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Basic Problem

Weighted regularized Toeplitz least squares problem:

min
x
‖Ax− b‖22

where

A =

[
DK
µL

]
and b =

[
Df
0

]
.

• K is m× n, Toeplitz or BTTB, m ≥ n
• D is m×m, diagonal, nonnegative definite

• f is m× 1, given

• µ > 0 is a regularization parameter

• L is n× n, a smoothing operator (here L = In)

• We further assume that m, n are large



Motivation

Such problems arise in various applications, including:

• Nonlinear image restoration

• Seismography

• Acoustics

• Linear prediction

See Å. Björck, Numerical Methods for Least Squares

Problems, SIAM, 1996.

Problem: The weighting matrix D destroys the Toeplitz

structure. Note that D can be very ill-conditioned

⇒ fast Toeplitz solvers do not apply!

If D = I or is nearly constant, efficient solvers exist.



Example: Nonlinear Image Restoration

Nonlinear image restoration problem:

min
x
||f − s(Kx)||2

• f is the observed image

• x is the original image (unknown)

• K is the blurring operator (m× n, m ≥ n)

• s : Rm → Rm is a (separable) nonlinear map



Example: Nonlinear Image Restoration

Nonlinear image restoration problem:

min
x
||f − s(Kx)||2

• f is the observed image

• x is the original image (unknown)

• K is the blurring operator (m× n, m ≥ n)

• s : Rm → Rm is a (separable) nonlinear map

Discrete ill-posed problem ⇒ Tikhonov regularization:

min
x
||f − s(Kx)||22 + µ ||x||22
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Example: Nonlinear Image Restoration

Regularized nonlinear least-squares:

min
x
||f − s(Kx)||22 + µ ||x||22

Gauss-Newton linearization ⇒ sequence of weighted

linear LS problems of the form

min
x
||D(f −Kx)||22 + µ ||x||22

with D = D(k) diagonal, positive definite and f = f(k).

Note: D = D(k) is the Jacobian of s evaluated at the

current Newton approximation.



Equivalent formulations

Normal Equations: The regularized weighted least

squares problem is equivalent to

(KTD2K + µI)x = KTD2f , (1)

an n-by-n symmetric positive definite linear system.

Note again that the presence of D destroys any structure

the problem may have. Also note that D contributes to

make (1) more ill-conditioned.

Solving (1) is quite a challenge. Unless the entries of D

are nearly constant, standard Toeplitz solvers and precon-

ditioners will fail.



Augmented system formulations

Another equivalent formulation is the following:

[
D−2 K

KT −µI

] [
y
x

]
=

[
f
0

]
(2)

where the auxiliary variable y = D(f −K x) represents a

weighted residual.

The (m+n)×(m+n) coefficient matrix in (2) is symmetric

indefinite. This system is equivalent to

[
D−2 K

−KT µI

] [
y
x

]
=

[
f
0

]
(3)

where the system matrix is now nonsymmetric positive

definite: the eigenvalues have positive real part.



Augmented system formulations

Letting W = D−2 for simplicity, the augmented matrix can

be factored as follows:

[
W K

KT −µI

]
=

[
I O

KTW−1 I

] [
W O
O −Σ

] [
I W−1K
O I

]

where Σ = µI +KTW−1K is the Schur complement. Note

that Σ is precisely the coefficient matrix of the normal equa-

tions.

By Sylvester’s Law of Inertia, the augmented matrix has m

positive and n negative eigenvalues.



Augmented system formulations

The nonsymmetric augmented matrix can be split as

[
W K

−KT µI

]
=

[
W O
O µI

]
+

[
O K

−KT O

]

Since the symmetric part of the matrix is positive definite,

the eigenvalues all have positive real part.

Further, we note that the matrix is J-symmetric, i.e., it

is symmetric with respect to the indefinite inner product

associated with the (m+ n)× (m+ n) matrix

J =

[
Im O
O −In

]
.



Preconditioned Krylov methods

Augmented systems from weighted least squares problems

belong to the class of saddle point problems.

In recent years, many new methods have been proposed

for solving saddle point systems. In most cases, these

methods have been designed for large, sparse problems.

In particular, many preconditioners have been proposed.

The Toeplitz case has not received much attention. An

exception is the paper

X.-Q. Jin, A preconditioner for constrained and weighted

least squares problems with Toeplitz structure, BIT 36

(1996), pp. 101–109

where circulant-type preconditioners are considered.



Preconditioned Krylov methods

Preconditioning: Find an invertible matrix P such that

Krylov methods applied to the preconditioned system

P−1Ax = P−1b

will converge rapidly.
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Preconditioned Krylov methods

Preconditioning: Find an invertible matrix P such that

Krylov methods applied to the preconditioned system

P−1Ax = P−1b

will converge rapidly.

Rapid convergence is often associated with a clustered

spectrum of P−1A. However, characterizing the rate of

convergence in general is not an easy matter.

To be effective, a preconditioner must significantly reduce

the total amount of work:

• P must be easy to compute

• Evaluating z = P−1r must be cheap



Preconditioned Krylov methods

Available Krylov methods include:

1. Symmetric A:

• MINRES (Paige & Saunders, SINUM ‘76)

• SQMR (Freund & Nachtigal, APNUM ‘95)

• Preconditioner must be SPD for MINRES

• Preconditioner can be symm. indefinite for SQMR
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Preconditioned Krylov methods

Available Krylov methods include:

1. Symmetric A:

• MINRES (Paige & Saunders, SINUM ‘76)

• SQMR (Freund & Nachtigal, APNUM ‘95)

• Preconditioner must be SPD for MINRES

• Preconditioner can be symm. indefinite for SQMR

2. Nonsymmetric A:

• GMRES (Saad & Schultz, SISSC ‘86)

• Bi-CGSTAB (van der Vorst, SISSC ‘91)

• Preconditioner can be anything

Recent trend: Use GMRES or Bi-CGSTAB with a non-

symmetric preconditioner, even when A is symmetric!
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Preconditioners for saddle point systems

Options include:

1. Multigrid methods

2. Schur complement-based methods

• Block diagonal preconditioning

• Block triangular preconditioning

• Uzawa preconditioning

3. Constraint preconditioning

4. Hermitian/Skew-Hermitian splitting (HSS)

Here we examine methods of type 3 and 4 (methods of

type 2 did not work).



Constraint Preconditioning

Consider the symmetric augmented matrix

A =

[
W K

KT −µI

]

and the preconditioning matrix

P =

[
cI K

KT −µI

]

where c is a constant. For example, c could be the average

value of the entries in W , or c = 1.

Note that linear systems of the form Pz = r must be solved

at each iteration. Because P has a BTTB structure, we can

use fast methods to solve Pz = r.



Constraint Preconditioning

Let K have full rank (= n). When µ = 0 (no regularization)

we have

A =

[
W K

KT O

]

and the preconditioning matrix becomes, for c = 1:

P =

[
I K

KT O

]
.

This constraint preconditioner has been studied, in the finite

element context, by Axelsson & Gustafsson (1979) and by

Ewing et al. (1990).

More recent papers include Lukšan & Vlček (1998), Perugia,

Simoncini & Arioli (2000), Keller, Gould & Wathen (2000),

and Rozložńık & Simoncini (2002).



Constraint Preconditioning

Theorem Let K 6= I have full column rank. The precondi-

tioned matrix is

P−1A =

[
I K

KT O

]−1 [
W K

KT O

]
=

[
W (I −Π) + Π O

X I

]
where Π is the orthogonal projector onto R(K). Hence, λ = 1

is an eigenvalue of P−1A of multiplicity at least 2n.

The remaining eigenvalues are eigenvalues of the symmetric

matrix (I −Π)W (I −Π).

In the special case m = n, we have σ (P−1A) = {1} and the

minimum polynomial of P−1A has degree 2.

Corollary If n = m, GMRES applied to the preconditioned

system P−1Ax = P−1b terminates after at most two steps.



Constraint Preconditioning

More generally, GMRES applied to the preconditioned system

P−1Ax = P−1b terminates after at most m − n + 2 steps,

regardless of W .

Therefore, if m−n is small (K is “almost square”), constraint

preconditioning is a very good choice.

Things, however, can be quite different when regularization

is used (µ 6= 0). In this case the constraint preconditioner

needs to be regularized as well, and the preconditioned matrix

becomes

P−1A =

[
I K

KT −µI

]−1 [
W K

KT −µI

]
.

This case has been investigated by Axelsson (1979) and by

Axelsson & Neytcheva (2003).



Constraint Preconditioning

When µ > 0, the preconditioned matrix

P−1A =

[
I K

KT −µI

]−1 [
W K

KT −µI

]
has the eigenvalue 1 with multiplicity n, and all the remaining

eigenvalues are real.

When m = n, the eigenvalues λ 6= 1 lie in the interval (0,1).

If K is ill-conditioned (as it will be if regularization is needed),

many of the eigenvalues of P−1A will be close to zero and

the preconditioner quality will deteriorate.



HSS Preconditioner

We start from the splitting

A =

[
W K

−KT µI

]
=

[
W O
O µI

]
+

[
O K

−KT O

]
= H+ S.

The HSS preconditioner is defined as

Pα =
1

2α
(H+ αI)(S + αI)

where α > 0. Note that H+ αI is SPD and that S + αI

is invertible.

See Bai, Golub & Ng (2003) and Benzi & Golub (2004);

case µ = 0 analyzed in Simoncini & Benzi (2004).



HSS Preconditioner

Preconditioner action: requires solving

(H+ αI)(S + αI) z = r

at each Krylov subspace iteration, or

(H+ αI) v = r followed by (S + αI) z = v.



HSS Preconditioner

Preconditioner action: requires solving

(H+ αI)(S + αI) z = r

at each Krylov subspace iteration, or

(H+ αI) v = r followed by (S + αI) z = v.

• The first system is diagonal: cost is O(m).

• The second one is of the form[
αI K

−KT αI

] [
v
w

]
=

[
g
h

]
and can be solved efficiently using fast Toeplitz

solvers.



HSS Preconditioner

Theorem (Benzi & Golub, 2004)

Assume W is SPD, K full rank and µ ≥ 0. Then for all

α > 0, the spectral radius of I − P−1
α A is less than 1.

Therefore the eigenvalues of P−1
α A are contained in

D(1,1) = {z ∈ C ; |z − 1| < 1}.

Theorem (Simoncini & Benzi, 2004)

Assume W is SPD, K full rank and µ = 0. For sufficiently

small α, the eigenvalues of P−1
α A cluster near zero and

two. More precisely, for small α > 0,

λ ∈ (0, ε1) ∪ (2− ε2,2)

with ε1, ε2 > 0 and ε1, ε2 → 0 for α→ 0.

Hence, α should be chosen small, but not too small!



HSS Preconditioner

The case µ 6= 0 is more complicated to analyze. We can say

something if we choose α = µ.

Theorem (Benzi & Ng, 2004)

Let wmin, wmax denote the smallest and largest entries of the

diagonal matrix W , with wmin > 0. Also, let

a :=
2µ

µ+ wmax

and let Pµ denote the HSS preconditioner with α = µ. Then

σ(P−1
µ A) ⊂ [a,2)× (−1,1) ∩D(1,1)

where D(1,1) = {z ∈ C ; |z − 1| < 1}. If, moreover, the regu-

larization parameter µ satisfies µ < wmin, then the eigenvalues

of P−1
µ A are all real and lie in [a,2).

Note that a is independent of K.



Numerical Examples

• K = (k|i−j|) with k|i−j| = 1/(
√
|i− j|+ 1)

• W is positive diagonal, random, κ(W ) ≈ 103 − 106

• Regularization parameter µ = 10−3

• CG is CG on normal equations (no prec.)

• GMRES is GMRES on augmented system (no prec.)

• HSS(α): GMRES with HSS preconditioner

• CP = regularized constraint preconditioning

• Stopping criterion: ||rk|| < 10−7||r0||
• Cost per iteration: O(n logn) for all methods

n CG GMRES HSS (α = µ) HSS (α =
√
µ) CP

64 159 48 13 6 3
128 424 66 13 7 3
256 > 1000 90 18 7 3
512 > 1000 132 57 17 3

1024 > 1000 168 72 16 3



Numerical Examples

• K = (k|i−j|) with k|i−j| =
1

2
√

2π
e−
|i−j|2

8

• W is positive diagonal, random, κ(W ) ≈ 103 − 106

• Regularization parameter µ = 10−3

• CG is CG on normal equations (no prec.)

• GMRES is GMRES on augmented system (no prec.)

• HSS(α): GMRES with HSS preconditioner

• CP = regularized constraint preconditioning

• Stopping criterion: ||rk|| < 10−7||r0||
• Cost per iteration: O(n logn) for all methods

n CG GMRES HSS (α = µ) HSS (α = 6 · 10−5) CP
64 761 117 55 43 70

128 > 1000 224 106 74 125
256 > 1000 410 159 95 216
512 > 1000 770 236 127 382

1024 > 1000 > 1000 250 129 655



Problem 1: Spectra of Preconditioned Matrices
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Problem 2: Spectra of Preconditioned Matrices
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Numerical Examples

Remarks:

• Preconditioning is absolutely essential for both problems

• Using α = µ in HSS does not work very well

• “Optimal” value of α is independent of n

• Iteration counts for HSS levels off as n grows

• CP is great on easier problem, very bad on hard problem

• Tests with HSS on image restoration problem (M. Ng)

show promise

• Other preconditioners tested but results were poor



Conclusions

• Weighted Toeplitz least squares problems can be hard

• Augmented system formulations allow to decouple

Toeplitz part from non-Toeplitz part

• Two methods tested: CP and HSS

• CP best for some problems, but HSS is more robust

• There is plenty of room for improvement!


