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Abstract

Linear differential equations P (D)x = Q(D)f with constant coefficients are considered
in the framework of signal processing theory. Necessary and sufficient conditions for the
existence of a continuous LTI system L which for every input f in Lp (resp. in D ′

Lp)
gives an output L (f) ∈ D ′ such that P (D)L (f) = Q(D)f are stated. The complete
landscape (with the exception of one pathology) of these systems is drawn. Properties
and conditions related to stability and causality are analyzed.

Keywords: continuous linear time-invariant systems, continuous-time signals, distri-
butional signals, linear differential equations.

1 Introduction

A signal defined on R is, from here on, a complex valued distribution on R, i.e. a member
of the space D ′. This assumption includes usual signals like continuous functions and
Lp functions, as well as less usual signals like distributional derivatives of any order of
continuous functions and of Lp functions.

Let P (D), Q(D) be two linear differential operators with constant coefficients in C, such
that

degP (D) > 1, Q(D) 6= 0

and let
P (D)x = Q(D)f (1)

be the corresponding linear differential equation, in which f = f(t) is a given signal and
x = x(t) is the unknown signal.

It is a classical result, developed in the nineteenth century and completed with the
coming of the Theory of Distributions, that for every f ∈ D ′ there exists at least one
solution ξ ∈ D ′ of Equation (1) and that the set S(f) of the solutions x ∈ D ′ of Equation
(1) is

S(f) =
{
x = ξ + η | η ∈ C∞ s.t. P (D)η = 0

}
Let I (input space) be a linear space of signals defined on R (i.e., a linear subspace of

D ′) closed under translation and equipped with a notion of convergence and limit (denoted
I -lim) for sequences, such that for every f ∈ I and every sequence fk ∈ I we have

f = I - lim
k→∞

fk ⇒ f = D ′- lim
k→∞

fk

Two sorts of systems with input space I and output space D ′ can be related to Equation
(1) following two basic approaches to system theory.

In the first one, called behavioral approach (see [4, Chapter 3, Section 3]), the system
with input space I and output space D ′ related to Equation (1) is the subset R of I ×D ′

defined by
R =

{
(f, x) ∈ I ×D ′ |P (D)x = Q(D)f

}
Observe that, in this approach

• R is linear, i.e., for every (f1, x1) (f2, x2) ∈ R and every c ∈ C we have

(f1 + f2, x1 + x2), (cf1, cx1) ∈ R

• R is time-invariant, i.e., for every (f(t), x(t)) ∈ R and every τ ∈ R we have

(f(t− τ), x(t− τ)) ∈ R
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• R is continuous, i.e., for every sequence (fk, xk) ∈ R and every (f, x) ∈ I ×D ′ such
that f = I - lim

k→∞
fk, x = D ′- lim

k→∞
xk it is (f, x) ∈ R.

These systems have been widely studied in recent years (see [4] and [10]).
In the second approach, adopted in signal processing theory, a system with input space

I and output space D ′ is a map L : I → D ′ (possibly continuous, time-invariant, stable,
etc...). In this approach, a system related to Equation (1) is a map

L : I → D ′

which for every input f gives an output L (f) such that

P (D)L (f) = Q(D)f

Every such a system will be called differential system related to P (D), Q(D) and defined
on I .

Notice that in the behavioral approach Equation (1) yields an unique system R, while
the landscape of all the systems obtained in the second approach is enormous. Furthermore,
whereas in the behavioral approach the unique system related to Equation (1) is linear, time-
invariant and continuous by its own definition, in the second approach the corresponding
properties are not always satisfied and it arises the problem of finding those systems which
are linear, time invariant (LTI for short) and continuous.

To illustrate the complexity of this problem and the information one can get from our
results let us point out the following three examples.

Firstly let us consider I = L∞ and P (D) = D,Q(D) = 1. In this case, the differential
systems related to P (D), Q(D) and defined on I are the

L : L∞ → D ′

of the form

[L (f)](t) =
∫ t

0
f(τ)dτ + c(f)

where c : L∞ → C is an arbitrary map. As we will see in Thm. 3.3 below, among them
there is no continuos LTI differential system.

Secondly let us consider I = L1 and P (D) = D + 1, Q(D) = 1. In this case, the
differential systems related to P (D), Q(D) and defined on I are the

L : L1 → D ′

of the form
[L (f)](t) =

(
e−tH(t)

)
∗ f(t) + c(f) e−t

where c : L1 → C is an arbitrary map, and H is the Heaviside function. Here the symbol(
e−tH(t)

)
∗f(t) stands conventionally for (g∗f)(t), where g(t) = e−tH(t). In this situation,

as we will see in Thm. 3.5, there exists only one continuous LTI differential system related
to P (D), Q(D) and defined on L1, obtained by c(f) = 0 for every f .

Thirdly let us consider I = L1 and P (D) = D2 +ω2, Q(D) = 1, ω being a positive real
number. In this case, the differential systems related to P (D), Q(D) and defined on I are
the

L : L1 → D ′

of the form

[L (f)](t) = (eiωtH(t)) ∗ (e−iωtH(t)) ∗ f(t) + c(f) eiωt + d(f) e−iωt
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where c : L1 → C, d : L1 → C are arbitrary maps. In this situation, as we will see in Thm.
3.5, there exist infinitely many continuous LTI differential systems related to P (D), Q(D)
and defined on L1, obtained by c(f) = µf̂(ω) and d(f) = νf̂(−ω) with µ, ν ∈ C (f̂ being
the Fourier transform of f).

As far as we know, no results on differential systems related to P (D), Q(D) are known.
The purpose of this paper is to locate and to describe all the continuos linear time-

invariant differential systems when the input space I is either the usual Banach space Lp,
or the subspace D ′

Lp of D ′ spanned by Lp itself and by the distributional derivatives (of
any order) of its elements.

In Lp the notion of convergence and limit (denoted Lp-lim) for sequences is the one
induced by the usual norm

‖f‖p =
(∫

R

|f |p
) 1

p

if 1 6 p < ∞

‖f‖∞ = essentialsup t∈R|f(t)| if p = ∞

In D ′
Lp both the notions of weak and strong convergence and the corresponding notions of

limit (denoted w-D ′
Lp-lim and s-D ′

Lp-lim) for sequences, are considered; a system

L : D ′
Lp → D ′

will be called weakly continuous (w-continuous) or strongly continuous (s-continuous) if it
is continuous with respect to the weak or to the strong convergence in D ′

Lp .
The leading ideas we adopt to locate and describe all the continuos LTI systems are

listed below. These ideas are based on our previous results on continuous LTI systems (see
[2], [3]) and on some generalizations for distributional spaces of the notion of convolution
product (see [9]).

First idea. Let L : Lp → D ′ or L : D ′
Lp → D ′ be a continuous LTI system. Then

• by [3, Section II] there exists the impulse response ∆ ∈ D ′ of L , defined by

∆ = D ′- lim
k→∞

L (ϕk)

where ϕk ∈ D is any sequence such that

E ′- lim
k→∞

ϕk = δ

where E ′ is the space of distributions with compact support;

• by [3, Thms 2.1 and 2.2] it is ∆ ∈ D ′
Lp′ , where as usual 1/p+ 1/p′ = 1

Second idea. Let L : Lp → D ′ or L : D ′
Lp → D ′ be a continuous LTI differential system

related to P (D), Q(D) and let ∆ ∈ D ′
Lp′ be its impulse response. Let ϕk ∈ D be a sequence

such that E ′- lim
k→∞

ϕk = δ. Then

P (D) (L (ϕk)) = Q(D)ϕk

D ′- lim
k→∞

P (D) (L (ϕk)) = D ′- lim
k→∞

Q(D)ϕk

and, since P (D), Q(D) are continuous,

P (D)
(

D ′- lim
k→∞

L (ϕk)
)

= Q(D)
(

D ′- lim
k→∞

ϕk

)
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Hence by the definition of ∆, we get

P (D)∆ = Q(D)δ

Thus ∆ must be a fundamental solution of Equation (1) in D ′
Lp′ , i.e. a solution of the

equation {
P (D)x = Q(D)δ
x ∈ D ′

Lp′
(2)

Third idea. Let Ξ ∈ D ′
Lp′ be a solution of Equation (2). Then for every f ∈ D ′

Lp we have
by the properties of convolution product

P (D)(Ξ ∗ f) = (P (D)Ξ) ∗ f = (Q(D)δ) ∗ f = Q(D)f

hence Ξ ∗ f ∈ S(f). As a consequence the LTI system

LΞ : D ′
Lp → D ′

defined, for every f ∈ D ′
Lp , by LΞ(f) = Ξ ∗ f is a LTI differential system related to

P (D), Q(D) (for the continuity and causality properties of LΞ, see [3, Section IV]).

Here follows a brief summary of our results.
In Section 2, as asked by the first and second ideas, we consider the equation P (D)x =

Q(D)δ and we find necessary and sufficient conditions for the existence of solutions in
D ′

Lp ; furthermore when the necessary and sufficient conditions hold we give an explicit
description of these solutions (we remark that there exists an unique solution, apart from
the case where the solutions are sought in D ′

L∞).
In Section 3 we give necessary and sufficient conditions on P (D), Q(D) for the existence

of continuous LTI differential systems defined on Lp or on D ′
Lp associated to P (D), Q(D)

and, when these conditions are met, we characterize all such systems.
In Section 4 we give necessary and sufficient conditions of causality for the continuous

LTI differential systems defined on Lp or on D ′
Lp associated to P (D), Q(D) and moreover

we prove that all these systems have very good properties of “stability”.
We stress that the results of this paper rest on non trivial results on uniformly almost

periodic functions stated and proved in Appendix A. It is worth to mention that, although
their relevance does not appear in the statement of our main theorems, uniformly almost
periodic functions play an essential role in the proof of all the above mentioned theorems.

Notation

Throughout this paper we will deal with the following distributional spaces:

D ′ the space of distributions

E ′ the space of distributions with compact support

S ′ the space of tempered distributions

D ′
Lp the natural extension of Lp into D ′

Ḋ ′
L∞ the space of distributions null at ∞

For a survey of the above mentioned spaces and their main properties we use in this paper
we refer to [3, Section 1].
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2 Fundamental solutions

Let P (D), Q(D) be two linear differential operators with constant coefficients in C, such
that degP (D) > 1, Q(D) 6= 0 and let P (X), Q(X) ∈ C[X] be the associated polynomials.
Let degP (X) = n and write P (X) in the form

P (X) = c (X − s1)
p1 · · · (X − sr)

pr

where s1 = σ1 + iω1, . . . , sr = σr + iωr ∈ C are pairwise distinct, and p1, . . . , pr ∈ N are all
> 1. Let degQ(X) = m and write Q(X) in the form

Q(X) = (X − s1)
q1 · · · (X − sr)

qr Q1(X)

where q1, . . . , qr ∈ N and Q1(X) is relatively prime with P (X).
It is well known that Q(X)/P (X) may be uniquely written in the form

Q(X)
P (X)

=
∑

l:pl>ql

(
pl−ql∑
h=1

Klh
1

(X − sl)
h

)
+R(X)

where

R(X) =


0 if m < n
m−n∑
h=0

KhX
h if m ≥ n

and Klh, Kh are complex numbers that satisfy

• Klh 6= 0 for h = pl − ql;

• Km−n 6= 0 if m > n.

Let
(
D ′

+; +, ∗
)

be the ring of the distributions whose support is left bounded (notice that
no request of a common left bound is assumed), with the usual sum “+”, the convolution
product “∗” and the identity element given by the usual Dirac impulse δ = δ(t) (cf. [9,
Chapter VI, Section 5]).

In this Section we consider the differential equation

P (D)x(t) = Q(D)δ(t)

finding the solutions respectively in D ′
+,D

′,S ′,D ′
Lp , Ḋ ′

L∞ . Firstly, let us consider the dif-
ferential equation {

P (D)x(t) = Q(D)δ(t)

x(t) ∈ D ′
+

(3)

Now, this differential equation may be written in the form{
P (δ(1)) ∗ x(t) = Q(δ(1))

x(t) ∈ D ′
+

and, since P (δ(1)) is invertible in (D ′
+; +; ∗), taking its inverse it is immediately seen that

the unique solution of Equation (3) is

ξ(t) =
[
P
(
δ(1)(t)

) ]−1 ∗Q
(
δ(1)(t)

)
It is also well known that the use of the Laplace transform allows us to write ξ(t) in the
form

ξ(t) =
∑

l:pl>ql

Λl(t)esltH(t) + Λ (t)

where
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• for every l ∈ {1, . . . , r} such that pl > ql, Λl(t) is the polynomial function of degree
pl − ql − 1 defined by

Λl(t) =
pl−ql∑
h=1

Klh
th−1

(h− 1)!
(4)

• Λ(t) = R(δ(1)) =


0 if m < n
m−n∑
h=0

Khδ
(h)(t) if m ≥ n

As an immediate consequence the solutions of{
P (D)x(t) = Q(D)δ(t)

x(t) ∈ D ′ (5)

are parametrically described by

x(t) =
∑

l:pl>ql

Λl(t)esltH(t) + Λ (t) +
r∑

l=1

Ml(t)eslt

where the parameters Ml(t) are polynomial functions of degree 6 pl − 1. Setting

L− = { l : pl > ql, σl < 0 } , L+ = { l : pl > ql, σl > 0 } , L0 = { l : pl > ql, σl = 0}

and letting

Γ(t) =
∑
l∈L−

Λl(t)esltH(t)−
∑
l∈L+

Λl(t)esltH(−t) + Λ(t) (6)

Ω(t) =
∑
l∈L0

Λl(t)eiωltH(t) (7)

it is easily seen that the solutions of Equation (5) may be parametrically described by

x(t) = Γ(t) + Ω(t) +
∑

l:σl=0

Ml(t)eiωlt +
∑

l:σl 6=0

Ml(t)eslt (8)

where the parameters Ml(t) are still polynomial functions of degree 6 pl − 1; observe that

•
∑
l∈L−

Λl(t)esltH(t)−
∑
l∈L+

Λl(t)esltH(−t) ∈ L1

• Γ(t) ∈ D ′
L1 ⊂ Ḋ ′

L∞ ⊂ D ′
L∞ ⊂ S ′

• Ω(t) ∈ S ′, since it is a locally integrable function slowly increasing in the usual sense

•
∑

l:σl=0

Ml(t)eiωlt ∈ S ′, since it is a locally integrable function slowly increasing in the

usual sense

Lemma 2.1 The solutions of {
P (D)x(t) = Q(D)δ(t)

x(t) ∈ S ′ (9)
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are parametrically described by

x(t) = Γ(t) + Ω(t) +
∑

l:σl=0

Ml(t)eiωlt

where the parameters Ml(t) are polynomial functions of degree 6 pl − 1.

Proof. By Corollary A.4 in the Appendix, the summand∑
l:σl 6=0

Ml(t)eslt

in Equation (8) is a member of S ′ if and only if it is null. �

Lemma 2.2 The following statements are equivalent:

a) the equation {
P (D)x(t) = Q(D)δ(t)

x(t) ∈ D ′
L∞

(10)

has solutions

b) for every l such that σl = 0, it is ql > pl − 1

When one of the above condition is verified, the following statements subsist:

i) Ω(t) =
∑

l:σl=0, ql=pl−1

Kl1e
iωltH(t)

where Kl1 6= 0 for every l.

ii) Ω(t) ∈ D ′
L∞

iii) the solutions of Equation (10) are parametrically described by

x(t) = Γ(t) + Ω(t) +
∑

l:σl=0

µle
iωlt

where µl ∈ C for every l.

Proof. a)⇒b). Let ξ(t) ∈ D ′
L∞ be such that P (D)ξ(t) = Q(D)δ(t). Since D ′

L∞ ⊂ S ′,
by Lemma 2.1 there exist polynomial functions Ml(t), with degree 6 pl − 1, such that

ξ(t) = Γ(t) + Ω(t) +
∑

l:σl=0

Ml(t)eiωlt

Since ξ(t),Γ(t) ∈ D ′
L∞ , it is ξ(t)− Γ(t) ∈ D ′

L∞ hence∑
l∈L0

Λl(t)eiωltH(t) +
∑

l:σl=0

Ml(t)eiωlt ∈ D ′
L∞

Since the ωl such that σl = 0 are pairwise distinct, by Corollary A.6, Λl(t) and Ml(t)
are constant functions. In particular, for every l such that σl = 0, if pl > ql then it is
pl − ql − 1 = deg Λl(t) = 0, and hence ql = pl − 1. As a consequence, for every l such that
σl = 0 it is ql > pl − 1.
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b)⇒i),ii). Obvious.
b)⇒iii). Obviously all the

x(t) = Γ(t) + Ω(t) +
∑

l:σl=0

µle
iωlt

(where µl ∈ C for every l) are solutions of the equation. Let ξ(t) be a solution. Since
D ′

L∞ ⊂ S ′, by Lemma 2.1 there exist polynomial functions Ml(t), with degree 6 pl − 1,
such that

ξ(t) = Γ(t) + Ω(t) +
∑

l:σl=0

Ml(t)eiωlt

Since ξ(t),Γ(t) + Ω(t) ∈ D ′
L∞ , also∑

l:σl=0

Ml(t)eiωlt ∈ D ′
L∞

Since the ωl such that σl = 0 are pairwise distinct, by Corollary A.5, Ml(t) is a constant
function for every l.

b)⇒a). Now obvious. �

Lemma 2.3 The following statements are equivalent:

a) the equation {
P (D)x(t) = Q(D)δ(t)

x(t) ∈ Ḋ ′
L∞

(11)

has solutions

b) for every l such that σl = 0, it is ql > pl

When one of the above condition is verified, the following statements subsist:

i) Ω(t) = 0

ii) x(t) = Γ(t) is the only solution of Equation (11) (remember that Γ(t) ∈ D ′
L1).

Proof. a)⇒b), i), ii). Let ξ(t) ∈ Ḋ ′
L∞ be such that P (D)ξ(t) = Q(D)δ(t). Since

Ḋ ′
L∞ ⊂ D ′

L∞ , by Lemma 2.2 there exist µl ∈ C such that

ξ(t) = Γ(t) + Ω(t) +
∑

l:σl=0

µle
iωlt

Since ξ(t), Γ(t) ∈ Ḋ ′
L∞ , we have

Ω(t) +
∑

l:σl=0

µle
iωlt ∈ Ḋ ′

L∞

Again by Lemma 2.2 we have

• for every l such that σl = 0, it is ql > pl − 1

• Ω(t) =
∑

l:σl=0, ql=pl−1

Kl1e
iωltH(t)

where Kl1 6= 0 for every l.
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Hence ∑
l:σl=0, ql=pl−1

Kl1e
iωltH(t) +

∑
l:σl=0

µle
iωlt ∈ Ḋ ′

L∞

As a consequence of Corollary A.7 we obtain that

• there cannot exist l such that

σl = 0, ql = pl − 1

hence for every l such that σl = 0 it is ql > pl (remember that, by Lemma 2.2, it is
ql > pl − 1). In particular Ω(t) = 0;

• µl = 0 for every l hence, in particular, Γ(t) is the only solution of Equation (11).

b)⇒a). Obviously we have

P (D)(Γ(t) + Ω(t)) = Q(D)(δ(t))

Hence, since by assumption it is Ω(t) = 0, and by construction it is Γ(t) ∈ Ḋ ′
L∞ , we conclude

that Γ(t) is a solution of Equation (11) �

Lemma 2.4 Let 1 6 p < ∞. The following statements are equivalent:

a) the equation {
P (D)x(t) = Q(D)δ(t)

x(t) ∈ D ′
Lp

(12)

has solutions

b) for every l such that σl = 0, it is ql > pl

When one of the above condition is verified, the following statements subsist:

i) Ω(t) = 0

ii) x(t) = Γ(t) is the only solution of Equation (12) (remember that Γ(t) ∈ D ′
L1)

Proof. a)⇒b),i),ii). Since D ′
Lp ⊂ Ḋ ′

L∞ , the equation{
P (D)x(t) = Q(D)δ(t)

x(t) ∈ Ḋ ′
L∞

has solutions. Hence the statements follow by Lemma 2.3.
b)⇒a). By Lemma 2.3, the equation{

P (D)x(t) = Q(D)δ(t)

x(t) ∈ Ḋ ′
L∞

has solutions, and x(t) = Γ(t) is the only solution. Since Γ(t) ∈ D ′
L1 ⊆ D ′

Lp , the statement
is proved. �
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3 The landscape of continuos LTI differential systems de-
fined on Lp and on D ′

Lp

We can now give a complete description (with the exception of one pathology) of the
landscape of continuous LTI differential systems

L : Lp → D ′ L : D ′
Lp → D ′

related to P (D), Q(D). Unfortunately our picture is not so short as we hoped, but in our
opinion now the results should be particularly clear and readable, such as their correspond-
ing proofs.

So, as in the previous section, let P (X), Q(X) ∈ C[X] — the polynomials associated to
P (D), Q(D) — be written as

P (X) = c (X − s1)
p1 · · · (X − sr)

pr

Q(X) = (X − s1)
q1 · · · (X − sr)

qr Q1(X)

where s1 = σ1 + iω1, . . . , sr = σr + iωr ∈ C, and let Γ(t) ∈ D ′
L1 ,Ω(t) ∈ S ′, be the

distributions defined in Equations (6), (7). Finally remember that if 1 < p < q < ∞ then
there are the following inclusions

D ′
L1 ⊂ D ′

Lp ⊂ D ′
Lq ⊂ Ḋ ′

L∞ ⊂ D ′
L∞ ⊂ S ′

As it is usual in studying Lp and D ′
Lp we will distinguish between the case 1 < p < ∞

and the cases p = 1, p = ∞. Our first result is the following:

Theorem 3.1 Let 1 < p < ∞. The following statements are equivalent:

i) the rational function Q(s)/P (s) has no pole on the complex imaginary axis, i.e. for
every l such that σl = 0, it is ql > pl

ii) there exists a w-continuous LTI differential system

L : D ′
Lp → D ′

related to P (D), Q(D)

iii) there exists a s-continuous LTI differential system

L : D ′
Lp → D ′

related to P (D), Q(D)

iv) there exists a continuous LTI differential system

L : Lp → D ′

related to P (D), Q(D)

If one of the above equivalent conditions is verified then the following statements hold:

a) LΓ : D ′
Lp → D ′ is the only w-continuous (resp. s-continuous) LTI differential system

defined on D ′
Lp, related to P (D), Q(D)

b) the restriction of LΓ to Lp is the only continuous LTI differential system defined on
Lp, related to P (D), Q(D)
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c) for every f ∈ D ′
Lp, LΓ(f) is the only distribution null at ∞ (i.e. a member of Ḋ ′

L∞)
which solves the equation

P (D)x = Q(D)f

Proof. ii)⇒i), iii)⇒i), iv)⇒i). Let L be a system as in ii), iii), iv). As pointed out
in Section 1, there exists the impulse response ∆ ∈ D ′ of L , and we have ∆ ∈ D ′

Lp′ (see
First idea), moreover P (D)∆ = Q(D)δ (see Second idea). Hence the equation{

P (D)x(t) = Q(D)δ(t)
x(t) ∈ D ′

Lp′

has at least one solution (namely ∆). As a consequence, by Lemma 2.4, for every l such
that σl = 0, it is ql > pl.

i)⇒a). Let us firstly consider the system

LΓ : D ′
Lp −→ D ′

f 7→ Γ ∗ f

Since Γ(t) ∈ D ′
L1 ⊂ D ′

Lp′ , by [3, Thms 4.2 and 4.3], LΓ is a weakly (resp. strongly)
continuous LTI system. By Lemma 2.4 it is P (D)Γ = Q(D)δ; hence, as pointed out in
Section 1 (see Third idea), for every f ∈ D ′

Lp we have

P (D)(Γ ∗ f) = (P (D)Γ) ∗ f = (Q(D)δ) ∗ f = Q(D)f

Thus LΓ is also a differential system related to P (D), Q(D).
Now let L : D ′

Lp → D ′ be a weakly (resp. strongly) continuous LTI differential system
related to P (D), Q(D), and let ∆ be its impulse response. As above we obtain that ∆ is a
solution of the equation {

P (D)x(t) = Q(D)δ(t)
x(t) ∈ D ′

Lp′

and then by Lemma 2.4 we have ∆ = Γ. By [3, Thm. 5.3] we obtain L = LΓ.
i)⇒b). First note that the restriction of LΓ to Lp is a continuous differential system

related to P (D), Q(D).
Now let L : Lp → D ′ be a continuous LTI differential system related to P (D), Q(D),

and let ∆ ∈ D ′ be its impulse response. As in the proof of i)⇒ a), we obtain ∆ = Γ. By
[3, Thm. 5.1] L is the restriction of LΓ to Lp.

i)⇒c). Since Γ ∈ D ′
L1 , f ∈ D ′

Lp and 1 < p < ∞, by [3, Thm. 4.1] we obtain LΓ(f) ∈
D ′

Lp ⊂ Ḋ ′
L∞ . Now let g(t) ∈ S(f) ∩ Ḋ ′

L∞ ; we can write

g(t) = LΓ(f) +
∑

l:σl=0

Ml(t)eiωlt +
∑

l:σl 6=0

Ml(t)eslt

where Ml(t) are polynomials (see Equation (8)). Thus since the first and second summands
∈ S ′, then ∑

l:σl 6=0

Ml(t)eslt ∈ S ′

and hence, by Corollary A.4, we obtain that for every l such that σl 6= 0 it is Ml(t) = 0.
As a consequence ∑

l:σl=0

Ml(t)eiωlt

12



is a distribution null at ∞. By Corollary A.5, for every l such that σl = 0, there exists
Kl ∈ C such that Ml(t) = Kl. As a consequence we have that∑

l:σl=0

Kle
iωlt

is a distribution null at ∞; by Corollary A.2, for every l such that σl = 0 we have Ml(t) =
Kl = 0. Hence g(t) = LΓ(f). To prove that i)⇒ii), i)⇒iii), i)⇒iv), merely observe that
a)⇒ii), a)⇒iii), b)⇒iv). �

Now we analyze the case p = ∞.

Theorem 3.2 Let p = ∞. The following statements are equivalent:

i) the rational function Q(s)/P (s) has no pole on the complex imaginary axis, i.e. for
every l such that σl = 0, it is ql > pl

ii) there exists a w-continuous LTI differential system

L : D ′
L∞ → D ′

related to P (D), Q(D)

If one of the above equivalent conditions is verified then the following statements hold:

a) LΓ : D ′
L∞ → D ′ is the only w-continuous LTI differential system defined on D ′

L∞,
related to P (D), Q(D)

b) for every f ∈ D ′
L∞,

LΓ(f) +
〈
eiωlt : l such that σl = 0

〉
is the set of all the bounded distributions (i.e. members of D ′

L∞) which solve the
equation

P (D)x = Q(D)f

Proof. ii)⇒i). Let L be a system as in ii), and let ∆ ∈ D ′ be its impulse response.
As in the Proof of Theorem 3.1, we obtain that ∆ is a solution of the equation{

P (D)x(t) = Q(D)δ(t)
x(t) ∈ D ′

L1

As a consequence, by Lemma 2.4, for every l such that σl = 0, it is ql > pl.
i)⇒a). Let L : D ′

L∞ → D ′ be a weakly continuous LTI differential system related to
P (D), Q(D), and let ∆ ∈ D ′ be its impulse response. As above we obtain that ∆ is a
solution of {

P (D)x(t) = Q(D)δ(t)
x(t) ∈ D ′

L1

As a consequence, by Lemma 2.4 we have ∆ = Γ. By [3, Thm. 5.6] we obtain L = LΓ. To
show the existence, as in the proof of i)⇒a) of Theorem 3.1, we obtain that LΓ : D ′

L∞ → D ′

is a weakly continuous LTI differential system related to P (D), Q(D).
i)⇒b) Same argument of the Proof of i)⇒c) of Theorem 3.1.
To prove that i)⇒ii), merely observe that a)⇒ii). �

Theorem 3.3 Let p = ∞. The following statements are equivalent:

i) the rational function Q(s)/P (s) has no pole on the complex imaginary axis, i.e. for
every l such that σl = 0, it is ql > pl

13



ii) there exists a s-continuous LTI differential system

L : D ′
L∞ → D ′

related to P (D), Q(D)

iii) there exists a continuous LTI differential system

L : L∞ → D ′

related to P (D), Q(D)

If one of the above equivalent conditions is verified then the following statements hold:

a) LΓ : D ′
L∞ → D ′ is a strongly continuous LTI differential system defined on D ′

L∞,
related to P (D), Q(D)

(the pathology of D ′
L∞ doesn’t allow us to say that L = LΓ)

b) the restriction of LΓ to L∞ is a continuous LTI differential system defined on L∞,
related to P (D), Q(D)

(the pathology of L∞ doesn’t allow us to say that L is the restriction of LΓ to L∞)

c) let L : D ′
L∞ → D ′ be a s-continuous LTI differential system related to P (D), Q(D),

then for every f ∈ Ḋ ′
L∞ we have

L (f) = LΓ(f) = Γ ∗ f

d) let L : L∞ → D ′ be a continuous LTI differential system related to P (D), Q(D), then
for every f ∈ C◦ (where C◦ is the space of the C0 functions null at infinity in the
usual sense) we have

L (f) = LΓ(f) = Γ ∗ f

Proof. ii)⇒i). Same argument of ii)⇒i) in the Proof of Theorem 3.2.
i)⇒a). Already proved in the Proof of Theorem 3.2.
i)⇒b). Merely observe that i)⇒a), and that a)⇒b).
i)⇒c),i)⇒d). Let ∆ be the impulse response of L . As in i)⇒a) of Theorem 3.2 we obtain

∆ = Γ. Hence, the statements follow by [3, Thms. 5.2, 5.7]
i)⇒ii), i)⇒iii). Merely observe that a)⇒ii), b)⇒iii). �
We remark that the analysis of the case p = ∞ does not give a complete description

of the corresponding continuous LTI differential systems since on one hand it shows the
typical pathology of strong convergence, while on the other hand it gives no evidence of the
meaning of LΓ(f).

At last we consider the case p = 1.

Theorem 3.4 Let p = 1. The following statements are equivalent:

i) the rational function Q(s)/P (s) has no pole on the complex imaginary axis, i.e. for
every l such that σl = 0, it is ql > pl

ii) there exists a w-continuous LTI differential system

L : D ′
L1 → D ′

related to P (D), Q(D)

If one of the above equivalent conditions is verified then the following statements hold:

14



a) LΓ : D ′
L1 → D ′ is the only weakly continuous LTI differential system defined on D ′

L1,
related to P (D), Q(D)

b) for every f ∈ D ′
L1, LΓ(f) is the only distribution null at ∞ which solves the equation

P (D)x = Q(D)f

Proof. ii)⇒i). Let L be as in ii), and let ∆ ∈ D ′ be its impulse response. By [3, Thm.
2.3] we have ∆ ∈ Ḋ ′

L∞ , hence the equation{
P (D)x(t) = Q(D)δ(t)
x(t) ∈ Ḋ ′

L∞

has at least one solution (namely ∆). As a consequence, by Lemma 2.3, for every l such
that σl = 0, it is ql > pl.

i)⇒a). Let L : D ′
L1 → D ′ be a weakly continuous LTI differential system related to

P (D), Q(D), and let ∆ ∈ D ′ be its impulse response. As above, we obtain that ∆ is a
solution of {

P (D)x(t) = Q(D)δ(t)
x(t) ∈ Ḋ ′

L∞

hence, by Lemma 2.3 we have ∆ = Γ. By [3, Thm. 5.4] we obtain L = LΓ. As in the
proof of statement i⇒b) of Theorem 3.1, we obtain that LΓ : D ′

L1 → D ′ is a w-continuous
LTI differential system related to P (D), Q(D).

i)⇒b). Same argument of i)⇒c) in the Proof of Theorem 3.1.
i)⇒ii). Merely observe that i)⇒a) and that a)⇒ii). �
Studying continuous LTI differential systems defined on L1 and s-continuous LTI dif-

ferential systems defined on D ′
L1 is quite subtle and needs the notion of distributions null

at −∞.
Let f(t) ∈ D ′; f(t) will be called a distribution null at −∞ if it verifies one of the

following equivalent conditions:

• D ′- lim
τ→+∞

f(t− τ) = 0

• for every ϕ ∈ D , it is lim
t→−∞

(f ∗ ϕ)(t) = 0

(the proof of the equivalence is straightforward).
Obviously

• every locally integrable function f(t), null at −∞ in the usual sense, is a distribution
null at −∞

• every f(t) ∈ Ḋ ′
L∞ , is a distribution null at −∞

• every f(t) ∈ D ′
Lp , with 1 6 p < ∞, is a distribution null at −∞

Handling this concept, a little attention must be used: there are functions non null at −∞
in the usual sense, which are distributions null al −∞; for instance f(t) = eit

2
(for the non

trivial proof see [9, Chapter VII,Section 5]).

Remark 3.1 Let f(t) ∈ D ′
L1, and let ω0 ∈ R. Since f(t) ∈ S ′, we may consider the

Fourier Transform f̂(ω) of f(t).1 The following statements hold

1For every f(t) ∈ L1, the definition of Fourier Transform we adopt is the following: f̂(ω) =

Z
R

e−iωtf(t)dt
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a) f̂(ω) ∈ C0

b) eiω0t ∗ f(t) = f̂(ω0)eiω0t

Proof. Writing f(t) in the form

f(t) =
µ∑

h=0

f
(h)
h (t)

with fh(t) ∈ L1 for every h, we obtain

f̂(ω) =
µ∑

h=0

(iω)hf̂h(ω)

a) Since f̂h(ω) ∈ C0 for every h, also f̂(ω) ∈ C0.
b) By [3, Section III] we have

eiω0t ∗ f(t) =
µ∑

h=0

(
Dheiω0t

)
∗ fh(t) =

µ∑
h=0

(iω0)heiω0t ∗ fh(t) =

=
µ∑

h=0

(iω0)h

∫
fh(τ)eiω0(t−τ)dτ = eiω0t

µ∑
h=0

(iω0)hf̂h(ω0) = f̂(ω0)eiω0t

�

Remark 3.2 Let ω1, . . . , ων ∈ R, c1, . . . , cν ∈ C, f(t) ∈ D ′
L1. Then(

ν∑
l=1

cle
iωltH(t)

)
∗ f(t)

is a distribution null at −∞.

Proof. Let ω0 ∈ R, g(t) ∈ L1, and let

G(t) =
(
eiω0tH(t)

)
∗ g(t)

Since

G(t) =
∫
g(τ)eiω0(t−τ)H(t− τ)dτ = eiω0t

∫ t

−∞
g(τ)e−iω0τdτ

then G(t) is a continuous function, bounded and null at −∞ in the usual sense. As a
consequence, G(t) is a distribution null at −∞.

Let h ∈ N; by [3, Section III] we have(
eiω0tH(t)

)
∗ g(h)(t) = G(h)(t)

hence, for every ϕ ∈ D , we have

lim
t→−∞

(
G(h) ∗ ϕ

)
(t) = lim

t→−∞

(
G ∗ ϕ(h)

)
(t) = 0

As a consequence,
(
eiω0tH(t)

)
∗ g(h)(t) is a distribution null at −∞.

Since f(t) may be written in the form f(t) =
µ∑

h=0

f
(h)
h (t) with fh(t) ∈ L1 for every h, the

statement follows by the above argument. �
With the help of the notion of distributions null at −∞ and the above results we obtain

the following theorem.
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Theorem 3.5 Let p = 1. The following statements are equivalent:

i) the rational function Q(s)/P (s) has no pole of order > 1 on the complex imaginary
axis, i.e. for every l such that σl = 0, it is ql > pl − 1

ii) there exists a s-continuous LTI differential system

L : D ′
L1 → D ′

related to P (D), Q(D)

iii) there exists a continuous LTI differential system

L : L1 → D ′

related to P (D), Q(D)

If one of the above conditions is verified then

a) Ω(t) =
∑

l:σl=0, ql=pl−1

Kl1e
iωltH(t) ∈ L∞, and Kl1 6= 0 for every l.

Furthermore for every family of complex numbers

µ = (µl ∈ C : l such that σl = 0)

let
Φµ(t) = Γ(t) + Ω(t) +

∑
l:σl=0

µle
iωlt

Then we have:

b) Φµ(t) ∈ D ′
L∞ for every µ

c) the family (depending on µ)

Lµ = LΦµ : D ′
L1 → D ′

is the family of all s-continuous LTI differential systems defined on D ′
L1, related to

P (D), Q(D); in particular

L0 = L(Γ+Ω) : D ′
L1 → D ′

is a s-continuous LTI differential system related to P (D), Q(D)

d) the family (depending on µ) of the restrictions of the Lµ to L1 is the family of all
continuous LTI differential systems defined on L1, related to P (D), Q(D)

e) for every µ and every f(t) ∈ D ′
L1 it is

Lµ(f(t)) = L(Γ+Ω)(f(t)) +
∑

l:σl=0

µlf̂(ωl)eiωlt

f) for every f ∈ D ′
L1, L0(f) = L(Γ+Ω)(f) is the only distribution null at −∞ and

bounded which solve the equation

P (D)x = Q(D)f

17



Observe that the families of systems described in c) (respectively d)) reduces to one
element if and only if P (s) has no roots on the imaginary axis.

Proof. ii)⇒i),iii)⇒i). Let L be as in ii) or as in iii), and let ∆ ∈ D ′ be its impulse
response. As in the Proof of Theorem 3.1, we obtain that ∆ is a solution of the equation{

P (D)x(t) = Q(D)δ(t)
x(t) ∈ D ′

L∞

Hence, by Lemma 2.2, for every l such that σl = 0, it is ql > pl − 1.
i)⇒a), i)⇒b). See statements i), ii) of Lemma 2.2.
i)⇒c). Let L : D ′

L1 → D ′ be a s-continuous LTI differential system related to P (D), Q(D),
and let ∆ ∈ D ′ be its impulse response. As above we obtain that ∆ is a solution of the
equation {

P (D)x(t) = Q(D)δ(t)
x(t) ∈ D ′

L∞

As a consequence, by Lemma 2.2, there exists µ such that ∆ = Φµ. By [3, Thm. 5.5], we
obtain L = Lµ.

As in i)⇒a) in the Proof of Theorem 3.1, we obtain that Lµ : D ′
L1 → D ′ is a s-continuous

LTI differential system related to P (D), Q(D).
i)⇒d). Same argument of i)⇒b) in the Proof of Theorem 3.1.

i)⇒e). Follows by Remark 3.1.
i)⇒f). Obviously L(Γ+Ω)(f) is a bounded distribution. Moreover by Remark 3.2 it is a

distribution null at −∞.
Now let g(t) ∈ S(f) be a distribution null at −∞ and bounded. There exist polynomials

Ml(t) such that

g(t) = L(Γ+Ω)(f(t)) +
∑

l:σl=0

Ml(t)eiωlt +
∑

l:σl 6=0

Ml(t)eislt

Since g ∈ S ′ and

L(Γ+Ω)(f(t)) +
∑

l:σl=0

Ml(t)eiωlt ∈ S ′

then ∑
l:σl 6=0

Ml(t)eislt ∈ S ′

hence, by Corollary A.4, for every l such that σl 6= 0, we have Ml(t) = 0. As a consequence∑
l:σl=0

Ml(t)eiωlt = g(t)−L(Γ+Ω)(f(t))

is a distribution null at −∞ and bounded. By Corollary A.6, for every l such that σl = 0
there exist Kl ∈ C such that Ml(t) = Kl. As a consequence∑

l:σl=0

Kle
iωlt

is a distribution null at −∞; hence, by Corollary A.2, for every l such that σl = 0 we have
Ml(t) = Kl = 0.

i)⇒ii), i)⇒iii). Merely observe that i)⇒c), i)⇒d), and that c)⇒ii), d)⇒iii). �
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4 Properties and conditions related to stability and causality

In the above section we have just seen that every continuous LTI differential system L :
Lp → D ′, L : D ′

Lp → D ′, can be identified with systems of the form LΓ or Lµ.
In this section we analyze some interesting properties of these LΓ and Lµ.
We recall that a system L : I → D ′ is said to be causal if for every t0 ∈ R and for

every f, g ∈ I with supp (f − g) ⊂ [t0,+∞), it is supp (L (f)−L (g)) ⊂ [t0,+∞).
The notion of stability for a continuos LTI system

L : I → D ′

relies on requests of the following form:

• particular classes of input signals (for instance L∞-signals) must have outputs in
particular classes of signals (for instance L∞-signals).

• sequences of input signals converging in a suitable sense (for instance in L∞) must
have outputs converging in some suitable sense (for instance still in L∞).

Notice that the conditions outlined as an example in the above parentheses concern the
notion of L∞-stability, often denoted BIBO-stability.

In the following theorems we do not refer to any explicit definition of stability but we
give results of the above form, which can be used in the different situations one need to
consider.

So, as in the previous sections, let P (X), Q(X) ∈ C[X] be the polynomials associated
with P (D), Q(D):

P (X) = c (X − s1)
p1 · · · (X − sr)

pr

Q(X) = (X − s1)
q1 · · · (X − sr)

qr Q1(X)

let Q(s)/P (s) be the related rational function and let Γ,Ω be the distributions defined in
Equations (6) and (7).

The following theorem gives the answers to the problem of causality and stability related
to Theorems 3.1, 3.2, 3.3, 3.4.

Theorem 4.1 Let 1 6 p 6 ∞. Assume that Q(s)/P (s) has no pole on the complex imagi-
nary axis (i.e. for every l such that σl = 0, it is ql > pl) and consider the LTI differential
system related to P (D), Q(D)

LΓ : D ′
Lp −→ D ′

f 7→ Γ ∗ f

The following statements hold:

a) Γ ∈ D ′
L1 ⊂ Ḋ ′

L∞

b) LΓ (D ′
Lp) ⊂ D ′

Lp

c) LΓ : D ′
Lp → D ′

Lp is continuous with respect to the strong convergence in both spaces,
and with respect to the weak convergence in both spaces

d) LΓ (Lp) ⊂ Lp ⇔ degQ(D) 6 degP (D)
Under this assumption LΓ : Lp → Lp is continuous with respect to the usual norm in
both spaces

e) LΓ : D ′
Lp → D ′ (respectively: its restriction to Lp) is causal ⇔ Q(s)/P (s) has no

pole in the complex halfplane {s ∈ C : Re(s) > 0} (i.e. for every l s.t. σl > 0 it is
ql ≥ pl)
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Proof. a) See Equations (6)–(8) and relative comments.
b) It follows by [3, Thm. 4.1].
c) It follows by [3, Thms. 3.1 , 3.3].
d) If degQ(D) 6 degP (D), then Γ(t) = Γ0(t) + Λ(t), where (setting, as in Section 2,

L− = {l : pl > ql, σl<0}, L+ = {l : pl > ql, σl>0})

Γ0(t) =
∑
l∈L−

Λl(t)esltH(t)−
∑
l∈L+

Λl(t)esltH(−t) ∈ L1 ∩ L∞

Λ(t) = Kδ(t) with K ∈ C

As a consequence, for every f ∈ Lp, we have

LΓ(f) = Γ0 ∗ f +Kf

By Young’s Theorem we obtain

LΓ(f) = Γ0 ∗ f +Kf ∈ Lp

‖LΓ(f)‖p = ‖Γ0 ∗ f +Kf‖p 6 (‖Γ0‖1 + |K|) ‖f‖p

Suppose that degQ(D) = degP (D) + ν with ν > 0. Then Γ(t) = Γ0(t) + Λ(t) where

Γ0(t) ∈ L1 (see above)

Λ(t) =
ν∑

h=0

Khδ
(h)(t) with Kν 6= 0

Let f(t) = χ(−1,1)(t) ∈ Lp, then

LΓ(f(t)) = (Γ0 ∗ f) (t) +K0f(t) +
ν∑

h=1

Kh

(
δ(h−1)(t+ 1)− δ(h−1)(t− 1)

)
Since (Γ0 ∗ f) (t) +K0f(t) ∈ Lp and Kν 6= 0, we obtain LΓ(f(t)) 6∈ Lp.

e) By [3, Thm. 4.6] LΓ is causal if and only if supp Γ ⊂ [0,+∞); thanks to the
definition of Γ(t), this happens if and only if there doesn’t exist l such that σl > 0 and
pl > ql. Obviously, if supp Γ ⊂ [0,+∞) then the restriction of LΓ to Lp is causal. If the
restriction of LΓ to Lp is causal, write δ = E ′- lim

k→∞
ϕk where ϕk ∈ D , supp ϕk ⊂ [0,+∞);

by [2, Theorem 2.1] we obtain Γ = E ′- lim
k→∞

LΓ(ϕk); since supp LΓ(ϕk) ⊂ [0,+∞) then

supp Γ ⊂ [0,+∞). �
The following theorem gives the answers to the problem of causality and stability related

to Theorem 3.5.

Theorem 4.2 Let p = 1. Assume that Q(s)/P (s) has no pole of order > 1 on the
complex imaginary axis (i.e. for every l such that σl = 0, it is ql > pl − 1), and consider
the family (depending on µ) of the LTI differential systems

Lµ = LΦµ : D ′
L1 → D ′

f 7→ Φµ ∗ f

related to P (D), Q(D). The following statements hold:

a) Φµ ∈ D ′
L∞

b) Lµ (D ′
L1) ⊂ D ′

L∞
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c) Lµ : D ′
L1 → D ′

L∞ is continuous with respect to the strong convergence in both spaces

d) Lµ

(
L1
)
⊂ L∞ ⇔ degQ(D) < degP (D)

Under this assumption Lµ : L1 → L∞ is continuous with respect to the usual norms
in both spaces

e) In the family Lµ : D ′
L1 → D ′ (or respectively in the family of their restrictions to

L1) there exists a causal system ⇔ Q(s)/P (s) has no pole in the complex halfplane
{s ∈ C : Re(s) > 0};
under this assumption L0 = L(Γ+Ω) : D ′

L1 → D ′ (resp. its restriction to L1) is the
only causal system in the family

Proof. a) Already stated in b) of Theorem 3.5.
b) It follows by [3, Thm. 4.1].
c) It follows by [3, Thm. 3.1].
d) If degQ(D) < degP (D), as in the first part of the Proof of d) of Theorem 4.1, since

Γ = Γ0 ∈ L1 ∩ L∞ we obtain that Lµ

(
L1
)
⊂ L∞ and that Lµ : L1 → L∞ is continuous

with respect to the usual norms in both spaces.
If degQ(D) > degP (D), as in the second part of the Proof of d) of Theorem 4.1, we

obtain that Lµ

(
χ−1,1(t)

)
6∈ L∞.

Finally let degQ(D) = degP (D), and let f(t) ∈ L1 be such that f(t) 6∈ L∞. It is easily
seen that Lµ (f(t)) 6∈ L∞.

e) By [3, Thm. 4.6] Lµ is causal if and only if supp Φµ ⊂ [0,+∞); by the definition
of Φµ, this happens if an only if the following two conditions are verified: i) µ = 0, ii)
there doesn’t exist l such that σl > 0 and pl > ql. Moreover if supp Φµ 6⊂ [0,+∞), as in
Theorem 4.1 it is easily seen that the restriction of Lµ to L1 is not causal. �

A Appendix: Uniformly almost periodic functions

Let f(t) : R→ C be a function, and let ε 6= 0. In this Section we call almost period of f(t)
relative to ε a real number T > 0 such that for every t0 ∈ R, there exists τ ∈ [t0, t0 + T ]
satisfying

|f(t+ τ)− f(t)| < ε for every t ∈ R

The function f(t) is be called uniformly almost periodic if

• f(t) ∈ C0

• for every ε > 0 there exists an almost period T of f(t) relative to ε

The following results are well known (see [1])

• every continuous periodic function is uniformly almost periodic

• the set of uniformly almost periodic functions is a vector subspace of C0

• every linear combination of continuous periodic functions is uniformly almost periodic

• if f(t) is uniformly almost periodic then

– f(t) is bounded and uniformly continuous

– Re f(t), Im f(t) are uniformly almost periodic

– for every λ ∈ R, f(λt), f(t+ λ) are uniformly almost periodic
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The following theorem proves that every non null uniformly almost periodic function
cannot be null at infinity.

Theorem A.1 Let f(t) be an uniformly almost periodic function; the following statements
are equivalent:

a) lim
t→+∞

f(t) = 0

b) lim
t→−∞

f(t) = 0

c) f(t) = 0 for every t ∈ R

Proof. a)⇒c). Let n > 1. By the assumption there exists a real number tn > 0 such
that

|f (tn + t)| < 1/n for every t > 0

Let Tn be an almost period of f(t) relative to 1/n. Then there exists

τn ∈ [−n− tn − Tn,−n− tn]

such that
|f (t+ τn)− f(t)| < 1/n for every t ∈ R

Writing τn = −n− tn − σn, with 0 6 σn 6 Tn, we obtain

|f (t− n− tn − σn)− f(t)| < 1/n for every t ∈ R

Substituting t with tn + t we obtain

|f (−n− σn + t)− f(tn + t)| < 1/n for every t ∈ R

and hence
|f (−n− σn + t)| < |f(tn + t)|+ 1/n for every t ∈ R

As a consequence it is

|f (−n− σn + t)| < 2/n for every t > 0

and hence
|f (t)| < 2/n for every t > − n

b)⇒c). Let g(t) = f(−t) and apply the previous result to g(t).
Obviously c)⇒a), c)⇒b). �
The following theorem proves that every regularization of an uniformly almost periodic

function is uniformly almost periodic.

Theorem A.2 Let f(t) be an uniformly almost periodic function, and let ϕ(t) ∈ D . Then
(f ∗ ϕ)(t) is uniformly almost periodic.

Proof. If ϕ(t) = 0, the statement is obvious. Let ϕ(t) 6= 0, and let µ =
∫
|ϕ| > 0.

Let ε > 0, let T > 0 be an almost period of f(t) relative to ε/(2µ), and let t0 ∈ R.
There exists τ ∈ [t0, t0 + T ] such that

|f(t+ τ)− f(t)| < ε/(2µ) for every t ∈ R
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Write fτ (t) = f(t+ τ). For every t ∈ R it is

|(f ∗ ϕ)(t+ τ)− (f ∗ ϕ)(t)| = |(fτ ∗ ϕ)(t)− (f ∗ ϕ)(t)| =

= |((fτ − f) ∗ ϕ)(t)| =
∣∣∣∣∫ (fτ − f) (x)ϕ(t− x)dx

∣∣∣∣ 6
6
∫
|f(x+ τ)− f(x)| · |ϕ(t− x)|dx 6 (ε/(2µ))

∫
|ϕ| = ε/2 < ε

As a consequence T is an almost period of (f ∗ ϕ)(t) relative to ε. �
As corollaries of Theorem A.1 and A.2 we can now state the results used in the proofs

of the theorems of Sections 2 and 3.

Corollary A.1 Let ω1, . . . , ων ∈ R be pairwise distinct, and c1, . . . , cν ∈ C be not all equal
to 0. Then there exist µ > 0 and two sequences τ ′k, τ

′′
k ∈ R such that

• lim
k→∞

τ ′k = +∞,

∣∣∣∣∣
ν∑

l=1

cle
iωlτ

′
k

∣∣∣∣∣ > µ for every k

• lim
k→∞

τ ′′k = −∞,

∣∣∣∣∣
ν∑

l=1

cle
iωlτ

′′
k

∣∣∣∣∣ > µ for every k

Proof. Simply observe that
ν∑

l=1

cle
iωlt is uniformly almost periodic (as a linear combi-

nation of continuous periodic functions), and non-zero (since the family eiωlt, l = 1, . . . , ν
is linearly independent); then apply Theorem A.1. �

Corollary A.2 Let ω1, . . . , ων ∈ R be pairwise distinct, and let c1, . . . , cν ∈ C. The fol-
lowing statements are equivalent

a)
ν∑

l=1

cle
iωlt is a distribution null at ∞

b)
ν∑

l=1

cle
iωlt is a distribution null at −∞

c) c1 = · · · = cν = 0

Proof. Obviously a)⇒b), and c)⇒a).
b)⇒c). Let B ∈ R be such that

0 < B < min
{

π

4 · |ωl|
: l such that ωl 6= 0

}
and let ϕ(t) ∈ D be such that supp ϕ ⊂ (−B,B), ϕ(t) > 0 for every t ∈ R,

∫
ϕ 6= 0. A

straightforward argument proves that ϕ̂(ωl) 6= 0 for every l (here ϕ̂(ω) denotes the Fourier
transform of ϕ(t)).

Observe that (
ν∑

l=1

cle
iωlt

)
∗ ϕ(t) =

ν∑
l=1

clϕ̂(ωl)eiωlt

is a function null at −∞ in the usual sense. As a consequence, by Corollary A.1, for every
l we have clϕ̂(ωl) = 0, and hence cl = 0 �
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Corollary A.3 Let ω1, . . . , ων ∈ R be pairwise distinct, and M1(t), . . . ,Mν(t) be polyno-
mial functions not all constant. Then there exist two sequences τ ′k, τ

′′
k ∈ R such that

• lim
k→∞

τ ′k = +∞, lim
k→∞

∣∣∣∣∣
ν∑

l=1

Ml

(
τ ′k
)
eiωlτ

′
k

∣∣∣∣∣ = +∞

• lim
k→∞

τ ′′k = −∞, lim
k→∞

∣∣∣∣∣
ν∑

l=1

Ml

(
τ ′′k
)
eiωlτ

′′
k

∣∣∣∣∣ = +∞

Proof. Write the polynomial functions Ml(t) in the form Ml(t) =
p∑

h=0

mlht
h, with p > 1

and at least one of the coefficients m1p, . . . ,mνp non null. By Corollary A.1, there exists
µ > 0 and two sequences τ ′k, τ

′′
k ∈ R such that

• lim
k→∞

τ ′k = +∞,

∣∣∣∣∣
ν∑

l=1

mlpe
iωlτ

′
k

∣∣∣∣∣ > µ for every k

• lim
k→∞

τ ′′k = −∞,

∣∣∣∣∣
ν∑

l=1

mlpe
iωlτ

′′
k

∣∣∣∣∣ > µ for every k

Then observe that for every k it is

ν∑
l=1

Ml

(
τ ′k
)
eiωlτ

′
k = (τ ′k)

p

(
α′k +

ν∑
l=1

mlpe
iωlτ

′
k

)
,

ν∑
l=1

Ml

(
τ ′′k
)
eiωlτ

′′
k = (τ ′′k )p

(
α′′k +

ν∑
l=1

mlpe
iωlτ

′′
k

)

where lim
k→∞

α′k = 0 and lim
k→∞

α′′k = 0. �

Corollary A.4 Let s1 = σ1 + iω1, . . . , sν = σν + iων ∈ C be pairwise distinct, M1(t), . . . ,Mν(t)
be polynomial functions not all null, and P0(t) be a polynomial function. If σl 6= 0 for every
l = 1, ..., ν then

a)
ν∑

l=1

Ml(t)eslt + P0(t) is not a slowly increasing function in the usual sense

b)
ν∑

l=1

Ml(t)eslt 6∈ S ′

Proof. Changing, if necessary, the family of indices, we may assume Ml(t) not null for
every l.

a) Assume first that there exists an l s.t. σl > 0, and let

σ = max{σ1, . . . , σν} > 0

Then it is
ν∑

l=1

Ml(t)eslt + P0(t) = eσt

α(t) +
∑

l:σl=σ

Ml(t)eiωlt


where lim

t→+∞
α(t) = 0. By Corollaries A.1 and A.3, there exist µ > 0 and a sequence τk ∈ R

such that

• lim
k→∞

τk = +∞
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•

∣∣∣∣∣∣
∑

l:σl=σ

Ml (τk) eiωlτk

∣∣∣∣∣∣ > µ for every k

As a consequence,

∣∣∣∣∣
ν∑

l=1

Ml(t)eslt + P0(t)

∣∣∣∣∣ cannot be bounded by any |F (t)| where F (t) is a

polynomial function.

Assume now that σl < 0 for every l, and let Φ(t) =
ν∑

l=1

Ml(−t)e−slt + P0(−t); by the

previous result Φ(t) is not slowly increasing in the usual sense; as a consequence, also

Φ(−t) =
ν∑

l=1

Ml(t)eslt + P0(t) is not.

b) Let f(t) =
ν∑

l=1

Ml(t)eslt; by [9, Chapter VII, Thm. VI] f(t) ∈ S ′ if and only if there

exist n ∈ N, g(t) ∈ C0 such that

• g(t) is slowly increasing in the usual sense

• f(t) = g(n)(t)

It is well known that every g(t) ∈ D ′ such that f(t) = g(n)(t) may be written in the form

g(t) =
ν∑

l=1

Nl(t)eslt +Q0(t)

where Nl(t) and Q0(t) are polynomial functions. Obviously there exists Nl(t) 6= 0. By a),
g(t) cannot be slowly increasing in the usual sense. �

Corollary A.5 Let F (t) =
p∑

l=0

tlfl(t) where fl(t)’s are uniformly almost periodic functions,

p > 1, fp(t) 6= 0. Then F (t), F (t)H(t), F (t)H(−t) 6∈ D ′
L∞.

Proof. Changing if necessary F (t) with iF (t), we may assume Re fp(t) 6= 0. Changing
if necessary F (t) with −F (t), by Theorem A.1 we may assume that there exist a real number
µ > 0 and a sequence τk ∈ R such that

lim
k→∞

τk = +∞, Re fp(τk) > µ for every k

Let T be an almost period of Re fp(t) relative to µ/8.
For every τk, there exists a real number −τk + σk ∈ [−τk,−τk + T ] (i.e. a real number

σk ∈ [0, T ]) such that

|Re fp(t− τk + σk)− Re fp(t)| < µ/8 for every t ∈ R

and hence, changing t with t+ τk, such that

|Re fp(t+ σk)− Re fp(t+ τk)| < µ/8 for every t ∈ R (A.1)

Since every σk ∈ [0, T ], changing if necessary the sequence τk with a subsequence, we
may assume that there exists σ ∈ [0, T ] such that lim

k→∞
σk = σ.

Since Re fp(t) is uniformly continuous, there exists a real number ζ > 0 such that for
every pair (t′, t′′) such that |t′′ − t′| < ζ it is |Re fp(t′′)− Re fp(t′)| < µ/8. Changing if
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necessary the sequence τk with a subsequence, we may assume that |σk −σ| < ζ for every
τk, and hence

|Re fp(t+ σk)− Re fp(t+ σ)| < µ/8 for every t ∈ R (A.2)

As a consequence of Equations (A.1) and (A.2) it is

|Re fp(t+ σ)− Re fp(t+ τk)| =
= |Re fp(t+ σ)− Re fp(t+ σk) + Re fp(t+ σk)− Re fp(t+ τk)|
< 2 · µ/8 = µ/4 for every t ∈ R

(A.3)

Taking t = 0 in Equation (A.3) we obtain |Re fp(σ)− Re fp(τk)| < µ/4. Since Re fp(τk) > µ,
it is Re fp(σ) > µ− µ/4 = 3µ/4. Then there exists a real number B > 0 such that

Re fp(t+ σ) > 3µ/4 for every t ∈ (−B,B)

As a consequence of Equation (A.3) it is also

Re fp(t+ τk) > 3µ/4− µ/4 = µ/2
for every t ∈ (−B,B)

(A.4)

Last, observe that, for every t 6= 0, F (t) may be uniquely written in the form

F (t) = tp (ψ(t) + fp(t))

with ψ(t) continuous on R \ {0}, and such that there exists a real number C > 0 s.t.

|ψ(t)| < µ/4 for every |t| > C

Let Φ(t) = F (t)H(t).

Let ϕ(t) ∈ D be such that supp ϕ ⊂ (−B,B), ϕ(t) > 0 for every t ∈ R,
∫
ϕ = 1. For

every τk > C +B it is

Re (Φ ∗ ϕ)(τk) =

=
∫ τk+B

τk−B
tp (Re ψ(t) + Re fp(t))ϕ (τk − t) dt =

=
∫ B

−B
(τk + t)p (Re ψ(τk + t) + Re fp(τk + t))ϕ (−t) dt

Since for every t ∈ (−B,B) it is

• (τk + t)p > (τk −B)p > 0

• since τk + t > C, Re ψ(τk + t) + Re fp(τk + t) > − µ/4 + µ/2 = µ/4 > 0

• ϕ(−t) > 0

then
Re (Φ ∗ ϕ)(τk) > (τk −B)p · (µ/4) ·

∫
ϕ = (µ/4) · (τk −B)p

As a consequence (Φ ∗ ϕ)(t) is not bounded in R, and hence Φ(t) = F (t)H(t) 6∈ D ′
L∞ .

The proof for F (t) and F (t)H(−t) are straightforward consequences. �

Corollary A.6 Let F (t) =
p∑

l=0

tlfl(t), G(t) =
q∑

l=0

tlgl(t) where fl(t)’s ,gl(t)’s are uni-

formly almost periodic function. The following statements are equivalent:
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a) F (t)H(t) +G(t) ∈ D ′
L∞

b) for every l 6= 0 it is fl(t) = 0, gl(t) = 0

Proof. a)⇒b). Assume for a contradiction that gl(t) 6= 0 for some l 6= 0. The argument
adopted in the Proof of Corollary A.5 may be used to prove that F (t)H(t) +G(t) 6∈ D ′

L∞

(simply use a sequence τk such that lim
k→∞

τk = −∞) which is absurd. Hence it is gl(t) = 0

for every l 6= 0. In particular G(t) = g0(t) is an uniformly almost periodic function, and
hence G(t) ∈ D ′

L∞ .
As a consequence F (t)H(t) ∈ D ′

L∞ , and hence by Corollary A.5 it is fl(t) = 0 for every
l 6= 0.

b)⇒a). F (t)H(t)+G(t) is a locally integrable bounded function; hence F (t)H(t)+G(t) ∈
D ′

L∞ . �

Corollary A.7 Let F (t), G(t) be uniformly almost periodic functions. If F (t)H(t)+G(t) ∈
Ḋ ′

L∞, then F (t) = G(t) = 0.

Proof. Let Φ(t) = F (t)H(t) + G(t), ϕ(t) ∈ D , and ϕ̃(t) = ϕ(−t). By the argument
pointed out in the last paragraph of [9, Chapter VI, section 8] it is lim

|t|→∞
(Φ ∗ ϕ̃)(t) = 0.

Obviously there exists t0 < 0 such that for every t < t0 it is (Φ∗ ϕ̃)(t) = (G∗ ϕ̃)(t), hence
lim

t→−∞
(G ∗ ϕ̃)(t) = 0.

By Theorem A.2, (G ∗ ϕ̃)(t) is uniformly almost periodic, hence by Theorem A.1, (G ∗
ϕ̃)(t) = 0 for every t ∈ R; in particular

〈G(t), ϕ(t)〉 =
∫
G(τ)ϕ̃(0− τ)dτ = (G ∗ ϕ̃)(0) = 0

Hence for every ϕ ∈ D it is 〈G(t), ϕ(t)〉 = 0. As a consequence G(t) = 0 and Φ(t) =
F (t)H(t). Let again ϕ(t) ∈ D , and ϕ̃(t) = ϕ(−t). Observe that there exists t0 > 0
such that for every t > t0 it is (Φ ∗ ϕ̃)(t) = (F ∗ ϕ̃)(t), hence lim

t→+∞
(F ∗ ϕ̃)(t) = 0. As a

consequence, the argument previously applied to G(t) proves that F (t) = 0. �
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