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The minimization problem and classical solvers

f (x∗) = minx∈Rn f (x), find x∗

Descent methods
generate a minimizing sequence {xk}+∞k=0 by the iterative scheme:

x0 ∈ Rn, g0 = ∇f (x0), d0 = −g0

For k = 0, 1, . . .

xk+1 = xk + λkdk λk > 0
gk+1 = ∇f (xk+1)
Bk+1 = n × n matrix, positive definite (pd)

dk+1 = −B−1
k+1gk+1︸ ︷︷ ︸

descent direction

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min



The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

The minimization problem and classical solvers

f (x∗) = minx∈Rn f (x), find x∗

Descent methods
generate a minimizing sequence {xk}+∞k=0 by the iterative scheme:

x0 ∈ Rn, g0 = ∇f (x0), d0 = −g0

For k = 0, 1, . . .

xk+1 = xk + λkdk λk > 0
gk+1 = ∇f (xk+1)
Bk+1 = n × n matrix, positive definite (pd)

dk+1 = −B−1
k+1gk+1︸ ︷︷ ︸

descent direction

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min



The minimization problem and classical solvers
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The Newton descent method

Bk+1 = ∇2f (xk+1)

A quadratic rate of convergence

O(n3) arithmetic operations to compute xk+1 from xk

Quasi-Newton (QN) descent methods

Bk+1 defined in terms of ∇f

A superlinear rate of convergence

Convergence under weak analytical assumptions

O(n2) arithmetic operations to compute xk+1 from xk

O(n2) memory allocations for implementation

Main example: the BFGS method (Broyden et al.’70)
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BFGS

x0 ∈ Rn, d0 = −g0

For k = 0, 1, . . .
xk+1 = xk + λkdk λk | sT

k yk > 0
Bk+1 = ϕ (Bk , xk+1 − xk︸ ︷︷ ︸

sk

, gk+1 − gk︸ ︷︷ ︸
yk

)

dk+1 = −B−1
k+1gk+1

ϕ properties ⇒
• Bk+1 inherites positive definiteness from Bk

Proof: B pd & sTy > 0 ⇒ ϕ(B, s, y) pd

• Bk+1(xk+1 − xk) = gk+1 − gk

Proof: ϕ(B, s, y)s = y
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The updating function ϕ in Bk+1 = ϕ (Bk , sk , yk) is

ϕ (B, s, y) = B +
1

yT s
yyT − 1

sTBs
BssTB

⇒ BFGS is a secant method:

Bk+1(xk+1 − xk︸ ︷︷ ︸
sk

) = gk+1 − gk︸ ︷︷ ︸
yk

secant equation

Proof (independent on B):

ϕ(B, s, y)s =
(
B + 1

yT s
yyT − 1

sT Bs
BssTB

)
s

= Bs + 1
yT s

y(yT s)− 1
sT Bs

Bs(sTBs)

= y
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Quasi-Newton (QN) descent methods for large scale problems

Bk+1 defined in terms of ∇f

A fast rate of convergence

Convergence under weak analytical assumptions

less than O(n2) arithmetic operations to compute xk+1 from
xk

less than O(n2) memory allocations for implementation

Classical example: the Limited memory BFGS method (Nocedal
et al. ’80)

A recent proposal: the LQN method (Di Fiore, Fanelli, Zellini
et al. ’00)
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Previous contribution: LQN descent methods

Replace the matrix Bk in

Bk+1 = ϕ(Bk , sk , yk)

with a matrix Ak of a low complexity space L

Choice of L
Bk ∈ sd U for some unitary matrix U, where

sd U = { Ud(z)U∗ : z ∈ Cn }, d(z) =


z1 0 · · · 0
0 z2 0
...

. . .
...

0 · · · 0 zn


⇒ choose L = sd U, U =fast unitary transform (U = Fourier,
Hartley, . . .)
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Choice of Ak in L
Ak = the best least squares fit to Bk in L = sd U, i.e.
Ak = LBk

where

‖LBk
− Bk‖F = min

X∈L
‖X − Bk‖F

The LQN algorithm

x0 ∈ Rn, d0 = −g0

For k = 0, 1, . . .
xk+1 = xk + λkdk λk | sT

k yk > 0
Bk+1 = ϕ( LBk

, xk+1 − xk︸ ︷︷ ︸
sk

, gk+1 − gk︸ ︷︷ ︸
yk

)

dk+1 = −B−1
k+1gk+1

Cortona, September 2004 C. Di Fiore, S. Fanelli, P. Zellini Adaptive Low Complexity Algorithms for Unconstrained Min



The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

Bk+1 = ϕ(LBk
, sk , yk)

• Bk+1 inherites positive definiteness from Bk

Proof: B pd ⇒ LB pd

• Bk+1sk = yk , i.e. LQN is a secant method

• Bk+1 projected on L gives rise the Eigenvalue Updating Formula

zk+1 = zk +
1

sT
k yk

|U∗yk |2 −
1

zk
T |U∗sk |2

d(zk)
2|U∗sk |2 (EUF)

where LBk
= Ud(zk)U∗.

(EUF) and the Sherman-Morrison formula imply that each step of
LQN can be performed via two matrix-vector products U · z and
some inner products
Main result: U = fast transform ⇒

Space complexity: O(n)= memory allocations for U

Time complexity (per step): O(n log n)= cost of U · z
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The minimization problem and classical solvers
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LQN rate of convergence
Theory : linear rate of convergence

Experiments : fast rate of convergence, competitive with L-BFGS
• The Ionosphere data set (n = 1408)
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Figure: LQN and L-BFGS applied to a function of 1408 variables
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New contribution: Adaptive LQN descent methods

In the updating formula

Bk+1 = ϕ(LBk
, sk , yk)

adapt the space L to the current iteration

The adaptive criterion A LQN drawback with respect to BFGS is
that the updated matrix LBk

does not solve the previous secant equation
X sk−1 = yk−1

Let Lsy be the matrix of L = sd U s.t.

Lsy sk−1 = yk−1 (Lsy 6= LBk
)

⇒ Lsy = Udiag
(

[U∗yk−1]i
[U∗sk−1]i

)
U∗

AIM: LBk
close to Lsy during the minimization procedure

→ Lsy positive definite like LBk
U =fast transform s.t.

[U∗yk−1]i
[U∗sk−1]i

> 0
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. . . . . . λk | sT
k yk > 0

Bk+1 = ϕ(LBk
, sk , yk)

if Lskyk
is pd then{

dk+1 = −B−1
k+1gk+1

}
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The adaptive LQN algorithm

Like the LQN algorithm, but

. . . . . . λk | sT
k yk > 0

Bk+1 = ϕ(LBk
, sk , yk)

if Lskyk
is pd then{

dk+1 = −B−1
k+1gk+1

} else {
dk+1 = −(LBk+1

)−1gk+1 ← temporary descent direction

define a fast transform U s.t. Lskyk
is pd

set L = sd U
}

How to define such U ?
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The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

Definition of U

Lsy = Udiag
(

[U∗yk ]i
[U∗sk ]i

)
U∗ is positive definite iff

U is such that
[U∗yk ]i
[U∗sk ]i

> 0 ∀i (Crit)

Main results: Under our hypothesis on λk (λk | sT
k yk > 0) a

matrix U satisfying (Crit) exists and can be obtained as the
product of two Householder matrices:

U = H(u)H(p), H(z) = I − 2

‖z‖2
zz∗

(u,p suitable vectors), ⇒
Space complexity: O(n)= memory allocations for U

Time complexity (per step): O(n)= cost of U · z (better
than LQN)
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The minimization problem and classical solvers
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Rate of convergence of adaptive LQN
Experiments : fast rate of convergence, competitive with LQN

• The Ionosphere data set (n = 1408)
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Figure: LQN and adaptive LQN applied to a function of 1408 variables
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• The Iris plant data set (n = 315)

Number of iterations to obtain f (xk) < 0.1

f x1
0 x2

0 x3
0 x4

0

LQN 10930 13108 3854 7663
adaptive LQN 3430 1663 3647 1525

Number of iterations to obtain f (xk) < 0.01

f x1
0 x2

0 x3
0 x4

0

LQN 24085 42344 6184 33250
adaptive LQN 19961 2886 8306 3111
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The minimization problem and classical solvers
Previous contribution: LQN descent methods

New contribution: Adaptive LQN descent methods

Two strategies

Secant equation: Lsysk = yk

Best least squares approximation:
‖LBk

− Bk‖F = minX∈L ‖X − Bk‖F

How to apply both strategies ?

The adaptive LQN algorithm illustrated is a
possible solution

Work in progress: look for other solutions
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