$$Es. 1$$
 $z^4 + 2z^3 + z^2 = 4$

$$z^{4} + 2z^{3} + z^{2} = z^{2}(z^{2} + 2z + 1) = z^{2}(z + 1)^{2} =$$

$$2(2+1)=2$$
 oppure $2(2+1)=-2$

I)
$$2(2+1)=2$$
 $(=)$ $2+2-2=0$

$$t = -1 \pm \sqrt{1+8} = -\frac{1+3}{2}$$

I)
$$\frac{1}{2(2+1)} = -2$$
 \iff $\frac{2}{2} + 2 + 2 = 0$

$$\frac{2}{2} = -\frac{1 \pm \sqrt{1-8}}{2} = -\frac{1 \pm \sqrt{1}}{2}$$

$$\frac{-1 \pm \sqrt{1}}{2} = -\frac{1 \pm \sqrt{1}}{2}$$

le quettro solutioni sono:

$$z_{1}=-2$$
, $z_{2}=1$, $z_{3}=-1-\frac{1}{2}$, $z_{4}=\frac{-1}{2}$

Es.2
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

1) Dobbiemo risolvere il sisteme
$$A \cdot \vec{v} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

$$\begin{cases} x_1 &= 2 \\ x_1 + x_2 &= 3 \\ x_1 + x_2 + x_3 = 2 \end{cases} \Rightarrow \begin{cases} x_1 = 2 \\ 2 + x_2 = 3 \Rightarrow x_2 = 1 \\ 2 + 1 + x_3 = 2 \Rightarrow x_3 = 1 \end{cases}$$

$$\vec{v} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} e^t l'unice solutione di $f(\vec{v}) = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

$$cioli \vec{v} = \begin{cases} 2 \\ 1 \\ -1 \end{cases}$$$$

2) g e' la compositione f of dell'appl. lineare

f on se stesse. Quindi la metrice associata

2 g e' il prodotto della metrice A on se stessa.

A. $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$

Scambiando le I e la II rije e poi le II con le III si trove $\begin{pmatrix}
0 & 0 & 0 \\
3 & 0 & 0
\end{pmatrix}
\xrightarrow{\text{IGH}}
\begin{pmatrix}
3 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{\text{IGH}}
\begin{pmatrix}
3 & 0 & 0 \\
0 & 3 & 0
\end{pmatrix}$ $\begin{pmatrix}
0 & 3 & 0 \\
0 & 0 & 0
\end{pmatrix}$ vanèlile libers x3 J = (0) e' l'unice solutione speciale. $X_3=1 \Rightarrow X_1=0$ $X_2=0$

Quindi
$$J_2 = \ker \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Esercizio 3. [10 pt.]

Si consideri la matrice

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -3 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$

- 1. Determinare gli autovalori di A e la loro molteplicità algebrica.
- 2. Determinare una base per ciascuno degli autospazi.
- 3. Determinare una matrice invertibile S e una matrice diagonale D tali che $D = S^{-1}AS$.

1.
$$A - \lambda I = \begin{pmatrix} 1-\lambda & 0 & 1 & 0 \\ 0 & 1-\lambda & 0 & -3 \\ 0 & 0 & 2-\lambda & 0 \\ 0 & 2 & 0 & 4-\lambda \end{pmatrix} \xrightarrow{\det} (1-\lambda) \cdot \det \begin{pmatrix} -1-\lambda & 0 & -3 \\ 0 & 2-\lambda & 0 \\ 2 & 0 & 4-\lambda \end{pmatrix}$$

$$= (1-\lambda)(2-\lambda) \det \begin{pmatrix} -1-\lambda & -3 \\ 2 & 4-\lambda \end{pmatrix} = (1-\lambda)(2-\lambda) \left[(-1-\lambda)(4-\lambda) + 6 \right] = (1-\lambda)(2-\lambda) \left(\lambda - 2 \right) \left(\lambda - 1 \right) = (\lambda - 1)^2 (\lambda - 2)^2$$

$$\lambda = 1 \quad \text{autovalore con m.e. } 2$$

$$\lambda = 2 \quad \text{autovalore con m.e. } 2$$

$$\begin{cases} -x_1 + x_3 = 0 & (x_3 = 0) \\ -3x_2 - 3x_4 = 0 & (x_4 = 1) \\ -3x_2 - 3 = 0 = 0 & (x_4 = 0) \end{cases}$$

$$\vec{V}_4 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$
 entouttore di entovolore $d = 2$

e le natrice disponale avente sulla disponale i rispettivi autovelori:

sono tali che $S^{-1}AS = D$.

Esercizio 4. [6pt.]

Un'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^2$ è un proiettore se, dato qualunque vettore $v \in \mathbb{R}^2$, vale f(f(v)) = f(v).

- 1. Trovare un proiettore f_1 diverso dalla funzione identità $x\mapsto x$ e dalla funzione nulla $x\mapsto 0$.
- 2. Trovare, se esiste, un proiettore f_2 tale che $f_2(1,2) = (3,3)$.
- 3. Trovare, se esiste, un proiettore f_3 avente l'autovalore $\lambda=2$.

Se A e'lle metrice essocieta ed un projettore f, ellora $A \cdot A = A \iff A \cdot A - A = 0 \iff A \cdot (A - I) = 0$ Se A e'invertibile, ellors de A (A-I) = 0 segue de A^{-1} . A(A-I) = A-I = 0, aoe(A=I) e' l'identità! Visto che essumiemo f diverso della funcione nulle, possions assumere che A non sia invertibile, croe! ker A + fof. Allow dry (ker A) > 1. Notiamoche som (ker(A)) + 2, altriment A = 0 sarebbe le matrice nulla, contro l'ipotes che f et un projettore divers delle funtione nulle. Allors dim (ker(A)) = 1. Per semplicate, essumiemo de (1) E ker A, crol f(1) = (0),

e du
$$f(1) = {0 \choose b} \neq {0 \choose 0}$$
.

Allors
$$A = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$$
 l'un proiettore diverso delle funitione identité e diverso delle funitione nulla per opni scelte di $\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

$$A \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 20 \\ 26 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \iff$$

b=3/2. Allow il projettore le cui metrice associate e $A = \begin{pmatrix} 0 & \frac{3}{2} \\ 0 & \frac{3}{2} \end{pmatrix}$ soddisfe

la proprieté ridriesta.

$$(3) A - \lambda I = \begin{pmatrix} -\lambda & \alpha \\ 0 & b - \lambda \end{pmatrix} \frac{\det}{\det} - \lambda (b - \lambda) = 0$$

→ l=0 e l=6 sono entorelori.

Se prendiemo b=2, allors per ogni a la metrice $A = \begin{pmatrix} 0 & a \\ 0 & 2 \end{pmatrix}$ e'un proiettere

avente l'entorelore 1=2.