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Matrix Square Root

X is a square root of A ∈ C
n×n ⇐⇒ X2 = A.

Number of square roots may be zero, finite or infinite.

Principal Square Root

For A with no eigenvalues on R
− = {x ∈ R : x ≤ 0} is

the unique square root with spectrum in the open right
half-plane.

Denoted by A1/2.
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Newton’s Method

A = (X + E)2: drop second order term and solve for E.

X0 given,

Solve XkEk + EkXk = A − X2
k

Xk+1 = Xk + Ek

}

k = 0, 1, 2, . . .

Prohibitively expensive.
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Newton’s Method

A = (X + E)2: drop second order term and solve for E.

X0 given,

Solve XkEk + EkXk = A − X2
k

Xk+1 = Xk + Ek

}

k = 0, 1, 2, . . .

Prohibitively expensive.

But observe that

X0A = AX0 ⇒ XkA = AXk for all k.
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Newton Iteration

Xk+1 = 1

2
(Xk + X−1

k A), X0 = A.

If A ∈ C
n×n has no eigenvalues on R

− then

Iterates Xk nonsingular, converge quadratically to A1/2.

Related to Newton sign function iterates

Sk+1 =
1

2
(Sk + S−1

k ), S0 = A1/2

by Xk ≡ A1/2Sk.
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Newton Iteration

Xk+1 = 1

2
(Xk + X−1

k A), X0 = A.

If A ∈ C
n×n has no eigenvalues on R

− then

Iterates Xk nonsingular, converge quadratically to A1/2.

Related to Newton sign function iterates

Sk+1 =
1

2
(Sk + S−1

k ), S0 = A1/2

by Xk ≡ A1/2Sk.

Problem: numerical instability (Laasonen, 1958; H, 1996).
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Newton Variants

DB iteration:
[Denman–Beavers, 1976]

Xk+1 =
1

2

(

Xk + Y −1

k

)

, X0 = A,

Yk+1 =
1

2

(

Yk + X−1

k

)

, Y0 = I.

Product form DB:
[Cheng-Higham-

Kenney-Laub, 2001]

Mk+1 =
1

2

(

I +
Mk + M−1

k

2

)

, M0 = A,

Xk+1 =
1

2
Xk(I + M−1

k ), X0 = A,

Yk+1 =
1

2
Yk(I + M−1

k ), Y0 = I.

CR iteration:
[Meini, 2004]

Yk+1 = −YkZ
−1

k Yk, Y0 = I − A,

Zk+1 = Zk + 2Yk+1, Z0 = 2(I + A).
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Content

⋆ Characterizations of functions f that preserve

automorphism group structure.

⋆ New, numerically stable square root iterations.

⋆ Unified stability analysis of square root

iterations based on Fréchet derivatives.

Matrix Group Iterations – p. 6/20



Group Background

Given nonsingular M and K = R or C,

〈x, y〉
M

=

{

xT My, real or complex bilinear forms,
x∗My, sesquilinear forms.

Define automorphism group

G = {A ∈ K
n×n : 〈Ax,Ay〉

M
= 〈x, y〉

M
, ∀x, y ∈ K

n }.

Adjoint A⋆ of A ∈ K
n×n wrt 〈·, ·〉

M
defined by

〈Ax, y〉
M

= 〈x,A⋆y〉
M

∀x, y ∈ K
n.

Can show: A⋆ =

{

M−1AT M, for bilinear forms,

M−1A∗M, for sesquilinear forms.

G = {A ∈ K
n×n : A⋆ = A−1 } .

Matrix Group Iterations – p. 7/20



Some Automorphism Groups

Space M A⋆ Automorphism group, G

Groups corresponding to a bilinear form

R
n I AT Real orthogonals

C
n I AT Complex orthogonals

R
n Σp,q Σp,qA

T Σp,q Pseudo-orthogonals

R
n R RAT R Real perplectics

R
2n J −JAT J Real symplectics

C
2n J −JAT J Complex symplectics

Groups corresponding to a sesquilinear form

C
n I A∗ Unitaries

C
n Σp,q Σp,qA

∗Σp,q Pseudo-unitaries

C
2n J −JA∗J Conjugate symplectics

R=

[

1...

1

]

, J=







0 In

−In 0







, Σp,q=







Ip 0

0 −Iq






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Bilinear Forms

Theorem 1
(a) For any f and A ∈ K

n×n, f(A⋆) = f(A)⋆.

(b) For A ∈ G, f(A) ∈ G iff f(A−1) = f(A)−1.

Proof. (a) We have

f(A⋆) = f(M−1AT M) = M−1f(AT )M = M−1f(A)T M = f(A)⋆.

(b) For A ∈ G, consider

f(A)⋆ = f(A⋆)
‖

f(A−1)
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Bilinear Forms

Theorem 1
(a) For any f and A ∈ K

n×n, f(A⋆) = f(A)⋆.

(b) For A ∈ G, f(A) ∈ G iff f(A−1) = f(A)−1.

Proof. (a) We have

f(A⋆) = f(M−1AT M) = M−1f(AT )M = M−1f(A)T M = f(A)⋆.

(b) For A ∈ G, consider

f(A)⋆ = f(A⋆)
‖ ‖

f(A)−1 = f(A−1)
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Implications

For bilinear forms, f preserves group structure of A when

f(A−1) = f(A)−1.

This condition holds for all A for

Matrix sign function, sign(A) = A(A2)−1/2.

Any matrix power Aα, subject to suitable choice of
branches. In particular, the

principal matrix pth root A1/p

(p ∈ Z
+, Λ(A) ∩ R

− = ∅): unique X such that
1. Xp = A.
2. −π/p < arg(λ(X)) < π/p.
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Group Newton Iteration

Theorem 2 Let A ∈ G (any group), Λ(A) ∩ R
− = ∅, and

Yk+1 =
1

2
(Yk + Y −⋆

k )

=
1

2
(Yk + M−1Y −T

k M), Y1 =
1

2
(I + A).

Then Yk → A1/2 quadratically and Yk ≡ Xk (k ≥ 1), where

Xk are the Newton iterates: Xk+1 = 1

2
(Xk + X−1

k A), X0 = A.
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Group Newton Iteration

Theorem 2 Let A ∈ G (any group), Λ(A) ∩ R
− = ∅, and

Yk+1 =
1

2
(Yk + Y −⋆

k )

=
1

2
(Yk + M−1Y −T

k M), Y1 =
1

2
(I + A).

Then Yk → A1/2 quadratically and Yk ≡ Xk (k ≥ 1), where

Xk are the Newton iterates: Xk+1 = 1

2
(Xk + X−1

k A), X0 = A.

Cf.

Cardoso, Kenney & Silva Leite (2003, App. Num.

Math.): bilinear forms with MT = ±M , MT M = I.

H (2003, SIREV): M = Σp,q.
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Generalized Polar Decomposition

Theorem 2 For any group G, A ∈ K
n×n has a unique

generalized polar decomposition A = WS where

W ∈ G (i.e., W⋆ = W−1), S⋆ = S,

and Λ(S) ∈ open right half-plane (i.e., sign(S) = I) iff

(A⋆)⋆ = A and Λ(A⋆A) ∩ R
− = ∅ .

Note

(A⋆)⋆ = A holds for all G in the earlier table.

Other gpd’s exist with different conditions on Λ(S)
(Rodman & co-authors).
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GPD Iteration & Square Root

Theorem 3 Suppose the iteration Xk+1 = Xk h(X2
k), X0 = A

converges to sign(A) with order m. If A has the generalized
polar decomposition A = WS w.r.t. a scalar product then

Yk+1 = Ykh(Y ⋆
k Yk), Y0 = A

converges to W with order of convergence m.
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GPD Iteration & Square Root

Theorem 3 Suppose the iteration Xk+1 = Xk h(X2
k), X0 = A

converges to sign(A) with order m. If A has the generalized
polar decomposition A = WS w.r.t. a scalar product then

Yk+1 = Ykh(Y ⋆
k Yk), Y0 = A

converges to W with order of convergence m.

Theorem 4 Let G be any automorphism group and A ∈ G.

If Λ(A) ∩ R
− = ∅ then I + A = WS is a generalized polar

decomposition with W = A1/2 and S = A−1/2 + A1/2 .
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Application

Newton

Sign: Xk+1 = Xk ·
1

2
(I + (X2

k)−1) ≡ Xkh(X2
k), X0 = A.

Group sqrt:

Yk+1 =
1

2
Yk(I + (Y ⋆

k Yk)
−1) =

1

2
(Yk + Y −⋆

k ), Y0 = I + A.

Schulz

Sign: Xk+1 = Xk ·
1

2
(3I − X2

k) ≡ Xkh(X2
k), X0 = A.

Group Schulz:

Yk+1 =
1

2
Yk(3I − Y ⋆

k Yk), Y0 = I + A.
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Class of Square Root Iterations

Theorem 5 Suppose the iteration Xk+1 = Xk h(X2
k), X0 = A

converges to sign(A) with order m. If Λ(A) ∩ R
− = ∅ and

Yk+1 = Ykh(ZkYk), Y0 = A,
Zk+1 = h(ZkYk)Zk, Z0 = I,

then Yk → A1/2 and Zk → A−1/2 as k → ∞, both with order
m, and Yk = AZk for all k. Moreover, if X ∈ G implies

Xh(X2) ∈ G then A ∈ G implies Yk ∈ G and Zk ∈ G for all k.

Proof makes use of sign

([

0 A
I 0

])

=

[

0 A1/2

A−1/2 0

]

.

Newton sign leads to DB iteration.
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Padé Square Root Iterations

Example: structure-preserving cubic:

Yk+1 = Yk(3I + ZkYk)(I + 3ZkYk)
−1, Y0 = A,

Zk+1 = (3I + ZkYk)(I + 3ZkYk)
−1Zk, Z0 = I.

If Λ(A) ∩ R
− = ∅ then

• Yk → A1/2 and Zk → A−1/2 cubically,

• A ∈ G ⇒ Xk ∈ G, Yk ∈ G for all k.
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Stability

Define Xk+1 = g(Xk) to be stable in nbhd of fixed point X = g(X) if

for X0 := X + H0, with arbitrary error H0, the Hk := Xk − X satisfy

Hk+1 = LX(Hk) + O(‖Hk‖
2),

where LX is a linear operator with bounded powers.

Theorem 6 Consider the mapping

G(Y, Z) =

[

Y h(ZY )

h(ZY )Z

]

,

where Xk+1 = Xkh(X2
k) is any superlinear matrix sign iteration.

Any P = (B, B−1) is a fixed point for G, and

dGP (E, F ) =
1

2

[

E − BFB

F − B−1EB−1

]

.

dGP is idempotent, that is, dGP ◦ dGP = dGP .
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Experiment

Random pseudo-orthogonal A ∈ R
10×10,

M = diag(I6,−I4) (AT MA = M),

‖A‖2 = 105 = ‖A−1‖2,

generated using alg of H (2003) and chosen to be
symmetric positive definite.

err(X) =
‖X − A1/2‖2

‖A1/2‖2

,

µG(X) =
‖X⋆X − I‖2

‖X‖2
2

.
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Results

k Newton Group Newton Cubic, struc. pres.
err(Xk) err(Yk) µ

G
(Yk) err(Yk) µ

G
(Yk)

0 3.2e2 3.2e2 1.4e-15
1 1.6e2 1.6e2 1.0e-5 1.0e2 7.2e-15
2 7.8e1 7.8e1 1.0e-5 3.4e1 6.1e-14
3 3.9e1 3.9e1 1.0e-5 1.1e1 5.1e-13
4 1.9e1 1.9e1 1.0e-5 3.0e0 2.9e-12
5 8.9e0 8.9e0 9.9e-6 5.5e-1 4.4e-12
6 4.0e0 4.0e0 9.6e-6 2.0e-2 4.3e-12
7 3.2e1 1.6e0 8.5e-6 2.0e-6 4.5e-12
8 2.3e5 4.9e-1 5.5e-6 2.1e-11 4.8e-12
9 4.6e9 8.2e-2 1.5e-6

10 2.3e9 3.1e-3 6.1e-8
11 1.1e9 4.7e-6 9.5e-11
12 5.6e8 2.1e-11 2.4e-16
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Conclusions

⋆ Characterizations of f that preserve group structure

(e.g., if f(A−1) = f(A)−1 for bilinear forms).

⋆ Using gen polar decomp, derived numerically stable

form of Newton for A1/2 when A ∈ G.

⋆ Derived new family of coupled iterations for A1/2 that is
structure preserving for matrix groups.

⋆ Stability analysis using Fréchet derivative.

Functions Preserving Matrix Groups and Iterations for the Matrix

Square Root, NA Report 446, March 2004; to appear in SIMAX.

Functions of a Matrix; book in preparation.
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