L>, 9'L~ (strong convergence) Proposition 5.2: Consider 2',~ with the strong conver-
thens}(2, .7) + .7 gence. There exist non null causal continuous LTI maps
As a consequence of Theorem 3.2 and 4.1, we obtain the L Do — Dpoo

following N
Corollary 4.1: Let .# be one of the spaces listed in part¥ith Impulse responsé =0. _
() of Theorem 4.1, and lef be any output space (verifying _ Proof: The proof is !dentlcal to the prgof of Proposi-
Assumption 1). Then any continuous LTI ma : .+ — ¢  Uon 5.1, merely substituting the spade® with the space
/.
is completely described by its impulse response. 9’ (strong convergence). "
The next section proves that Corollary 4.1 cannot be To understand why the argument of the proof of Proposi-

extended to any of the three spaces listed in part (b) tign 5.2 cannot be applied to LTI maps continuous with respect
Theorem 4.1. to the weak convergence, observe that the map

fo : @/Loo — @LOO

V. THREE PATHOLOGICAL INPUT SPACES which must be used in the proof of Proposition 5.2 is con-

In [2], Sandberg showed that there exist non null causghuous with respect to the strong convergenceZifi~ but

continuous LTI maps is not continuous with respect to the weak convergence in
PN 9'1-. Indeed, the sequencgt — 1),4(t — 2),... is weakly

‘ convergent td) in 9',-, but the sequencé(t — 1) x o (t) =
with impulse responsa = 0. We recall that all theZ in his  ©o(t — 1),0(t — 2) * o(t) = po(t — 2),... is not convergent
proof verify the conditions:Z(¢) = 0 for everyp € 2, and 1IN Dre~.
Z(1) is a non zero constant function, wherés the function
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supp o € [0, 40¢) . [ byt =1
—00

By Theorem XXV of Chapter 6 of [5], for every € L
itis f* ¢y € Y1, and, by the results on regularization in
Section 8, Chapter VI of [5], the linear map

L L® — Dreo

defined by %4, (f) = f * ¢ is continuous. Sinceupp ¢y C
[0,4+00), % is causal. HenceZ, is a causal continuous LTI
map.

Obviously 1« C € C L*, and the maps

LD —C , L5:C — L™

defined by ., (f) = f for every f € P, and Z5(f) = f
for every f € €, are causal continuous LTI maps.



