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Abstract—In this paper it is shown that every continuous LTI moreover necessary and sufficient conditions under which this
(linear time-invariant) system .’ defined either oOn/LP or on @/ILP limit reduces to an ordinary convolution. In [3], [4] Sandberg
(1 < p < o) admits an impulse responsed € 7', (1 <P < considered continuous LTI systems where the inputs are drawn

oo, 1/p+1/p =1). , .
Schwartz extension to 2'.» distributions of the usual notion from L? (with 1 < p < oc) and the outputs are bounded

of convolution product for L? functions is used to prove that functions, showing that an impulse resporselways exists;
(apart some restrictions for p = oo) for every f either in L? or moreover he pointed out thah € L¥', where p/ is the

in Z'Lv we have Z(f) = Axf. _ _ _ conjugate index ofp, and that for every inpuf € LP the
Perspectives of applications to linear differential equations are corresponding output is given by« f, where % is the usual
shown by one example. .
convolution of functions. Finally in [6] Sandberg considered
also continuous LTI systems&’ : L>*® — L (where the
I. INTRODUCTION input and output spaces are equipped with particular notions
of convergence and limit for sequences); in the same reference
he described? as an iterated limit of a convolution and he
gave necessary and sufficient conditions under which this limit
LI -0 can be written as a convolution with an integrable impulse

where:.# (input space) and’ (output space) are linear Spacegesponse function.

of signals defined ofk, both closed under translation, aid ~ This paper and the previous one [7] must be considered as
is a linear map which commutes with translation. If moreovéin attempt to face in the realm of distribution theory some of
# and ¢ are equipped with notions of convergence anihe problem posed by Sandberg.

limit for sequences (denoted’-lim and £-lim respectively)  Our analysis is based on the ideas and on the language
and for everyf € # and everysequencef, € .# such of L. Schwartz, treated for instance in its classical book on
that .- lim fk = fitis O- hm .,iﬂ(fk) = Z(f), then distribution theory [8]. In particular, Thm. XXIIl, Ch. 6 of [8]
L. g F 0 is said to becontmuous allowed us to start our study, proving that for every continuous

For continuous LTI systems a crucial role is plaid by the dell system.” : .#° — ¢ it can be defined an impulse response
calledimpulse responsén recent papers (see [1], [2] and [5])A € 2',i.e., in the space of all distributions (for a brief survey
Sandberg pointed out that, even if an impulse respdnseay ©n distributions sedlotation and conventiorat the end of this
be defined for#, we cannot always expect that the knowledggection), as far as” and &' verify two simple assumptions
of A shall determine the behavior ¢f. Indeed he proved that Which merely exclude too strange input and output spaces
there exist different continuous causal LTI System’ﬁ %y (See [7], Section | for deta”S). Our definition agrees with the
¢ — ¢ with the same impulse responge= 0, where% is hotion of impulse response adopted by Sandberg in [1]-[6]
the space of bounded uniformly continuous complex valu@id with.Z'(6) wheneven € .# and.7 satisfies some natural
functions defined omR. conditions of convergence.

Moreover in [1]-[6] Sandberg faced the problems of defin- To be more precisa is the unique element i’ such that,
ing in a natural and correct way the impulse response in tf@ every sequence; € 2 with &’- lim ¢, = 4, itis A =

setting of ordinary functions and how to represent a lineay_ hm g( »), where&” denotes {Chzzoospace of distributions

system via convolution.
In particular in [4] he showed that every continuous LTr"t[hnC og; Fé?lztnslt:;) port (for a detailed descriptionoive refer

system.¥Z : 6o — L (where %, denotes the space of ) _
continuous functions with limit) at o) admits a general N [7] there are also shown the following results:
representation as a uniform limit of a convolution, giving 2(f)

N SIGNAL processing theory, a linear, time-invariant (LTI)
continuous-time system is a map

= A x f for every f € 9, where 2 denotes the
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the same impulse responge then while for £ : 2'1» — 2’ we prove that
gl(f) :f(f) for everyf c 2(97f) ° .,%(f) = XA(]C) = A x f for everyf S .@/Lp if 1<

< 0
whereX (2, .7) is the set of all input signals related to o gﬂ(f) = ZA(f) = A x f for every f € D' if
2 by limits of sequences (for the formal definition, see  j = o and.Z is continuous with respect to the weak
[7], Section IlI) convergence iz’

Since, apart few pathologies, we ha¥¢2, .v) = .#, our o Z(f) = La(f) = Ax f for every f € 9. (where
conclusion was then that, apart few pathologies, the impulse "Lw is the space of distributions null at infinity) if
responseA of a continuous LTI systems? : .4 — O p = oo and.Z is continuous with respect to the strong
uniquely determines”. The spontaneous questions is: “When  convergence ir?’;«

fe s butf ¢, how can we obtainZ(f) by means ofA The most relevant consequence of these results is that, again

and f 9 except pathologies, the family of continuous LTI systems
In this paper we focus on the usual Banach spdéeand

on the distributional space¥’;», where 21, denotes the LN De — D', A€ D,
subspace of7’ spanned by? itself and by the distributional
derivatives (of any order) of its elements. coincides with the family of all continuous LTI systems
If .# = LP or 2'» in this paper we show that (apartdefined on2'.., while its restriction toL” coincides with
pathologies in the casp = oo) the behavior of.Z on all the family of all continuous LTI systems defined @A.
of .# can be completely understood as a convolution productFinally, in Section VI, perspectives of applications to linear
(in a suitable sense that will be clarified in Section IV¥lifferential equations are shown by an intentionally simple
with the impulse responsd € &2’. In this way we extend example.
our description of.Z as convolution product witmA from
"smooth” signalsf € Z to every signalf € .7. ) )
To be more precise in this paper we consider continuol{9tation and conventions

LTI systems.Z : .# — & where To improve readability, we give here a brief survey of the
e eithery =LP or ¥ = P'1», with 1 < p < o0 spaces of distributions we use, and of the definitions we adopt.
e O=9 2 denotes the space of all*> complex-valued functions

We point out that inL? and 2’ we will consider the usual defined onlR with compact support. Given a sequengec 7
notions of convergence for sequences, whileddr, we will andy € 2 we write Z-lim ), = ¢ if there is a compact
always specify whether the weak convergence or the stromgbset’’ of R such thagﬁi)p wr C K for every k, and
convergence has to be considered. moreover for everyh € IN the sequencé’ ¢, converges to
Notice that the choic&@ = 2’ allows the widest possible D" uniformly on R.
range of behaviors forZ (for instance it ensures that no A subsetB of Z is calledboundedif there are a compact
continuous LTI systeni.? — L” or L? — L{ _ is lost). subsetk of R and positive real numbers/, M, ... such
In Section Il we get by an extremely technical proof that thgat
impulse responsé of . is in 2’,,, where as usual/p +
1/p = 1. supp ¢ C K for everyp € B
In Section Il we take into account the extension of the SUP{ |[D | v € B} < M, foreveryh € N
usual notion of convolution betweeh?” and L? functions, . . .
to convolution betweer?’;, and %', distributions (see [g], A linear functional f : 7 — C (as usual, f(¢) is
Chapter VI, Section 1 and 8). In this way, givene %',/ denoted by(f, ©)) is called continuousif for every ¢ €9
the convolutionA  f became meaningful for everfyc 2. 2and €very sequence, € & such thatZ- lim pp = ¢
This allows us to introduce for everk € 2’ a LTI system it is li_>rr010<f, vr) = (f,¥). A continuous linear functional
f:2 — Cis called adistribution on R.

. ! !
L9 =7 2’ denotes the space of all distributions Bn Every f €
defined by.ZA(f) = A= f. In Section IV we prove that/ L] , i.e, every functionsf : R — € which is integrable on
is a continuous LTI system. every compact subset &, becomes a distribution oR. by
In Section V thanks to the comparison results obtainestting
in [7], we compareZ with Zx. As a corollary we give a oo
complete analysis of? by means of its impulse response and (f,0) = / f)e(t)dt
the notion of convolution product. -
Going in details, for.? : L? — 2’ we prove that In 2’ two notions of convergence for sequences are consid-
o L(f) = a(f) = Ax fforeveryf € LP if 1 < ered: aweak convergence and a strong one. Given a sequence
p < 00 fr € 2" and f € 9’ we say thatf;, weakly (resp.strongly)

o Z(f) = LA(f) = Ax f for every f € 6, (where%, converges tof, and write

is the space of continuous functions null at infinity) if
p =00 w-.@’-klim fe=1f (I’eSp.s-.@'-inm k=10



if hm <fk, ©) = (f,p) for every o € 2 (resp. for every a deeper understanding and an easier handling, two other
© €% and uniformly on every bounded subsBtof 2). edquivalent definitions of/'.» are needed.

Obviously Firstly, 2'.» may be introduced as the space of distributions
_ _ f € 2 such that, for every € 2, itis f ¢ € L? (see [8],
S_g/khlgofk =f= w-@’-klirrolofk =f Chapter VI, Theorem XXV).

It h K th q | hich holds onl Secondly, just ag?’, also 2’L» may be introduced via a
tis worth to remark that a deep result (which holds on }ﬂuallty pairing as a space of functionals as follows (see [8],
for sequences and no more for filters, see [8] Chapter 'P)hapter VI, Sect. 8 and in particular Thearem XXV).
Theorem Xill) proves that For1l < p < o0, let Z1» be the space of all’>> complex-
w-2'- lim f = f < s-%'- lim f, = f valued functionsy defined onRR, such thatD"y € LP for
k—o0 k—o0 every h € IN. Given a sequence;, of members of%;,, and
As a consequence, for the convergence of sequencg§ the ¢ € Zr» we write 9Lp-klim or = ¢ If for every h € IN
specifications “weak, strong” and the prefixes-;' s-=" will be  the sequencdd” conve?éoés toD"e in LP. For p — oo,

omitted. 91~ denotes the subspace 6f -, whose elements are the

In order to handle linear changes of variables for distriby; gch that hm D"y(t) = 0 for everyh € IN, equipped with
tions, we agree to denote an elemgne 2’ by a function- [t|—

like symbol f(t), so that the namet™ of the current variable a similar notlon of convergence arfd;,~-lim for sequences.
is pointed out. In this way, for every pairs of real numberé/e point out that ifl < p < g < oo there are the following
A, a € R such that\ # 0, we denote byf (\t+a) = f(a+At) inclusions
the distribution defined by

_ -1 —1(4
SO+ a), o) = NTHE, 0 (AT —a))) A subsetB of 2, is calledboundedif there are positive
for everyp € 2. In particular, forA = 1,a = —7, we obtain real numbers\/y, My, ... such that for every, € IN it is

t — 7) defined b
flt—r1) y sup {|D"¢|l, : ¢ € B} < M,

t— t)) = t t .
(FE =), 0®) = (fB), 0 (t+ 7)) Forp = oo, boundedsubsets of7; ~ have a similar definition.

-@Ll C YDrr C Drq C .@Loo C YD1

and, forA = —1,a = 7, we obtainf(r — t) defined by Forl < p < oo, P is the space of linear and continuous
B functional f from 2, into C, wherep’ is defined by
(f(r=1),0() = (f(t), (T =1)) 1/p' +1/p = 1. Forp = 1, Z': is the space of linear and
For everyf € 9',p € 9, the convolutionf * ¢ is theCe  continuous functionals fron¥.~ into C. As usual, for every
function defined, for every € R, by f€Dw, 0 € Py if 1 <p<ooand foreveryf € 7',
v € Y1 if p =1 the complex numbelf(y) is denoted by
(f*@)(t) = (f(z),0(t —2)) = (f(t — ), 0()) (f,©), and whenevey € L? it is
Observe that, whenevgris a locally integrable function, this +o0
definition agrees with the usual definition (f o) = /_ f()p(t)dt
(f % @)(t) = /Jroo Fl2)p(t — z)dz = Notice that also inZ’.» two notions of convergence for
—0 o sequences need to be consideresvemk and astrong Now
/ F(t — 2)p(x)dz we illustrate what do they mean.
Lo Let1 < p < oo. Given a sequencg, € P'» and f €
» we say thatf, weakly (resp.strongly) converges tof,

For every distributionf(t), we denote byf(t) the distribu-
tion defined byf(t) = f(—t).

Now we illustrate the definition and some properties of the w-@’m— lim fp = f (resp.s-2'p- lim fi = f)
distributional space¥’;.». hmoe hoe

For 1 < p < oo, 2'1» denotes the subspace &f spanned if lim (f,¢) = (f, ) for everyp € 7, (resp. for every
by LP itself and by the derivatives (of any order) of itsp € &, and uniformly on every bounded subdgbf 7, /).
elements. In particular every € 2',» may be written as Weak and strong convergence for sequence%fn, have
a finite sum of the following form similar definitions by usingy € Z,~ and bounded subsets

of Y.-. We remark that the implicatior-27,»- lim fk =

f = w-Po- hm fk = f still holds, but there are weakly

convergent sequences which are not strongly convergent (for
where f,(Lh’) means distributional derivative of ordérof the instance, the sequeng&(t) = o(t — k) is weakly —but not
function f5. strongly— convergent t0).
The meaning of?’.» rests on this definition: for instance, Thus for LTI systems? : 9’ — 2’, we have to consider
if LP voltages across a capacitor are accepted, then@jso both notions of convergence. A systeffiis said to beveakly
currents through the same capacitor must be accepted. Eontinuous(resp.strongly continuousif it is continuous with

and write

f= Zf(h) with f;, € LP for everyh



respect to the weak convergence (resp. strong convergenceyloreover the bilinear map
the input space.

Notﬁ:e thgt, despite their name, & : 27, — 9’ is weakly §: 9k x Ik — L
continuous then? : ., — ' is strongly continuous. defined by¢(a,3) = T * « x 3, for every fixed value of one
Finally %/.. denotes the space of distributions convergrariable is continuous with respect to the other variable.

ing to 0 at infinity, i.e., of the distributionsf such that  proof of Stepl. By the assumption off, itis Txa € Z1q;
2'- lim f(t—7) = 0 (see [8], Chapter VI, Section 8). Wehence by Theorem XXV, Chapter VI, Section 8 of [8] it is

|T|—00
point out that ifl < p < g < co then there are the following Txaxe L.
inclusions To prove the second statement, tetc Y, and letF =

. T x«a € P'rq. By definition F' may be written in the form
D12 C D'tw CD'pa C Dypoe C Do r )

F=>f,", with f, € L for everyh. As a consequence,
II. IMPULSE RESPONSE OF A CONTINUOUKTI SYSTEM

h=0
for every € 9 it is
DEFINED ON L? AND ON Z'» yo K

Let 1 < p < o0, let (as usualy’ be defined by 1€(c, B)llq = 1" Bllq =
1 1 r
1<p <00, 45 =1 \\th*ﬂ(h)ﬂq<Z\|fh*ﬁ(h)\\q
p p h=0 h=0

and let us consider continuous LTI syste® : .¢# — 2’
where either# = L? or .# = 2'». In both cases input
and output spaces verifxssumptiond. 2 of [7], hence by the Hence|/¢(a, B)[|, < QZ I fnllg - 187 |-

By Young's Theorem it i) frn % B, < fnllg - 181

theory developed in Section Il of [7] there exists the impulse h=0

responsel € 2. End of Proof of Step
In this Section we prove that we can say much more aboutStep2. The bilinear map

g/e nature ofA, namely we prove thaf\ is an element of € Dp x D — L1
e

Before proving this result, we need a lemma. The extremefgfined byé(«, 8) = T x a x 8 is continuous.
technical proof we give here, is inspired by ideas and toolsAs a consequence there exist € IN,e, > 0 such that,
developed by Schwartz in Sections 7 and 8 of Chaptérof defining
8].
[ ]Lemma 21llet1 < g < oo, and letY € 2’ be a UO:{SOE‘@K e loos s 1™ oo < 50}
distribution such that for every € Z itis Y x ¢ € Z'a. for everya,3 € Uy it is
Then itisY € 'L

Proof; The proof will be given in various steps, each with [€(c; B)lg = T *axBllg <1

its own proof. Proof of StefR. Since 7 and L? are Féchet spaces, Step

Le'FK =[-1,1]. The SymbO@K denotes the space 6f* 1 allows us to apply Corollary 1 of Chapter Ill, Section 5 of
functions whose support is a subset if It is well known [10] to & End of Proof of Step

(see Chapter 7, Section 2 of [9]) thé&tx is a Féchet space
with respect to the family of seminorms

&
m —Uy, € >0
(@) = 5up {19 [loos -+ 0™ 100 g "

with m € IN. A fundamental set of open neighborhoodsiof iS @ fundamental set of open neighborhoods(ofor the
is given by topology induced by?7° in Z.

} Step3. Let51,€2 > 0. Then for every e — Uo, and for
< €

Let mg, 9, Uy be as in Ste. The family

{0 € P : 190> 107 0o

with m € N,e > 0.

For m € WN, the symbol 2% denotes the space af™
functions whose support is a subsetléf 2’ is a Banach, 1€, B)llg = 1T * % Bllq <
hence Fechet, space with respect to the norm

p(#) = sp {[le@loos - oo™ ]l oo }
A fundamental set of open neighborhoodsiadk given by 1€(c, B)llq = (1T cx Bllg =

E1E E E1E
(e a2 16D m i [p s < <} 2 ( )*(05) o< 222
€1 €1 €o

withe > 0.
S End of Proof of Ste3
Stepl. For everya, j € 7 it is Let 7/ ;) be the space of th& functions whose
Txa*xBe Ll support is a subset of the open interyall, 1).

every 3 E — Uo it is

5152

Proof of Steps. Sincei—oa, i—oﬂ € Uy, by Step2 it is
1 2



Step4. For everya, 3 € @ETM) it is
Tsxax3elL!

Proof of Step4. By the assumption, there exists > 0
such that(supp «) + [—p, p] C K, (supp ) + [-p, p| C K.
Let ¢ € 2 be such thatupp ¢ C [—p, p], ¢(t) > 0 for every

teR, /<p =1.Forj > 1 let p;(t) = jo(jt), and let
aj=axp;, f;=0*p; € Dk
For every0 < h < my itis o™ 3" ¢ C° hence
ol = aM « p; converges tav™
B = g x o; converges tg3(")

uniformly on K. Hence, in the spac@’°, a; converges te

Since ag, By € ;@E’?M), by Step 4 we obtain thal is a
finite sum of derivatives of.¢ functions; hence, by definition,
T e P'pa. [ |
We can now prove the result oA for continuous LTI
system¥ : LP — 9.
Theorem 2.1:Let.¥ : L? — %’ be a continuos LTI system,
and letA € 2’ be its impulse response. Theéne 7/, .

Proof: Let ¢ € 2, and let

{@LpHC fori<p < o

[ .
v D1~ — C forp =00

be the linear functional defined by

Dy (f) = (ZL(f), %)

where, as pointed out iNotation and convention&ection 1),

and g; converges tg3. As a consequence;, 3; are Cauchy B(t) = p(—t).
sequences inZx with respect to the topology induced by Obviously for every sequencg, converging to ary in the

2'%°; by Step3 it is easily seen thaf (a;, 3;) = T * a; * 3;

is a Cauchy sequence Iif. SinceL? is a Banach space, there

exists f € L9 such thatL?- lim Y * o; * §; = f and hence
Jj—00
such that
P'-lm Y xoj*f; = f
Jj—0o0
Sinced”- lim p; * ¢; = d*0 =4, it is also
Jj—o0

2'-lim T * o * 3,

J—00

Z'-lim (T xaxf)«*(pjxpj)=Txaxf

Jj—00
As a consequenc® x ax 3 = f; henceY xax g € L1.
End of Proof of Steg
Step5. There existnyg, 8y € @E’TM) such that
§ = ag+ D™2p,

Proof of Stegh. Let Z(_, 1) be the space of’> functions
whose support is a subset of the open interval, 1). Let
v € D (~1,1) be such that/(t) = 1 for everyt € (—1/2,1/2);
let H(t) be the Heaviside function; and let

tm0+1

BO(t) = (mO I 1)|

H(t) € C™mo

Then
ﬁo = ’YBO € 9??111)

mo+1
mo + 2
w=-3 (™

) Jlmo2-1) g ¢
h=0

@(*111) C @Fﬁ)l,l)

verify the statement. End of Proof of Step
We can now prove thal € 214. Indeed:Sinced = ag +
D™o+234, then

0=0%0=aqag*ap+
2D (g 5 ) + D20 Gy # )
As a consequence
T=Tx%d="Txap*agt+
2D™0F2 (Y 5 aig x ) + D™t (T % By = By)

domain of®, it is also LP- lim f;, = f; as a consequence,
—00

@’—klim ZL(fr) Z(f), and hence Em (Z(fr), )

(Z(f),¢); henced, is continuous. As a consequence there

existsI', € 2';,» such that

@Lp if 1 gp < 0
O,(f)=(Ty, f) foreveryf e . )
D1~ if p=o0

In particular, for everyy € 2, since by Theorem 2.1 of [7]
it is Z () =A%, itis also

<A * 1), 95> = <Fga>'¢>
Observe thatA x ) € C>°, ¢ € Z; hence

(Axt,3) = / (A& % ) (1) B(r)dr

/ (A )(7)p(0 — T)dr = ((Ax ) ) (0) =

(A x9) ) (0) = (A% 0, 9) = (A%, )

As a consequencA x o =T, € 7', ,/, henceAxp =T, €

!

L' -

Applying Lemma 2.1 toY = A andgq = p/, we obtain
Ac Dy [

Now we also prove the result oA for continuous LTI
system.? : 9’1, — 2.

Theorem 2.2:Let .¥ : 91» — 2’ be a weakly (resp.
strongly) continuous LTI system, and lét € %' be its
impulse response. Theh € 2/, .

Proof: Since weak continuity implies strong continuity,
it is sufficient to prove the statement for strongly continuous
systems; hence we assume tHétis strongly continuous.

Let ¢ € 7, and let

.@LP*}C
o, :

be the linear functional defined by

Dy (f) = (ZL(f), %)

foril<p <

Do — C forp=oo



Holder's Inequality easily proves that for every sequend®y the classical Young's Theorem for integrable functions, for

fr converging to anf in the domain of®, it is also

every h, k we have

s-.@’m-klim fr = f; hence, as in the Proof of Theorem 2.1, ¢ the function

®,, is continuous. As a consequence there existiss 77,/
such that

Drr Fl1<p<oo
O, (f) = (Ty, f) forevery f € ) )

D1~ If p=o0
Proceeding as in the Proof of Theorem 2.1, we obtaia

/
o - | |

Concerning LTI systems defined @,: we can say some-
thing more, which will turn out to be very useful in the next

section. Our result is the following

(fh*gk)(t)Z/]th(t—T)gk(T)dT

is defined for almost alt € R
o faxgr€L"
o [fnx grlle < fnllp - llgellq
As a consequence theonvolutionof f and g may then be
defined by

Frg=3(furg) "™ e a1

h.k

Theorem 2.3:Let .Z : .@/Ll — .@/ be a Weakly continuous By [8]' Chapter V|, Section 8, Thm. XXVL this is a good

LTI system. ThemA € 7/, ...

definition, and it agrees with other usual settings in which

Proof: Assume the contrary. By definition the statemen¢onvolution is already defined.

@/-\hllim At—h)=0
is false; hence there exigte 7 and a sequenck; € R with
lim h; = oo, such that the statement

J—00

lim (A (£ = hy), ¢(t)) =0

J—0o0

is false.
Observe thatw-2'r:- lim 6(t — h;) =
j—o0
weakly continuous, we have

2'-1lim A(t — h;) = 2'-lim £ (6(t — h;)) =0
J—00

J—00

0. Since .Z is

and hence it islim (A (t — h;), (t)) = 0: absurd. |

J—0o0

Ill. EXTENSION OFYOUNG'S THEOREM TO
DISTRIBUTIONS: CONVOLUTION IN 2’1» SPACES

In this Section we recall Schwartz’ extension%g.»
of the usual notion of convolution product defined fb?

Commutativity of convolution is obvious. Concerning the
behavior of convolution on strongly convergent sequences,
by the above mentioned referefiae immediately obtain the
following result.

Theorem 3.1:Let g = s—@’Lq-kli_{Eogk. Then we havef

g=s9 T-klim f* gr.
Concerning associativity it is well known thatffe LP g €
L% h € L* with

p=q=s=1 or p=1 s=gq

then
(fxg)xh=fx(g*h)
(see [11], Chapter lllI, Section 11).
Here we extend this result to every € 2», g €
D'ra, h € P'rs, where
1 1

1 1 1
-4+-—-1>20 and -+-+--220
p g p q s

SPACES 14 this aim, firstly we show the origin of this condition and

then we give the complete proof.

functions. Convolution so extended is obviously commutative So, as above, let, ¢ be such that

and, by Schwartz’ results has a good behavior on strongly

convergent sequences. We give here an easy proof, in a very 1 + 1_ 1>0
general set up, that convolution so extended is also associative, p q
and use this property to show that it has a good behavior evetf € 2'1», g9 € 2’14, and letr be defined by
on weakly convergent sequences. 1 1 1
Let 1 < p,q < oo be such that l<r<oo ;:5+6_1
1 + 1 1>0 then
b q e fxgis defined
and letr be defined by o fxg€PDr
1 1 1 Let 1 < s < oo be such that
1<r<oo, —-=-+--1 11 1 1 1
ropoq —+=-—-120 ie —+-+--220
Let f € P'1», g € P'Lq. By definition f and g may be " _S poa s
written as finite sums of the form let o be defined by
1 1 1 1 1 1
F=3"#" with f € L? for everyh lSsosoo, —=2 ;_1:*+5+;_2
h

g= Zg,(f) with g € L for every k
k

1As it can be seen by the corresponding proof, the teentinuein
Statement2° of Theorem XXVI, Section 8, Chapter VI of [8] must be
substituted byhypocontinue



and leth € 2'.+; then Assume nows = co. Since(1/r)+(1/s)—1 = 0, we have

o (f *g)*h is defined 1/r > 1; hencer = 1. Since(1/p)+(1/¢)—1=1/r =1, we
o (fxg)xhe P have(1/p) + (1/q) = 2; hencep = ¢ = 1. As a consequence
since =X+ 141 2 we have then Je€Pm, 9P, he T
o P a9 Observe that the result on associativity already proved applies
}+}_1:1+}_}>1_}>0 to the ordered triplet
Lot sdsf_ . 7P P he P, gD, €Dy
et nown be defined by
1 1 1 Hence(h* g) * f = h* (g f).
1<n<<oo, —=—-+--1 By commutativity we have
n o q s
then (fxg)xh=hx(fxg)=hx(gx[)
« g+ his defined frgxh)=[fx(hxg)=(hxg)xf
o gxhe Pn Since the last terms of each chain of equalities are equal, then
Observe that flgxh)=f*(gxh). u
11 111 1 Thanks to associativity, we may now prove the following
4l l=S4+ 4 —2== result concerning the behavior of convolution on weakly
P pqa s g convergent sequences.
thus finally we have Theorem 3.3:Let g = w-:@’Lq-inm gk, and let as above
o fx(gxh)is d(lafmed f € P'1», with the ulterior request that € 7, .. if ¢ = 1
o fxlgxh)e It andp = co. Then we havef x g = w-.@’y-klim f * gp.

Now we can prove associativity. Our proof is based on Theo- Proof: The proof will be given in various steps, each with
rem 3.1, the representation results obtained in Theorems 23.0wn proof

3.2 and 4.1 of [7] and on usual associativity of composition Step 1let1 < m < oo. Leta € L™NL>®, § e L™ N[>

of maps. where L* is the linear space of th¢ € L°° null at infinity.
Theorem 3.2:Let f, g, h be as above. Then Thena * 8 € L.
(fxg)xh=fx*(gxh) Proof of Step 1By Young's Theorem it isx x 8 € L.

] ) Lete > 0. There exist-co < 71 < 7 < + oo such
Proof: Assume first thats # oo, and consider the gt

following LTI systems 18 - H%i ) < ¢/3
S D'y — P defined by (o) = h*a "
G Py. - Dy, defined byZ(3) = g + 3 1Bl - HO‘\<T2,+m> H < ¢/3

F P’ — Je defined by (y) = f vy Observe thaty € L'(m, 7). There existd’" > 0 such
By Theorem 3.1.#,%, and.Z are continuous with respectthat for every|t| > T itis

to the strong convergence in their domain and codomain. As
a consequence, also the LTI systems Ho‘\mm L Hﬂ\a—mt—m oS e/3
FG D — Do, GH: Dpr — D' For almost allt such thatjt| > T we have

are continuous (in the same sense). By Theorem 2.3 of [7], |(a « §)(t)| < /T1 la(7)| - |B(t — 7)|dT+
the impulse response &7 is . —0 .
(GIH)) = DAY = G (h#6) = F(h) = g h [ a5 = nlar+ [ a5t - nlar
Let & : 9,1 — Z'1» be the continuous LTI system definechence, by Hlder’s Inequality we obtain
by 22(a) = (g * h) * a. The impulse response @P is g * h.

By Theorems 4.1 and 3.2 of [7] we obtaiZ’ = 2. Hence (e B)O)] < Bl - H%foo.m T
(4.7)(c) = (g+h)xafor everya € 7'y 18 ety i |, +
Sinces # oo, a similar argument proves that Ha‘ . ‘ﬂl < e
(t1:72) || (t=r2,t=71) || oo
— !
(F9)(B) = (fxg)=B foreverys e 7' End of Proof of Step 1
As a consequence we obtain Step 2.Let1 < m < co. Leta € Pm NP, B €

/ ! i
(F9)H)(0) = (FL)B) = (f + g) + h .@Lm:ﬁ D (rem_emb/er that/’m C P if m # oo, and
(F(GHN)0) = F(gxh) = f + (g +h) that Z; ..+ C P it m’' # o0). Thenax 8 € Dpe.
g g Proof of Step 2By the result on regularization in Section 8,
By associativity of composition of maps, it §#9).# = Chapter VI of [8] itisax 3 € Z1~. We must prove that, for
F (9, hence(f * g) x h = f x (g = h). everyn € IN it is (a * §)(™ e L.



By Remark3° to Theorem XXV of [8],a« may be written V. FUNDAMENTAL LTIl SYSTEMS DEFINED ONZ’.» AND

in the forma = Zagh) with oy, € L™ N L for every h. THEIR PROPERTIES
h Let 1 < p < oo. For everyA € 9’ ,/, the extension of
Young's Theorem to distributions allows the construction of
(ax B = Zah % nh) a concretfundamentalLT| system defined or%’.», namely
h the system

Then

. ;o LN Dy — D
Since every3("t") ¢ L™ N L[>, by Step 1 we havey, * ALy

B R e [0 hence(ax §)(™ e L>°.End of Proof of Step 2 defined by
Step3letl<m< . Let F e P'pm, o € D;,... Then

@ Frpca LA(f)=Axf foreveryfe P
LOO

(b) if m #£ 1, for everyt € R itis As we will see in this Section, all fundamental LTI systems
are continuous, and moreover, as we will see in Section V
(F' =) (t) = (F(7),0(t — 7)) (again apart pathologies)

e every continuous LTI system defined ét1;.» is a funda-
mental system
(F % @)(t) = (F(r), p(t — 7)) e every continuous LTI system defined @A is the restric-
tion to L? of a fundamental system

Proof of Step 3See the regularization results in Chapter VIThis is the reason of the ternfithdamentélwe have reserved

(c) if m =1 and moreoverp € Y, for everyt € R it is

Section 8 of [8]. End of Proof of Step 3 them.
We can now prove thab-2’ 7-—klim f*xge=f=xg. Let us see in details the main properties of these systems.
First of all assume = 1. Since - Concerning the image Q.gA, i.e., the SubsegA (.@/Lp) C
2', we have the following result.
1 + 1 1= 1 -1 Theorem 4.1:Let 1 < g < P/, so that
p q r

. _ " C D' C D
we have alsop = ¢ = 1. Let ¢ € PDp~. Since p(1) =

o(—7) = (0 — 1), by (c) of Step 3 we have and letA € Z'1.. Then
1 1 1
(f % gy o) = ((f * g) (1), 5(0 = 7)) = ((f * gx) * )(0) La(Pur) C Ty where = — 1
By commutativity of convolution and by Theorem 3.2 (i.e. Observe that
associativity) we have D'y C D'r C Do
((f *gx) *2)(0) = (gr * (f x2))(0) and that?’;- progressively decreases frof; - to 2'.» as
_ _ _ q decreases frorp’ to 1.
Sincef € P’ = 2’1 N Doy ¢ € Do = Dy N Dros, In particular, independently from thechosen,
by Step 2 we have ¢ € Z~; hence, by (c) of Step 3 we
obtain LA (D'r) C D'
- _ o~ . e Proof: The statement is a straightforward consequence
(g1 % (f + 2))(0) = {gw(7), (f x @)O = 7)) = {gw, f + &) of the definition of convolution as an extension of Young’s
S Theorem. [ |
As a consequenc , = , . Analogousl . L )
— d ¢f *gk ?) , <gk.f* ?) g .y Concerning the continuity ofZx we have the following
(g, f @) ={fxg,p). SInCEw-.@Lq-khm gk = g, we obtain results
. . — Theorem 4.2:The following statements hold
,}E{}CU * 9k p) = klin(}o@’“f *p) = a) Za: P'» — 2’ is a strongly continuous LTI system
= (g.F*P) = (f*g, ) b) the mapZa : Z'.» — P'1~ is continuous with respect
to the strong convergence in both spaces
As a consequence Proof; Statement b) follows by Theorem 3.1. Statement
TRt . a) follows by b). ]
W klggof *9k=fxg Theorem 4.3:.Let 1 < p < oco. The following statements
hold

Similar arguments prove that ) )
a) the system%a : 21> — 2’ is weakly continuous

b) the map%a : 2'1» — 9’1~ is continuous with respect
to the weak convergence in both spaces

in the following two remaining cases:# 1 andq # 1, r # 1 Proof: Statement b) follows by Theorem 3.3. Statement

andqg = 1. m a) follows by b). ]

w-P'pr-lim fxg, = fxg
k—o0



Using Theorem 4.2 above, thanks to Theorem 2.3 of [7] wentinuous LTI systems? : I — 2’ and.¥ : 9'1» — P'.

obtain the following result concerning the impulse responsedeed (again apart pathologies) we prove that in both cases

of Za.
Theorem 4.4:The impulse response tfx is Za(d) = A.

we have Z(f) = A x f for every f, whereA is the impulse
response.

At its turn, this result allows us to complete the analysis on Firstly we consider systems defined af spaces and then

weak continuity given in Thm. 4.3.
Theorem 4.5:Let p = 1, so thatA € P'L~. Then Zx :
n — 9’ is weakly continuous if and only iA € 2’ ..
Furthermore ifA € &/, .. then the map

Ln D' — Do

systems defined o®’;» spaces.

Theorem 5.1:llet1 < p < oo, let £ : L? — 2’ be
a continuous LTI system, and l&t € 2., be its impulse
response. Then for evelfyc L? itis L(f) = Za(f) = Axf.

Proof: Let #Z : LP — 2’ be the restriction tal? of
LA D'y — P'. By Theorem 4.7, % is a continuous LTI

is continuous with respect to the weak convergence in baifistem.

spaces.

Since for everyf € 2 itis Z(f) = A x f, by Section ||

Proof: Assume.Z» to be weakly continuous: then byof [7] the impulse response o is A. Since.# and % have

Theorems 3.3 and 2.3 we g&t€ 7/ ...
Now assumeA € %' ..; by Theorem 3.3, %A : 2’11 —

the same impulse response, by Theorems 3.1 and 4.1 of [7]

for every f € LP we haveZ(f) = Z(f) = Za(f) = A= f.

"= is continuous with respect to the weak convergence in [ |

both spaces. In particula?a is weakly continuous. ]

Theorem 5.2:Let ¥ : L — 2’ be a continuous LTI

Now we briefly prove an obvious result on causality. Weystem, and let\ € 2’,: be its impulse response. Then for
recall that a systent” : .# — ¢ is said to be causal if for every f € %, it is ZL(f) =La(f) = Axf.

everyty € R and for everyf,g € .# with supp (f —g) C
[to, +00), itis supp (Z(f)—-Z(g)) C [to, +00). Concerning
causality of ZA we have the following result.

Theorem 4.6: %A : 9'» — %' is causal if and only if
supp A C [0, +00).

Proof: Same argument of the Proof of Theorem 5.1;
merely remember thaB(2, L>®) = %, (see Section IV of
. [ |
We recall that in [7], Proposition 5.1, it is shown that this
result is sharp.

Proof: Assume 2, causal. Then by Theorem 4.4 we Al the following results concerning?., spaces are easy

have A = Zx (). Obviouslysupp (6 —0) C [0, +o0), hence
supp A = supp (Za () — Za(0)) C [0,+00)

Now assumeupp A C [0,400). Letty € R, and letf, g €
P'» be such thasupp (f — g) C [to, +o0). Then Za(f) —
Za(9) = Ax(f —g).

Lete > 0; part c) in the proof of Theorem XXV, Chapter
VI, Section 8, in [8], may be refined and used to prove that@,
Lp

o A =Y Al with A, € L? such thatsupp A, C

h
[—e, +00) for everyh
o f—g=> F" with F, € L such thatsupp Fj C

[to — &, +oé) for every k
A classical argument proves thatipp (A * Fy) C [to —
2e,+00); as a consequencapp (A x F) C [to — 2¢, +00).
Sincesupp (A *x F) C [tp — 2¢,+00) for everye > 0,
thensupp (A x F) C [tg, +00). |
Concerning the restriction af/A to LP, as a corollary of
Theorem 4.2 we obtain the following result.
Theorem 4.7.Let1 < p < oo and let#Z : LP — 2’ be the
restriction toL? of %A : 9'» — 2. ThenZ is continuous.
Proof: By Holder's Inequality, it is easily seen that

f= Lp-klirr;ofk = f= s-.@’Lp-kliH;Ofk

hence,a fortiori, #Z is a continuous LTI system. [ |

consequences of the results on impulse response and continuity

for fundamental LTI systems stated in Section IV of this paper,
and moreover of Theorems 3.1, 3.2 and Section IV of [7].

We omit the now straightforward proves.

Theorem 5.3.Letl < p < oo, let ¥ : 2, — 2’ be a
weakly (resp. strongly) continuous LTI system, and dete
+ be its impulse response. Thed = Za. In particular
forevery f € 2’1o itis Z(f) = La(f) = Ax f.

Theorem 5.4.Letp =1, let £ : ', — 2’ be a weakly
continuous LTI system, and leh € % .. be its impulse
response. Thet? = Za. In particular for everyf € 2’ it
s L(f) = Za(f) = A= f.

Theorem 5.5:.Letp =1, let ¥ : 2. — 2’ be a strongly
continuous LTI system, and leh € 2’7~ be its impulse
response. The? = Zx. In particular for everyf € 2’1 it
is Z(f) = Za(f) =A% f.

Theorem 5.6:Letp = oo, let ¥ : 2’1« — 2’ be a weakly
continuous LTI system, and leh € 2. be its impulse
response. TherZ = %. In particular for everyf € 2’1«
itis Z(f)=%aA(f)=Axf.

Theorem 5.7.Let p = oo, let ¥ : P« — %' be a
strongly continuous LTI system, and l&& € 2. be its
impulse response. Then for evefye %' . itis Z(f) =
Ia(f)=Axf.

As for Thm. 5.2, we recall that in [7] it is shown that this
result is sharp.

V. CONTINUOUSLTI SYSTEM DEFINED ONLP AND D'L»: All the above theorems and the continuity properties of
ANALYSIS BY IMPULSE RESPONSE AND CONVOLUTION the systemsZa described in Section IV, allow us to draw a
In this Section we prove that the impulse response, Biture of the landscape of all continuous LTI systems defined

defined in Section I of [7], and the extension of convolutio" L” and Z's:

described in Section Il allow a complete analysis of all e let1l < p < oo, then
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— the continuous LTI systems defined d# are the  Indeed By [7], Theorem 2.1, given a sequengg € %
restrictions toL? itself of the £ with A € 2/, such thatéa’-klim pr = 0, we have
— the weakly continuous LTI systems defined @1} » ;e
A=9-1
are the£a with A € &', y 7 kggog(@k)
— the strongly continuous LTI systems defined @f» o Z(p)=Axpforeveryp e
are theZx with A € &', Since.Z € M, for every k we have

e letp =1, then (2)
< - =
— the continuous LTI systems defined dri are the (Z(ew) (k) = ¢

restrictions toL! itself of the £ with A € 9’1 hence
— the weakly continuous LTI systems defined @t (Ax ) — Axpp = gy,
are theZx with A € 7/, .
— the strongly continuous LTI systems defined @f:
are theZa with A € 9’1«
e let p = oo, then As a consequence
— among the continuous LTI systems defined o1?

there are the restrictions of all th&’a with A €

21, but there are others continuous LTI systems .
L1 (2) _ _
defined onL> (see [1], [2], [5]) and henceA A = 4. A straightforward argument proves

(A® A=) «pr =0

A® —A—§=9'" lim (A<2> —A—(S) xon =0

— the weakly continuous LTI systems defined @} - then that .

are theZ with A € @/LI_ i Alt) € c-—° H(t)+ {)\et +upe i\ pe @} =
— among the strongly continuous LTI systems defined 2

on 9';: there are all theZa with A € 2’11, but _ eH(—t)+eTH(1)

there are others strongly continuous LTI systems - 2 +

defined onZ’.~ (see [7]). + {)\et fuetiape @}

We remark that the pathology &, may be overcome
by considering the weak convergence instead that the str
one.

A way to overcome the pathology which arises considerirgp
L is described in a recent paper of Sandberg (cf. [6]) .

0Since by Theorem 2.1 we have € 2/, ,, then (2) must hold.
Observe tha\ € L.
Now, if 1 <p < oo, then by Theorem 5.1 for every
it must be.Z(f) = Ax f; moreover it is immediately seen
that Ax f satisfies the differential equation (1). This proves that
the unique element o/ which is a continuous LTI system
VI. PERSPECTIVES OF APPLICATIONS TO LINEAR is the restriction tal? of Za : P'1» — 9.

DIFFERENTIAL EQUATIONS Observe that, sincA € L', then for everyf € L” we have

Let1 < p < oo and letP(D), Q(D) be linear differential g(f) € L],?'
operators with constant coefficients. For evgng L (resp.  Finally, if p = oo, by Theorem 5.2, we have that the system
fe 9., let S(f) C 2 be the set of all the (distributional) defined by.Z(f) = Axf is oneof the continuous LTI systems
solutions of the differential equation defined onL> whose impulse response 4s. Moreover, it is

immediately seen that for everff € LP, A x f satisfies the
PD)z=Q(D)f differential equation (1). This proves thaf is a continuous
) LTI system inM, but the pathology of > does not allow us
Finally, let M be the set ofall the maps from L? (resp. g ensure it is the unique.
D) |/nto 9" such thatZ(f) € S(f) for every f € L? (resp. A similar argument (depending on Theorems 5.3-5.7) may
fePw). _ _ _ be applied when/ is the set of all the map’ from 2/,
In this Section we show, by an intentionally simple exampléato % such that, for evenyf € 2., Z(f) is a solution of
that the results of this paper may be used to find (again ap@yy.

pathologies) the elements if/ which are continuous LTI
systems.

Let P(D) = D? — 1,Q(D) = 1 and letM be the set of
all the maps? from L? into 2’ such that, for every € L?,
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