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LEVELS OF KNOTTING OF SPATIAL HANDLEBODIES

R. BENEDETTI AND R. FRIGERIO

Abstract. If H is a spatial handlebody, i.e. a handlebody embedded in the
3-sphere, a spine of H is a graph Γ ⊂ S3 such that H is a regular neighbour-
hood of Γ. Usually, H is said to be unknotted if it admits a planar spine. This
suggests that a handlebody should be considered not very knotted if it admits
spines that enjoy suitable special properties. Building on this remark, we define
several levels of knotting of spatial handlebodies, and we provide a complete
description of the relationships between these levels, focusing our attention on
the case of genus 2. We also relate the knotting level of a spatial handlebody
H to classical topological properties of its complement M = S3 \H, such as its
cut number. More precisely, we show that if H is not highly knotted, then M
admits special cut systems for M , and we discuss the extent to which the con-
verse implication holds. Along the way we construct obstructions that allow
us to determine the knotting level of several families of spatial handlebodies.
These obstructions are based on recent quandle–coloring invariants for spatial

handlebodies, on the extension to the context of spatial handlebodies of tools
coming from the theory of homology boundary links, on the analysis of appro-
priate coverings of handlebody complements, and on the study of the classical
Alexander elementary ideals of their fundamental groups.

1. Introduction

Let us consider the θ–, “figure-eight” (f8)– and “handcuff” (hc)–graphs shown
in Figure 1.

Figure 1. From the left to the right: the θ–, (f8)– and (hc)–graphs.

By a (genus–2) spatial graph we mean a tame embedding Γ of any such graph
in S3. A (genus–2) spatial handlebody H = H(Γ) is by definition a closed regular
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neighbourhood of a spatial graph Γ, which is called a spine of H. In this paper
we define and compare several levels of knotting for spatial handlebodies (we will
often confuse a spatial handlebody with its isotopy class).

A given (genus 2) spatial handlebody H is the regular neighbourhood of infin-
itely many handcuff spines Γ (see e.g. Figures 4 and 5), and every such spine carries
a 2–component constituent link LΓ (see Subsection 2.1 for the precise definition of
constituent link). Usually, a spatial handlebody is said to be knotted if it does
not admit any planar spine. However, one could wonder whether it makes sense
to compare the level of knotting of distinct knotted handlebodies. For example, a
knotted handlebody does not admit an unknotted (i.e. planar) spine, but may still
admit a spine whose constituent link is trivial, so it seems reasonable to assign a
higher level of knotting to spatial handlebodies that do not admit trivial constituent
links. Following this approach, we define several levels of knotting in terms of the
non–existence of any spine Γ enjoying less and less restrictive properties (which
sometimes can be expressed in terms of the constituent link LΓ). Every level of
knotting determines a set of (isotopy classes of) spatial handlebodies, and these sets
are partially ordered with respect to the inclusion (in the sense that smaller sets
correspond to higher levels of knotting). In this paper we investigate the relation-
ships between different levels of knotting, finally providing a complete description
of the partial order just mentioned.

We also relate the level of knotting of a spatial handlebody to classical topo-
logical properties of its complement. If Γ is a spine of the spatial handlebody
H = H(Γ), we denote by C(H) (sometimes also by C(Γ)) the closure S3 \H of the
complementary domain. We recall that spatial handlebodies are not determined
by their complements (see Subsection 3.9), and at the moment we are not able to
answer the question of whether the level of knotting of H is determined by the
homeomorphism type of C(H). Nevertheless, it turns out that some intrinsic prop-
erties of C(H), like its cut number, provide interesting information about the level
of knotting of H.

Let us briefly recall the definition of cut number: ifM is any compact n–manifold
(possibly with boundary), the cut number of M is the largest number of disjoint
connected two–sided properly embedded hypersurfaces whose union does not dis-
connect M (see [48]). We now concentrate on the case when M is a compact
connected 3–dimensional proper submanifold of S3 with smooth or PL boundary
∂M (sometimes the interior of M is called a domain of S3). We also assume that no
boundary component of M is spherical. If we denote by χ the Euler characteristic,
it is not difficult to show that

1 ≤ cut(M) ≤ rkH1(M) = n− χ(M) ,

where rkH1(M) is the rank of the first homology group of M with integer coef-
ficients, and n is the number of boundary components of M (note that χ(M) =
χ(∂M)/2). Therefore, if M is the complement of either a genus–g handlebody or
of a g–component link, then we have 1 ≤ cut(M) ≤ g. When cut(M) = g we
say that M has maximal cut number, and we call a cut system for M any sys-
tem S = {S1, . . . , Sg} of disjoint properly embedded two–sided surfaces such that
M \ (S1 ∪ . . . ∪ Sg) is connected.

By definition, an n–component link L is a homology boundary link if and only if
C(L) has maximal cut number [46]. In that case, we will call the surfaces of a cut
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system for C(L) generalized Seifert surfaces of L. Homology boundary links have
been widely studied in classical knot theory. Since the discovery of Milnor’s link
invariants, for example, they have played an important role in the theory of link
concordance.

If H is a genus 2 spatial handlebody, the existence of “special” spines for H
implies the existence of “special” cut systems for C(H). Building on this remark,
we define other levels of knotting for H in terms of the non–existence of special cut
systems for C(H), and we compare these levels of knotting with the ones defined in
terms of spines and constituent links. Some questions remain unsettled here, since
it is not clear to what extent the existence of special cut systems for C(H) implies
the existence of special spines for H. However, in several cases the study of C(H)
turns out to be an effective tool for computing the level of knotting of H. In fact,
the intrinsic properties of C(H) that are relevant to our purposes may often be
studied by means of powerful techniques coming from classical 3–manifold theory.

It might be worth mentioning that the study of handlebody complements plays
a fundamental role in the study of spatial domains. In fact, by Fox’s reimbedding
theorem [14], every spatial domain is homeomorphic to the complement in S3 of
a finite union of spatial handlebodies. Actually, we renewed our interest in the
classical invariants of manifolds used in this paper after having pointed out in [1]
that the old Helmholtz’s cuts method, used to implement the Hodge decomposition
of vector fields on spatial domains (see [7]), can be applied exactly when the domains
have maximal cut number.

Although in this paper we mainly deal with genus 2 spatial handlebodies, several
considerations can be generalized to the case of arbitrary genus. In Section 9 we
briefly discuss this issue and collect some natural questions that are not settled in
this paper.

2. Basic results on spatial handlebodies

We have already observed that a spatial handlebody admits infinitely many non–
isotopic spines. More precisely, two spatial graphs are the spines of isotopic spatial
handlebodies if and only if they are equivalent according to the equivalence relation
generated by ambient isotopy together with the Whitehead move shown in Figure
2.

Figure 2. Whitehead move.

A spine is unknotted if it is isotopic to a planar realization of one of the graphs
described in Figure 1. A handlebody H is unknotted if it admits an unknotted
spine. Sometimes it is useful to deal with planar diagrams associated to generic
projections, that encode the spines, and diagram moves that recover the isotopy
of either spatial graphs or handlebodies. The graph isotopy moves are the usual
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Figure 3. Diagram isotopy moves.

local Reidemeister moves, such as for link diagrams, and a few additional moves at
vertices (see [28]). Some of these vertex moves are shown in Figure 3. To get the
full set it is enough to simultaneously change the (over/under) crossings in each
move of the picture. In order to recover the handlebody isotopy in terms of spine
diagrams, it is enough to add the above Whitehead move, interpreted now as acting
on diagrams as well (see [23]). We call this whole set of moves spine moves.

2.1. Constituent knots and links. A constituent knot of any spatial graph Γ as
above is a (spatial) subgraph of Γ homeomorphic to S1.

If Γ is an (f8)–graph, then the two constituent knots K1 and K2 intersect exactly
at the unique singular point (the vertex) p of Γ; in this case we write Γ = K1∨pK2.

If Γ is an (hc)–graph, then the two constituent knots are disjoint; hence they
form a constituent link LΓ. This is obtained by removing from Γ the interior of its
isthmus, i.e. the edge that connects the two knots.

Let us denote by K(Γ) the knot isotopy classes realized by the constituent knots
of Γ. If Γ is either an (f8)– or an (hc)–graph, then |K(Γ)| ≤ 2; if it is a θ–graph,
then |K(Γ)| ≤ 3.

If Γ̃ → Γ is a Whitehead move producing an (f8)-graph Γ, then K(Γ) ⊂ K(Γ̃).
The following lemma is immediate but important.

Lemma 2.1. The following sets of isotopy classes of spatial graphs and links re-
spectively are isotopy invariants of the handlebody H:

• the set S(H) of isotopy classes of (hc)–spines of H;
• the set L(H) of isotopy classes of links LΓ, where Γ varies in S(H).
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Remark 2.2. (1) We will often confuse links and graphs with their respective isotopy
classes. The observations before Lemma 2.1 imply that every constituent knot of
any (not necessarily handcuff) spine ofH arises as a component of some LΓ ∈ L(H).

(2) For a single graph Γ, its finite set of constituent knots or links is a rather
informative, largely used, invariant to which one can apply all the formidable ma-
chinery of classical knot theory. A complication in the case of handlebodies arises
from the fact that there are infinitely many spines and constituent knots or links.
Moreover, there is not an immediate relationship between the knotting of a given
spine and the knotting of the associated handlebody. Sometimes this sounds a bit
anti–intuitive. For example, essentially by definition every tunnel number 1 knot
(resp. link) arises as a component of some LΓ (resp. as some LΓ) of an unknotted
(genus 2) handlebody. These knots form a richly structured family of knots (see
for instance [8]). It is not difficult to construct tunnel number 1 links with knotted
components (see e.g. Figure 4, where we describe an example taken from [32]).

In the same spirit, by varying the integers k and h in Figure 5 (the meaning of
the boxes is defined in Figure 6), we get infinitely many non–isotopic (hc)–spines Γ
of an unknotted handlebody, with arbitrary linking number of the components of
LΓ. See also Remark 4.2 below.

Figure 4. The diagram on the left of the top row shows an (hc)–
graph Γ whose constituent knots are both knotted. The sequence
of moves shows that Γ is a spine of the unknotted handlebody.

3. Instances of knotting, intrinsic and extrinsic knotting:

Statement of the problems and main results

We are going to use the invariants of S(H) and L(H) (introduced in Lemma 2.1)
to define certain instances of knotting of H. We will distinguish the instances
defined in terms of the set S(H) of the handcuff spines of H from the ones defined
only in terms of the set L(H) of the constituent links. From now on, unless otherwise
stated, every spine is understood to be of handcuff type.

3.1. Spine–defined instances of knotting. Let us recall that a 2-component
link L = K1∪K2 is a boundary link if K1,K2 admit disjoint Seifert surfaces S1, S2.
It is readily seen that such surfaces, if they exist, do not disconnect C(L). Therefore,
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Figure 5. Spines of the unknotted handlebody.
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Figure 6. The boxes used in Figure 5: The integer k denotes the
number of positive or negative half-twists.

a boundary link is in particular a homology boundary link. Let H be a genus 2
handlebody in S3. Then:

• H is (1)S-knotted if it does not admit any planar spine, i.e. if it is knotted
in the usual sense.

• A spine Γ of H is a split spine if there exists an embedded 2–sphere Σ in
S3 that intersects Γ transversely at just one regular point of its isthmus (in
particular, LΓ is a split link). A handlebody H is (2)S-knotted if it does
not admit any split spine.

• A spine Γ of H is a boundary spine if its constituent link LΓ is a boundary
link that admits a pair of disjoint Seifert surfaces whose interiors are con-
tained in S3 \ Γ. A handlebody H is (3)S-knotted if it does not admit any
boundary spine.

• A spine Γ of H is a homology boundary spine if its constituent link LΓ is a
homology boundary link that admits a pair of disjoint generalized Seifert
surfaces whose interiors are contained in S3 \ Γ. A handlebody H is (4)S-
knotted if it does not admit any homology boundary spine.
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3.2. Link–defined instances of knotting. Let H be a genus 2 handlebody in
S3. Then:

• H is (1)L-knotted if there is not any trivial link LΓ ∈ L(H).
• H is (2)L-knotted if there is not any split link LΓ ∈ L(H).
• H is (3)L-knotted if there is not any boundary link LΓ ∈ L(H).
• H is (4)L-knotted if there is not any homology boundary link LΓ ∈ L(H).

3.3. The general structure of knotting levels. The following result describes
some obvious relations between the instances of knotting we have introduced.

Proposition 3.1. For every k such that the following statements make sense, we
have:

H is (k + 1)S-knotted =⇒ H is (k)S-knotted,

H is (k + 1)L-knotted =⇒ H is (k)L-knotted,

H is (k)L-knotted =⇒ H is (k)S-knotted.

As a consequence, (k)X -knotting implies (k′)X′-knotting whenever k ≥ k′ and
either X = X ′ or X = L, X ′ = S. In what follows, we will call tautological
implications these relationships between the levels of knotting. With respect to the
partial order described in the Introduction, the tautological implications provide
a few totally ordered chains of knotting levels. In order to provide a complete
description of such partial order, we now have to accomplish the following tasks:

(a) Show that every instance of knotting is non–empty.
(b) For every k, k′, study whether or not one can establish any implication

between the instances (k)L and (k′)S.

Remark 3.2. The above (∗)L-knotting conditions describe increasing levels of knot-
ting of 2–component links. The fact that these conditions determine strictly de-
creasing sets of links is a classical result which cannot be immediately translated
into the context of handlebodies (for example, because of the considerations in
Remark 2.2).

3.4. Levels of knotting: Main results. The following theorem summarizes our
results concerning the relations between the instances of knottings that we have
introduced.

Theorem 3.3. We have the following facts (where the symbol | �� stands for
“does not imply”):

H is (1)L-knotted | �� H is (2)S-knotted,

H is (2)L-knotted | �� H is (3)S-knotted,

H is (3)L-knotted | �� H is (4)L-knotted,

H is (4)L-knotted �� �� H is (4)S-knotted,

H is (3)S-knotted | �� H is (1)L-knotted.
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The following diagram summarizes the results described in Proposition 3.1 and
Theorem 3.3 that completely characterize the relations among the levels of knot-
ting that we have introduced (see Corollary 3.4). We have labelled every non-
tautological arrow by a reference to the proposition where the corresponding im-
plication (or non–implication) is proved.

(4)L − knotting

��

��
�� ���� �	(4)S − knotting

Prop. 6.16
��

��

(3)L − knotting ��

��

=Prop. 6.24

��

�� ���� �	(3)S − knotting

��


�

�


= Prop. 6.23

�����������������������������������

(2)L − knotting

=Prop. 5.15

��

��

‖
Prop. 5.17

��

��

�� ���� �	(2)S − knotting

��

‖
Prop. 5.10

��

(1)L − knotting ��

‖
Prop. 5.13

		

�� ���� �	(1)S − knotting

=Prop. 4.1





In Theorem 3.3 we did not mention the results proved in Propositions 4.1, 5.15
and 5.10 because once the tautological statements of Proposition 3.1 are estab-
lished, Proposition 4.1 is a consequence of Proposition 5.13, Proposition 5.15 is a
consequence of Proposition 5.17, and Proposition 5.10 is a consequence of Propo-
sition 6.23. However, it might be worth mentioning that the arguments proving
Propositions 4.1, 5.15 and 5.10 are independent, and sometimes quite different in
nature, from the ones proving Propositions 5.13, 5.17, and 6.23. For example, the
proof of Proposition 6.23 exploits the notion of a handlebody pattern introduced
in Subsection 6.5, while the proof of Proposition 5.10 relies on the use of quandle
invariants. We also give a different proof of Proposition 6.23 in Proposition 8.18,
where we exploit suitable obstructions coming from Alexander invariants. In our
opinion, a good reason for providing more proofs of some of our results is that the
interplay of different techniques has been helpful in figuring out the global picture
of the space of knotted handlebodies.

Let us take two distinct instances of knottings, (k)J and (k′)J′ , where J, J ′ ∈
{L, S} and k, k′ ∈ {1, 2, 3, 4}. Then, putting together Proposition 3.1 and Theo-
rem 3.3, one easily gets the following.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LEVELS OF KNOTTING OF SPATIAL HANDLEBODIES 2107

Corollary 3.4. With the exception of the case kJ = (4)L and (k′)J′ = (4)S (or
vice versa), we have that

(k)J -knotting =⇒ (k′)J′-knotting

if and only if (k′)J′-knotting descends from (k)J -knotting via a chain of tautological
implications (see Proposition 3.1).

By Theorem 3.3, the class of (4)L-knotted handlebodies coincides with the class
of (4)S-knotted handlebodies. Corollary 3.4 tells us that, with this exception, the
different instances of knotting that we have introduced indeed describe distinct
classes of spatial handlebodies. In Theorem 3.12 below we also show that every
instance of knotting is indeed non-empty, i.e. that there exist examples of (4)L-
knotted (hence, (k)J -knotted for every k = 1, . . . , 4, J ∈ {L, S}) spatial handle-
bodies.

3.5. Cut systems. In this subsection we provide a brief discussion of the notion of
a cut system. We focus on the special situation that we are interested in, addressing
the reader e.g. to [1] for a general and detailed discussion and the proofs.

Let M be equal either to C(H) (where H is a genus 2 spatial handlebody) or to
C(L) (L being a 2–component link). Recall that a cut system S = {S1, S2} of M
is a pair of disjoint connected oriented surfaces properly embedded in M such that
M \ (S1 ∪ S2) is connected.

We now list some classical well–known properties and characterizations of cut
systems, also giving a hint about the proof of some statements already mentioned in
the Introduction. From now on, homology and cohomology are always understood
to have integer coefficients.

Let S = (S1, S2, . . . , Sk) be a set of disjoint connected oriented surfaces properly
embedded in M . Then M \ (S1 ∪ . . . ∪ Sk) is connected if and only if S1, . . . , Sk

define linearly independent elements of H2(M,∂M) ∼= Z
2. In particular, if this is

the case, then necessarily k ≤ 2 (whence cut(M) ≤ 2), and one can see that S is
a cut system (i.e. k = 2) if and only if S1 and S2 actually define a geometric basis
of H2(M,∂M). In this case, by Alexander duality, ∂S = {∂S1, ∂S2} provides a
geometric basis of ker i∗, where i is the inclusion of the boundary ∂M into M (in
particular, ∂Si �= ∅ for i = 1, 2). With a slight abuse, here “∂” denotes both the
boundary homomorphism in the homology long exact sequence of the pair (M,∂M)
and the geometric boundary of S.

Recall that a link is a homology boundary link if and only if its complement
admits a cut system. Something more can be achieved when considering classical
boundary links. If M is the complement of a boundary link L, then it is easily seen
that every pair of disjoint Seifert surfaces for the components of L define a basis
of H2(M,∂M), whence a cut system for M . Such a cut system enjoys the nice
property that the boundaries of its surfaces are connected.

3.6. Cut number and corank. The corank of a group G, henceforth denoted
by crkG, is the largest rank of a free group isomorphic to a quotient of G. It
is known [48] that the cut number of a manifold coincides with the corank of its
fundamental group. Let us briefly sketch a proof of this fact (see e.g. [45] or the
expository paper [1] for full details).

Let M be a compact n–manifold and set G = π1(M). One can prove that
crkG = k if and only if M maps onto the bouquet of k circles via a map which
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induces a surjective homomorphism between the fundamental groups. An elemen-
tary instance of the Pontryagin–Thom construction may now be used to show that
such a map exists if and only if there exists a system S = {S1, . . . , Sk} of disjoint
two–sided surfaces properly embedded in M such that M \ (S1 ∪ . . . ∪ Sk) is con-
nected. As a consequence we get the desired equality cut(M) = crkG, and M has
maximal cut number if and only if crkG = rkH1(M) = rkG/[G,G].

3.7. Cut systems and levels of knotting. Let us now concentrate on the case
when M is the complement of a genus 2 handlebody H. We have the following:

Lemma 3.5. If cut(C(H)) is not maximal (i.e. not equal to 2), then H is (4)L-
knotted.

Proof. If H is not (4)L-knotted, then by definition there exists a link LΓ ∈ L(H)
which is homology boundary, so crkπ1(C(L)) = 2. By Lemma 3.6 below, this
implies that crkπ1(C(H)) = 2, so cut(C(H)) = 2. �

Lemma 3.6. Let LΓ ∈ L(H). Up to isotopy, we can assume that C(H) ⊂ C(LΓ).
Then i∗ : π1(C(H)) → π1(C(LΓ)) is an epimorphism. In particular, crkπ1(C(H)) ≥
crkπ1(C(LΓ)).

Proof. By a general position argument it is easy to see that every loop in S3 \ LΓ

is homotopic to a loop that does not intersect the isthmus of Γ; this easily implies
that i∗ is onto. �

Note that the two surfaces of a cut system of M (if any) do not necessarily have
a connected boundary, and there could also be components of ∂S that separate
∂M . This suggests the existence of different intrinsic “levels of complication” of
M = C(H), which are defined in terms of the non–existence of cut systems having
boundaries that satisfy some special conditions.

Definition 3.7. Let S = (S1, S2) be a cut system of M = C(H). The reduced
boundary ∂RSj of Sj is made by the boundary components of Sj that do not separate
∂M . A cut system S is said to be ∂-connected (resp. ∂R-connected) if both surfaces
Sj have a connected boundary (resp. a connected reduced boundary).

We have proved in Lemma 3.5 that if M has no cut systems, then H is (4)L-
knotted. The following lemma provides more relations between the (non-)existence
of special cut systems for M and the knotting level of H.

Lemma 3.8. Let M = C(H). Then:

(a) If M has no ∂-connected cut systems, then H is (3)S-knotted.
(b) If M has no ∂R-connected cut systems, then H is (3)L-knotted.

Proof. (a) Suppose H is (3)S–unknotted, and let Γ be a boundary spine for H.
Then, the boundary link LΓ admits disjoint Seifert surfaces that do not intersect
the interior of the isthmus, thus also defining a cut system of M with connected
boundaries.

(b) Suppose H is (3)L–unknotted, and let Γ be a spine for H with constituent
boundary link LΓ. Up to isotopy, we can assume that LΓ admits a pair of dis-
joint Seifert surfaces that are transverse to the interior of the isthmus. Then the
intersection of these surfaces with M form a cut system with connected reduced
boundaries. �
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3.8. Boundary preserving maps onto handlebodies. Let W be a genus 2
handlebody. Following Lambert [31], we say that a continuous map ϕ : M → W
is an (M → W )–boundary–preserving–map if ϕ|S is a homeomorphism of S = ∂H
onto ∂W (such a ϕ is necessarily surjective).

The following result is proved in [31, Theorem 2].

Proposition 3.9. Let M = C(H). Then the following facts are equivalent:

(1) M admits a ∂-connected cut system.
(2) There exists an (M → W )–boundary–preserving–map.

In Sections 6 and 8 we describe some obstructions that prevent M from admit-
ting a ∂-connected cut system. Such obstructions are obtained from the study of
handlebody patterns as defined in Subsection 6.5, from the analysis of the maximal
free covering of M , and from the study of the Alexander ideals of M .

3.9. Intrinsic and extrinsic knotting levels: Main results. Let us point out
that spatial handlebodies are not determined by their complements: in [36] an
infinite family of pairwise non-isotopic spatial handlebodies is described, all of whose
complements belong to the same homeomorphism class. However, every property
of H which can be expressed only in terms of the existence of cut systems of C(H)
(possibly with specific properties) is an intrinsic property of the complement of
H. The question of whether the knotting level of H is determined by intrinsic
properties of C(H) seems to be very difficult, and at the moment we are not able
to prove that if two spatial handlebodies have homeomorphic complements, then
they share the same level of knotting. A first result in this direction is described in
Proposition 4.3, where it is shown thatH is (2)S–knotted if and only ifM = C(H) is
boundary–irreducible, i.e. it has incompressible boundary. Also observe that C(H)
is a handlebody if and only if H and C(H) form a (genus 2) Heegaard splitting
of S3, so Waldhausen’s Theorem [57, 42] implies that a spatial handlebody H is
(1)S–unknotted if and only if C(H) is a handlebody as well.

More difficult questions are suggested by Lemmas 3.5 and 3.8: is it possible to
reverse the implications proved there? In Section 7 we obtain in particular the
following interesting result:

Theorem 3.10. M = C(H) admits a ∂-connected cut system if and only if H is
not (3)S-knotted.

The following result shows that the non–existence of cut systems satisfying
strictly decreasingly demanding conditions actually corresponds to strictly increas-
ing levels of (intrinsic) knotting.

Theorem 3.11. We have the following facts:

(1) There exist handlebody complements having incompressible boundary and
admitting a ∂-connected cut system.

(2) There exist handlebody complements which do not admit any ∂-connected
cut system but admit a ∂R-connected cut system.

(3) There exist handlebody complements which do not admit any ∂R-connected
cut system but have maximal cut number.

Proof. By Proposition 4.3 and Theorem 3.10, point (1) is equivalent to the fact
that (2)S-knotting does not imply (3)S-knotting, which is a consequence of Corol-
lary 3.4 (more precisely, Proposition 5.17 implies that there exist examples of (3)S-
unknotted handlebodies which are (2)L-knotted, whence (2)S-knotted).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2110 R. BENEDETTI AND R. FRIGERIO

By Proposition 6.23, there exist (1)L-unknotted handlebodies whose comple-
ments do not admit any ∂-connected cut system. By Lemma 3.8, every such com-
plement admits a ∂R-connected cut system, whence point (2).

Point (3) is a consequence of Proposition 6.24. �
Putting together Lemmas 3.5, 3.8, Proposition 4.3 and Theorems 3.10, 3.11 we

can summarize the relations between the intrinsic and extrinsic levels of knotting
as follows:

no cut systems

��

Lemma 3.5
���� ���� �	(4)L − knotting

?

�� ���������

��

no ∂R − connected cut system
Lemma 3.8

��

=Thm. 3.11 (3)





��

�� ���� �	(3)L − knotting

��

?
�� ������

no ∂ − connected cut system

��

�� Thm. 3.10 ��

=Thm. 3.11 (2)





�� ���� �	(3)S − knotting

��

incompressible boundary ��
Prop. 4.3

��

=Thm. 3.11 (1)





�� ���� �	(2)S − knotting

Let us now turn to the question of whether every instance of knotting is non-
empty. Of course, in order to give an affirmative answer to the question it is
sufficient to show that there exist (4)L-knotted spatial handlebodies. As already
mentioned in Lemma 3.5, if the complement of a spatial handlebody H has cut
number equal to 1, then H is (4)L-knotted. Moreover, Jaco exhibited in [27] a
spatial handlebody H such that cut(C(H)) = 1, so every instance of knotting is
non-empty. Following [49], in Section 8 we show how Alexander invariants can
be used to provide obstructions for a handlebody complement to have maximal
cut number. Moreover, in Subsection 8.15 we refine Jaco’s result and prove the
following:

Theorem 3.12. There exist infinitely many non-isotopic spatial handlebodies
{Hi}i∈I such that cut(C(H)) = 1 for every i ∈ I. In particular, there exist in-
finitely many non-isotopic (4)L-knotted spatial handelbodies.

4. About the lower instances of knotting

Let H be a spatial handlebody, and set as usual M = C(H) and S = ∂H = ∂M .
Recall that we denote by S(H) and L(H) the sets of isotopy classes respectively of
(hc)–spines and constituent links of H.

Proposition 4.1. Let LΓ ∈ L(H). Then:

(1) If LΓ is a non–trivial homology boundary link, then H is (1)S-knotted.
(2) Assume that H is unknotted. Then LΓ is a homology boundary link if and

only if the spine Γ is unknotted (i.e. planar).
(3) (1)S-knotting does not imply (2)S-knotting.

Proof. (1) Assume by contradiction that H is unknotted. Then C(H) is a genus 2
handlebody as well, hence π1(C(H)) = Z

∗2. On the other hand, Papakyriakopolous’
unknotting theorem for knots [40] (which is based on his “Loop Theorem”) general-
ize to links (see for instance Theorem 1.1 in [21]) and implies that an n-component
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link is trivial if and only if the fundamental group of its complement is free on
n generators. As a consequence, if we assume that LΓ is a non–trivial homology
boundary link, by Lemma 3.6 we could realize Z

∗2 as a proper quotient of itself;
this is not possible because Z

∗2 is a Hopfian group [35].
(2) IfH is unknotted, then by (1) a homology boundary LΓ ∈ L(H) is necessarily

trivial. Then we can apply the main theorem of [41] and conclude that the spine Γ
itself is unknotted.

(3) Take a split (hc)–graph Γ with associated non–trivial split link LΓ, and let
H be a regular neighbourhood of Γ. By construction, H is not (2)S–knotted, while
it is (1)S–knotted by (1). �

Remark 4.2. The above lemma can be rephrased by saying that the existence of a
very special (i.e. unknotted) spine forces all the non–planar spines of an unknotted
handlebody to be at the highest level of knotting (i.e. to have corresponding links
which are not homology boundary links).

The following proposition provides a characterization of (2)S-knotting. It turns
out that in spite of its definition, (2)S–knotting reflects an intrinsic property of M .

Proposition 4.3. The following facts are equivalent:

(1) H is (2)S-knotted.
(2) M = C(H) has incompressible boundary (i.e. it is ∂-irreducible).
(3) π1(M) is not decomposable with respect to free products.

Proof. The implication (2) ⇒ (3) is a consequence of the results proved in [25], and
the implication (3) ⇒ (1) is trivial, so it is sufficient to show that (1) ⇒ (2).

So, we assume that M is boundary–compressible and show that H admits a
split spine. We follow the argument of [43, Theorem 4], here obtaining a stronger
conclusion due to the fact that we are dealing with genus 2 handlebodies.

Let D be a properly embedded compressing 2-disk in M such that ∂D is essential
in S = ∂H. Of course, we may suppose that H does not determine a Heegaard
splitting of S3 (otherwise H is unknotted, and we are done). Then we can assume
that D is disjoint from a suitable compressing disk E in H having boundary that
does not separate S (see [43, Lemma 3]). Compress H along E to obtain a solid
torus H1, with boundary S1. If ∂D is not essential in S1, then ∂D bounds a disk
D′ also in H so that the union of D and D′ is a 2-sphere that splits a suitable split
spine of H. If ∂D is essential in S1, then H1 is unknotted, and also in this case it
is easy to conclude that H admits a split-spine. �

Remark 4.4. Let us say that an (f8)-spine Γ is tangled if there does not exist any

Whitehead move Γ̃ → Γ such that Γ̃ is a split (hc)–spine. As far as we under-
stand, the statement of Proposition 4.1 of [17] is obtained from the statement of
Proposition 4.3 above just by replacing the first point with “There exists a tangled
(f8)-spine of H”.

Clearly this is a strictly weaker hypothesis: being (2)S-knotted is equivalent to
requiring that every (f8)-spine is tangled. In fact, it is easy to show that an unknot-
ted H actually admits both tangled and untangled (f8)-spines (see e.g. Figure 5)
and that in this case C(H) has compressible boundary indeed. Notice however that
the arguments in [17] should provide a slightly different proof of Proposition 4.3.

The following proposition is close in spirit to Remark 4.2.
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Proposition 4.5. (a) Let H be (2)S-knotted and not (2)L-knotted. Then, up to
isotopy, there exists a unique (hc)–spine of H with a split constituent link.

(b) If H is not (2)S-knotted, then it admits a unique split spine, up to diffeo-
morphims of S3 that leave H invariant.

Proof. (a) Let Γ0,Γ1 be (hc)–spines of H with split constituent links, and for i =
1, 2, take a separating meridian disk Di ⊆ H dual to the isthmus of Γi. Observe
that by adding a 2–handle to C(H) along Di we obtain a reducible manifold, so
Theorem 6.1 in [50] (see also [44]) implies that D1 and D2 may be isotoped to be
disjoint. Since bothD1 and D2 separate H, this easily implies that they are parallel
in H, and this in turn gives that Γ1 is isotopic to Γ2 in H.

(b) Every split spine of H determines a sphere transversely intersecting ∂H in
a simple closed curve that separates ∂H into two once–punctured tori. In the
language of [55], such a sphere decomposes the pair (S3, ∂H) into its prime factors.
Now, the main theorem in [55] ensures that the pair (S3, ∂H) admits a unique
decomposition into prime factors, up to homeomorphism, and this concludes the
proof. �

5. Quandle coloring obstructions

New invariants of “links of spatial handlebodies” have been recently defined by
Ishii in [23, 24]. Such invariants are based on the analysis of the possible colorings
of diagrams, where colors are intended to belong to a finite quandle of type k (see
below). For example, by using the simplest instance of these invariants, it has
been remarked in [24] that the handlebody H(Γ) corresponding to the spine Γ of
Figure 7 is (1)S-knotted. This example also shows that (1)S-knotting does not imply
(1)L-knotting. In fact, using quandle invariants we will show that this H(Γ) is (2)S–
knotted (see Proposition 5.10) so that (2)S–knotting does not imply (1)L–knotting.
We will come back to this example in Proposition 6.23 and in Proposition 8.18,
where we will give two different proofs of the fact that H(Γ) is (3)S–knotted.

Figure 7. A (3)S–knotted H(Γ) with trivial LΓ.

We are going to show that by means of the same simplest quandle coloring
invariants we can derive more information about our partial order on the instances
of knotting. More precisely, in this section we prove the following:

Proposition 5.1. Let H vary among the (genus 2) spatial handlebodies. Then:

H is (2)S-knotted | �� H is (1)L-knotted (see Proposition 5.10),

H is (1)L-knotted | �� H is (2)S-knotted (see Proposition 5.13),

H is (2)L-knotted | �� H is (3)L-knotted (see Proposition 5.15),

H is (2)L-knotted | �� H is (3)S-knotted (see Proposition 5.17).
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Preliminarily, we need to recall a few facts from [23, 24] that allow us to compute
these invariants in our cases of interest: either for genus 2 handlebodies or for 2–
component links.

5.1. Quandles: Definitions and examples. A quandle X = (X, ∗) is a non-
empty set X with a binary operation that verifies the following axioms. For every
a, b, c ∈ X, we have:

(Q1) a ∗ a = a ;
(Q2) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) ;
(Q3) Sa(x) := x ∗ a defines a bijection on X.

Notation. For every a, b ∈ X and for every m ∈ N, set

a ∗0 b = a, a ∗1 b = a ∗ b, a ∗2 b = (a ∗ b) ∗ b, a ∗m b = (a ∗m−1 b) ∗ b .

A quandle (X, ∗) is of type k ≥ 2 if k is the minimum positive integer such that for
every a, b ∈ X, we have a ∗k b = a.

Dihedral quandles. In a sense, the simplest quandles are the m-dihedral quan-
dles (Rm, ∗) defined as follows. We identify the ring Zm := Z/mZ with the set
{0, 1, . . . ,m− 1} of canonical representatives, and it is understood that the opera-
tions act on this concrete set of integer numbers; then, as a set Rm = Zm, while the
quandle operation ∗ is defined in terms of the usual ring operations by a∗b = 2b−a.
It is immediate that (Rm, ∗) is a finite quandle of type 2. The name is justified by
the fact that (Rm, ∗) can be identified with the set of reflections of a regular m-gon
with conjugation as a quandle operation.

Tetrahedral quandle. Another important simple example is the tetrahedral quan-
dle (S4, ∗), where as a set S4 = Z2[t, t

−1]/(t2 + t+1), and the quandle operation is
defined in terms of the usual ring operations by a ∗ b = ta+ (1− t)b. It is easy to
verify that this is a finite quandle of type 3.

Alexander quandle. The above examples belong to the class of so-called Alexan-
der quandles (M, ∗) defined as follows. Let Λ := Z[t, t−1]. Consider any Λ-module
M , as a set, with a quandle operation ∗ defined (in terms of the usual operations
on the Λ-module M) by a ∗ b = ta+ (1− t)b. For every positive integer m ≥ 2 and
every Laurent polynomial h(t) ∈ Z[t, t−1], the module Mm = Zm[t, t−1]/h(t) is an
example of an Alexander quandle. The quandle (Mm, ∗) is finite if the coefficients
of the highest and lowest degree terms are units in Zm. Also observe that the
dihedral quandle (Rm, ∗) introduced above is isomorphic to the Alexander quandle
(Mm, ∗) associated to the polynomial h(t) = t+ 1.

5.2. Quandle coloring invariants. We are ready to describe the quandle coloring
invariants. Let us fix a finite quandle X = (X, ∗) of type k.

Let us consider either an (hc)–spine Γ of a genus 2 handlebody H or a 2–
component link L. Fix an ordering and an auxiliary orientation ω of the two
components K1,K2 of LΓ (resp. L).

A Zk–cycle on (Γ, ω) (resp. on (L, ω)) associates to the isthmus of Γ the value
0 ∈ Zk and takes an arbitrary value zi ∈ Zk on Ki for i = 1, 2. Therefore, every
(hc)–spine and every link supports exactly k2 different Zk-cycles, encoded by the
couples z = (z1, z2) (the 0-value associated to the isthmus being understood).
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Let D be a given diagram of Γ (resp. L). Clearly the orientation ω and any
Zk-cycle z = (z1, z2) descend on D. An arc of D is an embedded curve in D having
as endpoints either an under-crossing or a vertex of Γ.

By definition, an X-coloring of (D, ω, z) assigns to each arc e of D an element
a(e) ∈ X in such a way that at each crossing or vertex of D the conditions shown
in Figure 8 are satisfied.

a a

a

b*
za

z

a
b

Figure 8. Quandle coloring.

Let us denote by CX(D, ω, z) the number of such X-colorings. Then, by vary-
ing the Zk-cycle z, we obtain a non-ordered k2-tuple of positive integers denoted
by CX(D, ω). It is not difficult to show that, if ω′ is another orientation on the
knots K1,K2, then for every cycle z = (z1, z2) we have CX(D, ω′, (z1, z2)) =
CX(D, ω, (ε1z1, ε2z2)), where εi = 1 (resp. εi = −1) if ω and ω′ agree (resp. do
not agree) on Ki. This easily implies that the k2–tuple CX(D, ω) does not depend
on the choice of the orientation ω, so it makes sense to denote it by CX(D). More-
over, as a consequence of [24, Theorem 7], the k2–tuple CX(D) is independent from
the choice of the diagram D, and even from the choice of the (hc)–spine Γ of H. It
follows that:

Proposition 5.2. If Y is either a genus 2 spatial handlebody H or a 2–component
link L, and D is a diagram of either any (hc)–spine Γ of H or of L, then

CX(Y ) := CX(D) ∈ N
k2

/Sk2

is a well-defined isotopy invariant of Y (where Sk2 is the group of permutations on
k2 elements).

It might be worth mentioning that all the arguments below only make use of
dihedral quandle colorings. In the context of dihedral quandles, a complete proof
of Proposition 5.2 may be found in [23].

5.3. Specializing to the dihedral quandles. Let us concentrate our attention
on the dihedral quandle X = (Rp, ∗), also assuming for simplicity that p is an odd
prime number. Then:

(1) As X = (Rp, ∗) is of type 2, the orientation ω is inessential in the definition
of colorings, so we can forget about it.

(2) Let a be the number of arcs of a diagram D as above. Then, for every
Z2-cycle z on D, the corresponding set of colorings is a linear subspace of
Z
a
p, determined by a linear equation at each crossing and at each vertex of

D. Hence CX(D, z) is a power of p, say pd, d = d(D, z), where d ≤ a.
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(3) For every Z2-cycle z as above, the corresponding space of colorings con-
tains the 1–dimensional subspace made by the constant colorings so that
d(D, z) ≥ 1.

By using the above remarks we can collect the information carried by the invari-
ant CX(Y ) by means of the following invariant polynomial:

Φp(Y )(t) := Φp(D)(t) =
∑
z

td(D,z)−1 ∈ N[t] .

We stress that this notation could be a bit misleading, as it could suggest that
the monomials of Φp(Y )(t) are in some way marked by the Z2-cycles. This is true
for a given diagram, but this information is lost when we consider the polynomial
as an invariant of Y . This corresponds to the fact that CX(Y ) is a non-ordered
4–tuple of positive integers. Clearly Φp(Y )(t) has at most 4 monomials, the sum of
its coefficients is equal to 4, and its degree is at most A−1, where A is the minimal
number of arcs, when D varies among all the diagrams of Y (when Y is a link) or
of all the (hc)–spines of Y (when Y is a handlebody).

Lemma 5.3. For every diagram D of an (hc)–spine Γ of H (resp. of a 2–component
link L) we have that d(D, (0, 0)) = 1 (resp. d(D, (0, 0)) = 2).

Proof. Let D be the diagram of an (hc)–spine Γ (resp. of a 2–component link L).
Then, the assignment of a color to each arc defines a coloring of D associated to the
trivial cocycle if and only if it is constant (resp. it is constant on the components
of L). �

5.4. Quandle obstructions. Let p be an odd prime. From now on, we will con-
sider only the dihedral quandle X = (Rp, ∗). By using the simplest quandle in-
variants associated to X, we are going to determine necessary conditions (“obstruc-
tions”) for a given H to be (2)S-unknotted, (1)L-unknotted or (2)L-unknotted. The
following lemma is not strictly necessary for our purposes (in fact, the statement
of Corollary 5.5 regarding (1)L-unknotted handlebodies may also be deduced by
Lemma 5.7 below; see Remark 5.8). However, it establishes an interesting relation
between the quandle invariants of a handlebody and those of its constituent links.
Throughout the whole subsection, let H be a spatial handlebody.

Lemma 5.4. Let Γ ∈ S(H) and take the corresponding LΓ ∈ L(H). If

Φp(LΓ)(t) = t+ tm1 + tm2 + tm3 , m1 ≤ m2 ≤ m3 ,

then there exist n1, n2, n3 ∈ N such that

Φp(H)(t) = 1 + tn1 + tn2 + tn3 , n1 ≤ n2 ≤ n3 ,

and for j = 1, 2, 3 the integer nj is such that either nj = mj or nj = mj − 1.

Proof. We can take a diagram D of Γ such that an open neighbourhood of the
isthmus in Γ bijectively projects onto its image in D. We can also ask that this
image not intersect the remaining part of the diagram. It follows that by removing
the interior of the isthmus from D we get a diagram D′ of LΓ. Then it is clear that,
for every cycle z, the linear system computing CX(D, z) is obtained from the linear
system computing CX(D′, z) just by adding one equation due to the coloring con-
ditions at vertices. Since both of these linear systems admit the constant solutions,
for every fixed cycle the set of solutions corresponding to D is an affine subspace of
codimension 0 or 1 of the space of solutions corresponding to D′.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2116 R. BENEDETTI AND R. FRIGERIO

Together with Lemma 5.3, this shows that if Φp(LΓ)(t) = t + tm1 + tm2 +
tm3 , m1 ≤ m2 ≤ m3, then there exist n1, n2, n3 ∈ N, n1 ≤ n2 ≤ n3, such that
Φp(H)(t) = 1 + tn1 + tn2 + tn3 and mj − 1 ≤ nτ(j) ≤ mj , where τ ∈ S3 is a
permutation. In order to conclude, it is now sufficient to show that we may assume
that τ is the identity. But this is a consequence of the following easy

Claim. Let a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn be non–decreasing sequences of real
numbers such that bi − 1 ≤ aτ(i) ≤ bi for every i = 1, . . . , n, where τ ∈ Sn is a
permutation. Then, we have bi − 1 ≤ ai ≤ bi for every i = 1, . . . , n.

In fact, for every given i0, the assumption implies that the set {i | ai ≤ bi0}
contains at least i0 elements, so ai0 ≤ bi0 . In the very same way one can show that
ai0 ≥ bi0 − 1, whence the conclusion. �

Corollary 5.5. Let L ∈ L(H) be a constituent link of H. Then,

degΦp(L)− 1 ≤ degΦp(H) ≤ degΦp(L).

In particular, if H is (1)L-unknotted, then degΦp(H) ≤ 1.

Proof. The first statement is an immediate consequence of the previous lemma. If
H is (1)L-unknotted, then the trivial link L belongs to L(H). Since Φp(L) = 4t,
the conclusion follows. �

We now come to the obstruction to being (2)S-unknotted.

Lemma 5.6. If H is not (2)S-knotted, then there exist h1, h2 ∈ N such that

Φp(H)(t) = 1 + th1 + th2 + th1+h2 .

Proof. Since H admits a split (hc)–spine Γ, it has a diagram D of the form shown
in Figure 9, where it is understood that by removing the interior of the isthmus
one gets diagrams Dj of the constituent knots Kj , j = 1, 2, so that every box
includes a 1–string sub-diagram of the corresponding Dj . The symbol a belongs to
Rp = {0, 1, 2, . . . , p − 1} and refers to a portion of an X-coloring of D. For every
Z2-cycle z = (z1, z2) on D, every X-coloring of (D, z) restricts to an X-coloring of
both the diagrams (Dj , zj).

1 2

a a

a

D Da

a

Figure 9. A (2)S-unknotted diagram.
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For every a ∈ Rp and j = 1, 2, denote by nj,a ∈ N the number of X-colorings of
(Dj , 1) that extend the color a near the vertex of D contained in Dj . Then we have

CX(D, (1, 0)) =
∑
a

n1,a,

CX(D, (0, 1)) =
∑
a

n2,a,

CX(D, (1, 1)) =
∑
a

n1,an2,a.

Due to the definition of the dihedral quandle, since p �= 2, for every given a, c ∈
Rp there exists a unique b such that a ∗ b = c. Moreover, thanks to the axioms in
the definition of quandles, if b ∈ X is a fixed color and we replace by d ∗ b every
color d occurring in an X-coloring of (Dj , 1) that takes the value a near the vertex,
then we get an X-coloring that takes the value c near the vertex. As a consequence,
for j = 1, 2 there exists hj ∈ N such that nj,a = phj for every a ∈ X.

It follows that we have

CX(D, (0, 0)) = p , CX(D, (1, 0)) = ph1+1 ,
CX(D, (0, 1)) = ph2+1 , CX(D, (1, 1)) = ph1+h2+1 ,

whence the conclusion. �

Lemma 5.7. Suppose that H is (2)L-unknotted. Then there exist h1, h2, h3 ∈ N

such that

Φp(H)(t) = 1 + th1 + th2 + th3 , h1 ≤ h2 ≤ h3,

where h3 = h1+h2 or h3 = h1+h2+1. Moreover, if L ∈ L(H) is a split link, then

Φp(L)(t) = t+ th1+1 + th2+1 + th1+h2+1 .

Proof. Let us take a spine Γ of H such that LΓ is a split link. Then there is a
diagram D of Γ of the form shown in Figure 10. Here h = 2n+1 is an odd positive
integer and the rectangle in the middle represents h parallel strings. All the h+ 2
horizontal strings belong to the isthmus. If we remove the interior of the isthmus
we obtain a split diagram D1 ∪ D2 of LΓ = K1 ∪K2.

D1 D2

v1

v2

h

Figure 10. A (2)L-unknotted diagram.

For 1, 2, let Ci be the number of colorings of Di corresponding to the non–trivial
cycle on Di, and let h1, h2 ∈ N be such that Ci = phi+1. Since any Z2-cycle on Γ
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vanishes on the isthmus, we easily get

CX(D1 ∪ D2, (0, 0)) = p2 , CX(D, (0, 0)) = p ,
CX(D1 ∪ D2, (1, 0)) = ph1+2 , CX(D, (1, 0)) = ph1+1 ,
CX(D1 ∪ D2, (0, 1)) = ph2+2 , CX(D, (0, 1)) = ph2+1 ,
CX(D1 ∪ D2, (1, 1)) = ph1+h2+2 .

This implies in particular that

Φp(L)(t) = t+ th1+1 + th2+1 + th1+h2+1 .

Now observe that every (1, 1)-coloring ofD restricts to a (1, 1)-coloring ofD1∪D2.
Moreover, once a (1, 1)-coloring of D1 ∪ D2 is fixed, one can try to extend it to a
(1, 1)-coloring of D as follows: the coloring of D1 uniquely determines the color of
the arc of the isthmus starting at the vertex v1; then, following the isthmus from v1
to v2, one assigns to the arcs of the isthmus the colors uniquely determined by the
rules describing the behaviour of colorings at crossings; finally, one checks whether
the color obtained at the arc ending at v2 matches the fixed coloring of D2. One
can express this last condition as a linear equation on the colors of D1 ∪ D2, and
this implies in turn that the set of (1, 1)-colorings of D admits a bijection with
a subspace of the (1, 1)-colorings of D1 ∪ D2 having codimension 0 or 1. Then
CX(D, (1, 1)) is equal either to ph1+h2+2 or to ph1+h2+1, whence the conclusion. �

Remark 5.8. If L is the trivial link, then Φp(t) = 4t. Therefore Lemma 5.7 allows
us to refine Corollary 5.5: if H is (1)L-unknotted, then we have either Φp(H) = 4
or Φp(H) = 3 + t.

Our next goal is to use the so-obtained obstructions in order to produce, for
example, families of (2)S-knotted (resp. (2)L-knotted) handlebodies that are (2)L-
unknotted (resp. (3)L-unknotted, and even (3)S-unknotted). Having this in mind,
it is useful to introduce and study some elementary tangles that we will combine
in order to get the desired examples.

5.5. The tangle E(q). Let q be an odd prime, and consider the tangle E(q) of
Figure 11. Here z1, z2 ∈ Z2 label the horizontal lines and play the role of a Z2-
cycle z, while the colors a, b, cj belong to Rp and refer to a generic X-coloring of
this tangle, relative to the given z = (z1, z2). Recall that our assumptions imply
that every cycle vanishes on the isthmus, so for every z any admissible coloring is
constant on the horizontal lines. As a consequence, a (resp. b) is constant along the
top (resp. bottom) line of the diagram.

The following lemma computes the number of colorings of the tangle E(q).

Lemma 5.9. For every p denote by CpE(q, z, a, b) the number of (Rp, ∗)-colorings
of E(q) relative to z which assume the values a and b respectively on the top and
the bottom line of the diagram. Then:

(1) If q = p and z = (1, 1), then CpE(q, z, a, b) = 1 for every (a, b) ∈ R2
p.

(2) In all the other cases (i.e. if p �= q or if z �= (1, 1)), then CpE(q, z, a, b) = 0
if a �= b, and CpE(q, z, a, b) = 1 if a = b (and in this case, we have only the
constant coloring assigning the color a = b to every arc of the diagram).

Proof. Let us consider only the case z = (1, 1), the other cases being easier. With
notation as in Figure 11, we have c1 = a ∗ b = 2b − a, and c2l+1 = (c2l−1 ∗
a) ∗ b = c2l−1 + 2(b − a) for every l = 1, . . . , (q − 1)/2. Therefore, we get cq =
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a

b

a

b

c1

c2

c3

c4a b

z2

z1

a

cq−2 cq = b

E(q)

Figure 11. The tangles E(q).

(q − 1)(b − a) + 2b − a, and the assigned coloring of the horizontal rows extends
(in a unique way) to the whole diagram if and only if (q − 1)(b − a) + 2b − a = b,
i.e. if and only if q(b − a) = 0. This equality holds in Zp if and only if p divides q
or a = b, whence the conclusion. �

5.6. (2)S-knotting does not imply (1)L-knotting. We are ready to construct
the first pertinent family of examples. For every odd prime p, consider the (hc)–
spines Γ1(p) of Figure 12, and set H1(p) = H(Γ1(p)).

E(p)

Figure 12. The spine Γ1(p). The hexagonal box represents the
tangle described in Figure 11.

Proposition 5.10. For every prime p, H1(p) is (2)S-knotted and (1)L-unknotted.
Moreover, if p and p′ are different prime numbers, then H1(p) and H1(p

′) are not
isotopic.
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Proof. Let p be a fixed prime number. Since the constituent link of Γ1(p) is trivial,
by definition H1(p) is not (1)L-knotted.

An easy application of Lemma 5.9 implies that the numbers of distinct (Rp, ∗)–
colorings of Γ1(p) with respect to the cycle z = (z1, z2) is equal to p2 if z = (1, 1)
and to p otherwise. This implies that

Φp(H1(p))(t) = 3 + t .

Together with Lemma 5.6, this implies that H1(p) is (2)S–knotted.
Now take a prime number p′ �= p. Lemma 5.9 easily implies that

Φp(H1(p
′))(t) = 4 �= Φp(H1(p))(t),

so H1(p
′) is not isotopic to H1(p). �

Remark 5.11. Building respectively on the theory of handlebody patterns developed
in Section 6 and on the use of Alexander-type invariants, in Propositions 6.23
and 8.18 we give two different proofs of the stronger fact that H1(p) is (3)S-knotted
for every prime p.

5.7. The tangle O(q). We now consider the tangle O(q) of Figure 13, which can
be obtained from E(q) as follows: first, we attach to the band bounded by the
two horizontal lines of E(q) a 2–dimensional 1–handle whose core coincides with
the isthmus; then, we define O(q) to be the boundary of the so-obtained surface.
Observe that O(q) is the union of two arcs, one of which is entering and exiting the
diagram on the left, the other on the right.

In what follows, we will be interested in the colorings of O(q) corresponding to
Z2–cycles which either vanish on both the components of O(q) or take the value
1 on both the components of O(q). We denote the corresponding labelled tangles
respectively by O(q, 0) and O(q, 1). We also denote by a, b ∈ Rp a pair of “input”
colors which are assigned to the arcs entering and exiting the diagram of O(q) on the
left (see Figure 13). The following lemma describes the possible pairs of “output”
colors a′, b′ ∈ Rp which are associated to the entering/exiting arcs on the right by
a global coloring that extends the “input” datum (a, b).

Lemma 5.12. For z ∈ {0, 1} and q an odd prime, let CpO(q, z, a, b, a′, b′) be
the number of (Rp, ∗)-colorings of O(q, z) that extend the given input/output data
(a, b, a′, b′).

(1) Suppose that p = q. Then, CpO(q, 1, a, b, a′, b′) = p if a = a′ and b = b′,
and CpO(q, 1, a, b, a′, b′) = 0 if a �= a′ or b �= b′.

(2) Suppose that p �= q, and let us fix (a, b) ∈ R2
p. Then there exists a unique

pair (a′, b′) ∈ R2
p such that CpO(q, 1, a, b, a′, b′) = 1. Moreover, if a = a′ or

b = b′, then we have a = a′ = b = b′. If (a′′, b′′) �= (a′, b′) is any other pair
of colors, then CpO(q, 1, a, b, a′′, b′′) = 0.

(3) Suppose that z = 0. Then, we have CpO(q, 0, a, b, a′, b′) = 1 if a = b and
a′ = b′, and CpO(q, 0, a, b, a′, b′) = 0 if a �= b or a′ �= b′.

Proof. Point (3) is obvious, so we concentrate our attention on the colorings of
O(q, 1).

Let us set k = (q + 1)/2 and label the vertical arcs of the diagram by the colors

c1, d1, . . . , ck, dk, c
′
1, d

′
1, . . . , c

′
k−1, d

′
k−1
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b
d′1

d1c1

c′1

e1

f1 f2

a

b′

a′

ck dk

ek−1

fk−1

e2

O(q)

Figure 13. The tangles O(q), where q = 2k − 1.

as in Figure 13. Also label by the color ei (resp. fi) the top (resp. bottom) arc
passing over the arcs labelled by ci and di so that f1 = b.

We set x = c1 and look for the values that the labels introduced above must take
in order to define a coloring of the diagram that extends the given input/output
data. By looking at crossings from the left to the right we obtain

e1 = x, f1 = b, d1 = a ∗ x = 2x− a ,

c′i = ci ∗ fi, d′i = di ∗ fi, i = 1, . . . , k − 1 ,

and

ei+1 = (ei ∗ d′i) ∗ c′i, fi+1 = (fi ∗ d′i) ∗ c′i, ci+1 = c′i ∗ ei+1, di+1 = d′i ∗ ei+1

for every i = 1, . . . , k − 1. Therefore, an easy induction shows that
(1)

ek = (2k − 1)x− (2k − 2)a, fk = b+ (2k − 2)(x− a),
ck = (6k − 5)x− (4k − 4)a− (2k − 2)b, dk = (6k − 4)x− (4k − 3)a

−(2k − 2)b.

Now, the fixed labels a, b, a′, b′, x extend (uniquely) to a coloring of the whole dia-
gram if and only if ⎧⎨

⎩
ek = a′,
fk = dk,
ck ∗ fk = b′.

By (1), since q = 2k − 1 this linear system is equivalent to the system

(2)

⎧⎨
⎩

qx− (q − 1)a = a,′

q(2x− a− b) = 0,
−qx+ (q + 1)b = b′.
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Let us assume that p = q. Then, system (2) reduces to the conditions a = a′,
b = b′. If these conditions are satisfied, every choice for x can be (uniquely) extended
to a coloring of the diagram, while if a �= a′ or b �= b′ there do not exist colorings
extending the input/output data a, a′, b, b′. This proves point (1).

If p �= q, then the second equation of (2) implies that x = (a+ b)/2 (recall that
p is odd so that 2 is invertible in Zp). Then, looking at the other equations we
see that the system admits a (unique) solution if and only if 2a′ = (2 − q)a + qb
and 2b′ = −qa + (q + 2)b. In particular, if a = a′ or b = b′ we necessarily have
a = a′ = b = b′, whence the conclusion. �
5.8. (1)L-knotting does not imply (2)S-knotting. For every odd prime q, let
us consider the graph Γ2(q) described in Figure 14, and let H2(q) = H(Γ2(q)).

a

a

aa

O(q)

b b

O(q)

aa

a

Figure 14. An Rp-coloring of the spine Γ2(q) relative to the cy-
cle (1, 0), when p = q. The circular boxes represent tangles as
described in Figure 13.

We have the following:

Proposition 5.13. For every prime p, H2(p) is (1)L-knotted and (2)S-unknotted.
Moreover, if p and p′ are different prime numbers, then H2(p) and H2(p

′) are not
isotopic.

Proof. Let us fix an odd prime number p′. It is clear that Γ2(p
′) is a split spine

of H2(p
′), which is therefore (2)S-unknotted. By Lemma 5.6 (and its proof), in

order to compute Φp(H2(p
′)) it is sufficient to compute the number of z-colorings

of H2(p
′) for z = (1, 0) and z = (0, 1).

So, let us suppose that the cycle z = (1, 0) assigns the value 1 (resp. 0) to the
component of LΓ2(p′) on the top (resp. on the bottom) of Figure 14. An easy
application of Lemma 5.12 shows that if p �= p′, then the only (1, 0)-colorings of
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Γ2(p
′) are the constant ones. The same is true for (0, 1)-colorings, so by Lemma 5.6

we have
Φp(H2(p

′)) = 4 if p �= p′ .

Now suppose p = p′. By Lemma 5.12 it is easily seen that the knot on the top
of Figure 14 admits exactly p3 colorings relative to the non-trivial cycle. Moreover,
each such coloring uniquely extends to a (1, 0)-coloring of the whole diagram of
Γ2(p). By the symmetry of the diagram, the same result holds for (0, 1)-colorings.
Then, by Lemma 5.6 we have

Φp(H2(p)) = 1 + 2t2 + t4.

By Corollary 5.5, this implies that H2(p) is (1)L-knotted. Moreover, if p′ �= p we
have Φp(H2(p)) �= Φp(H2(p

′)), so the spatial handlebodies H2(p) and H2(p
′) are

not isotopic. �
5.9. Quandle colorings of bands. Our next constructions make extensive use of
links and tangles obtained by “doubling” some given knot or tangle, i.e. by replacing
a knot or a tangle with the boundary of a band representing a fixed framing on the
knot or the tangle. Therefore, it is convenient to point out some nice features of
quandle colorings of bands.

So, let us consider a pair A of parallel arcs in a diagram, labelled with colors
a, b ∈ Rp. After fixing a (coherent) orientation on the arcs, we suppose that a
(resp. b) is the color of the arc running on the right (resp. on the left), and we
set δ = b − a. For reasons that will become clear soon, we label A by the pair
(a, δ) ∈ R2

p (see Figure 15).

a′

a a

a+ δa+ δ

b′ = a′ + 2δ

(a′, δ′)

(a, δ) (a, δ)

(a′ + 2δ, δ′)

Figure 15. Quandle colorings of bands.

Let us now suppose that both the arcs of A are labelled by the non–trivial Z2-
cycle. Now, if an arc undercrosses band A from the right (with color a′) to the left
(with color b′), then for every admissible coloring the equality b′ = a′ + 2δ must
hold (see the left side of Figure 15). As a consequence, if a band A′ undercrosses A
from the right to the left, and the portion of A′ on the right is labelled by (a′, δ′),
then the portion on the left has to be labelled by (a′ + 2δ, δ′) (see the right side of
Figure 15). In particular, the parameter δ′ propagates without being affected by
crossings.

5.10. The tangle O(q). Let us now consider the tangle O(q) obtained by replacing
each arc of O(q) with a band, thus obtaining a tangle with four strings. In Figure 16
we represent O(q) by drawing one arrow for each band. We agree that the (1, 1)-
cycle (resp. the (0, 0)-cycle) assigns the value 1 (resp. 0) to every arc, the (1, 0)-cycle
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(resp. the (0, 1)-cycle) assigns the value 1 (resp. 0) on the arcs giving the “right”
boundary of the band (with respect to the orientation given by the arrows) and the
value 0 (resp. 1) on the arcs on the left.

b

a

c

d

b

a

c

d

O(q)

Figure 16. The tangle O(q).

Lemma 5.14. For every p and z ∈ Z
2
2 let us denote by CpO(q, z, a, b, c, d) the

number of (Rp, ∗)-colorings of O(p) relative to the cycle z (in the sense specified
above) that extend the coloring described in Figure 16. Then:

(1) If z = (1, 1), then CpO(q, z, a, b, c, d) = 1 if a = d and b = c, and

CpO(q, z, a, b, c, d) = 0 otherwise.
(2) If q = p and z = (1, 0) or z = (0, 1), then for every a ∈ Rp we have

CpO(q, z, a, a, c, d) = p if c = d, and CpO(q, z, a, a, c, d) = 0 if c �= d.
(3) If q �= p and z = (1, 0) or z = (0, 1), then for every cycle z we have

CpO(q, z, a, a, c, d) = 1 if a = c = d, and CpO(q, z, a, a, c, d) = 0 otherwise.

Proof. (1) The discussion carried out in Subsection 5.9 shows that a necessary
condition for extending the given coloring is that b− a = c− d. Let us set b− a =
c − d = δ. From the top to the bottom, we may label the bands on the left by
(b,−δ) and (c,−δ), and the bands on the right by (a, δ) and (d, δ). Since every
band undercrosses itself and the other band the same number of times (with the
same orientation), it follows that we need to have a = d and b = c. Moreover, it is
clear that if this condition is satisfied, then the coloring extends in a unique way.

(2), (3) Independent of the cycle z, it is readily seen that if a coloring assigns
the same color to two parallel arcs bounding a portion of a band, then every pair of
parallel arcs belonging to that band must have the same color. Also observe that
this is our case of interest, since we are assigning the color a on the top arcs both
on the right and on the left of the diagram. If z = (1, 0) or z = (0, 1), this implies
in turn that the z-colorings of O(q) bijectively correspond to the (1, 1)-colorings of
O(q), i.e. the z-colorings of O(q) are exactly the colorings obtained by “doubling”
a (1, 1)-coloring of O(q). The conclusion now follows from Lemma 5.12. �
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5.11. (2)L-knotting does not imply (3)L-knotting. For every odd prime q, let
us consider the spine Γ3(q) shown in Figure 17, and set H3(q) = H(Γ3(q)). Let
K1,K2 be the constituent knots of Γ3(q). For i = 1, 2, it is readily seen that the
blackboard framing of Ki coincides with the trivial framing, and this implies that
LΓ3(q) = K1∪K2 is a boundary link (since the linking number of the knots K1 and
K2 is zero, a parallel copy of a Seifert surface S1 for K1 provides a Seifert surface
for K2 which is disjoint from K1).

O(q)

E(q)

Figure 17. The spine Γ3(q).

Putting together Lemmas 5.9, 5.14 and 5.7 one easily gets the following:

Proposition 5.15. If p, q are distinct odd primes, then

Φp(H3(p)) = 1 + t+ 2t2 , Φp(H3(q)) = 4 .

In particular, H3(p) is (2)L-knotted and (3)L-unknotted, and H3(p) is not isotopic
to H3(q).

In Subsection 5.13 we prove the stronger result that (2)L-knotting does not imply
(3)S-knotting. One may wonder if this result could be achieved just by replacing
the hexagonal box E(q) with the trivial box E(1) in the construction of Γ3(q). An
easy computation shows that this is not the case. More in general, let us take a
knot K1 with a diagram D. Let us “double” D by replacing each arc of D with
a band, and let us add an isthmus in the most trivial possible way, i.e. by adding
an arc which is properly embedded in a small portion of a band, thus getting an
(hc)–spine Γ.

If the blackboard framing defined by D is equal to the trivial framing of K, then
Γ is a boundary spine of H(Γ). However, it is not difficult to show that for every
prime p we have Φp(H(Γ)) = 2 + thp , where hp is an integer depending on p. In
particular, the form of Φp(H(Γ)) does not allow us to use Lemma 5.7 in order to
conclude that H(Γ) is (2)L-knotted.
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In the following subsections, therefore, we slightly modify our strategy in order
to get the desired handlebodies admitting a boundary spine but no split constituent
link.

One could also wonder if H3(p) itself is indeed (3)S-knotted (i.e. if it does not
admit any boundary spine). We prove that this is the case in Proposition 6.23.

5.12. The tangle B. Let us now consider the tangle B showed in Figure 18. Under
the assumption that every arc is labelled with the non-trivial Z2 cycle, we would
like to compute the number Cp(a, b, c, d) of Rp–colorings of B which extend the
colors a, b, c, d assigned on the “corners” of the diagram.

b d

a c

b d

a c

B

Figure 18. The tangle B.

Lemma 5.16. We have⎧⎨
⎩

Cp(a, b, c, d) = p2 if a = b, c = d and p = 3,
Cp(a, b, c, d) = 1 if a = b, c = d and p �= 3,
Cp(a, b, c, d) = 0 otherwise .

Proof. Let us orient the bands of B as in Figure 19. The condition on the colors
of the arcs at the corners of B implies than the bands arriving at the corners of B
have to be labelled by the pairs (a, δ1), (b, δ2), (c, δ3) and (d, δ4), where δi ∈ Rp for
every i = 1, 2, 3, 4. The discussion above shows that, due to the crossings of the
bands, the pairs labelling the bands have to propagate as described in Figure 19.
Since the arcs at the ends of the bands join in pairs as described on the sides of the
figure, the input coloring (a, b, c, d) can be extended to a coloring of the whole B if
and only if the following conditions hold:

a+ δ1 = b− 2δ4 + 2δ1, b− 2δ4 + 2δ1 + δ2 = a+ 2δ3 + δ1, a+ 2δ3 = b+ δ2,
d+ δ4 = c− 2δ1 + 2δ4, c− 2δ1 + 2δ4 + δ3 = d+ 2δ2 + δ4, d+ 2δ2 = c+ δ3.

Such conditions may be rewritten as follows:

a− b = δ1 − 2δ4 = δ1 − 2δ4 + δ2 − 2δ3 = δ2 − 2δ3,
d− c = δ4 − 2δ1 = δ4 − 2δ1 + δ3 − 2δ2 = δ3 − 2δ2.

This readily implies that Cp(a, b, c, d) = 0 whenever a �= b or c �= d.
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Let us suppose that a = b and c = d. In this case, our conditions are equivalent
to the equations

δ1 = 2δ4, δ4 = 2δ1, δ2 = 2δ3, δ3 = 2δ2.

If p �= 3, it is readily seen that this implies δi = 0 for every i = 1, . . . , 4, so
Cp(a, a, c, c) = 1. On the other hand, if p = 3, then the conditions above are
equivalent to δ1 = −δ4 and δ2 = −δ3, so the desired colorings bijectively correspond
to the choices of (δ1, δ2) ∈ R2

3, whence the conclusion. �

d

c

(a+ 2δ3, δ1)

(a, δ1)

(b, δ2)

(c− 2δ1 + 2δ4, δ3)

(b− 2δ4 + 2δ1, δ2)

(d, δ4)

(d+ 2δ2, δ4)

(c, δ3)

a

b

Figure 19. Colorings of B. Every arrow represents a band.

5.13. (2)L-knotting does not imply (3)S-knotting. We are now ready to con-
struct examples of spatial handlebodies which are (2)L-knotted (i.e. they do not
admit a spine with split constituent link) but (3)S-unknotted (i.e. they admit a
boundary spine).

For every q ≥ 1, let Γ4(q) be the graph described in Figure 20, and let us set
H4(q) = H(Γ4(q)). It is obvious from the picture that Γ4(q) is a boundary spine
of H4(q), so H4(q) is (3)S-unknotted for every q. On the other hand, we have the
following:

Proposition 5.17. For every q ≥ 1 we have

Φ3(H4(q)) = 3 + t2q.

In particular, for every q ≥ 1 the handlebody H4(q) is (2)L-knotted. Moreover, if
q′ �= q, then the handlebodies H4(q) and H4(q

′) are not isotopic.

Proof. As usual, the only (0, 0)-colorings of Γ4(q) are the constant ones.
In order to describe the (1, 0)-colorings of Γ4(q), let us first denote by T (q)

(resp. B(q)) the constituent knot of Γ4(q) which lies on the top (resp. on the bottom)
of the picture. It is immediate to observe that T (q) and B(q) are both trivial. Let
us now concentrate on (1, 0)-colorings of Γ4(q), where we suppose, for example,
that the cycle vanishes on B(q). Under this assumption, it is immediate to realize
that the (1, 0)-colorings of Γ4(q) restrict to 1-colorings of T (q). Since such a knot
is trivial, this implies that every (1, 0)-coloring of Γ4(q) is constant on T (q).
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B1 B2 Bq

Figure 20. On the top: the spine Γ4(q). Every Bi is a copy of
the tangle B. On the bottom: the case q = 2.

Together with the discussion in Subsection 5.9, this also implies that the colorings
of B(q) are not affected by the crossings between the bands of B(q) and the bands
of T (q). Then, every (1, 0)-coloring of Γ4(q) restricts to a 0-coloring (i.e. to a
constant coloring) of B(q). Since the (constant) colors of T (q) and of B(q) have to
agree with the color of the isthmus, we can conclude that the only (1, 0)-colorings
of Γ4(q) are the constant ones. The same is also true (by the very same argument)
for (0, 1)-colorings, so we have already proved that Φ3(H4(q)) = 3+ tα, where 3α+1

is equal to the number of (1, 1)-colorings of Γ4(q).
Now, let us compute the number of (1, 1)-colorings of Γ4(q) that induce the color

a ∈ R3 on the isthmus. It is an immediate consequence of Lemma 5.17 that this
number is equal to the q-times product of C3(a, a, a, a) = 32. Since a can be chosen
in 3 different ways, it readily follows that the number of (1, 1)-colorings of Γ4(q) is
equal to 32q+1 so that

Φ3(H4(q)) = 3 + t2q.
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By Lemma 5.7, we have that H4(q) is (2)L-knotted for every q ≥ 1. Moreover, if
q �= q′ we have Φ3(H4(q)) �= Φ3(H4(q

′)), and this implies that H4(q) is not isotopic
to H4(q

′). �

6. Handlebody patterns and the maximal free covering

The main goal of this section is to provide rather handy combinatorial/topological
characterizations of the handlebody complements that admit a ∂-connected (resp.
∂R-connected) cut system (see Definition 3.7). Following Jaco [27], we observe in
Proposition 6.17 that the existence of a ∂-connected or ∂R-connected cut system
for a handlebody complement M is related to the way in which π1(∂M) sits inside
π1(M). Then, in order to study the image of π1(∂M) into π1(M) we extend some
techniques coming from the theory of homology boundary links to the context of
spatial handlebodies.

After recalling the definition of a link pattern, we define the analogous notion of
a handlebody pattern. In Proposition 6.20 we exploit this notion for constructing
easily computable obstructions that allow us to decide, starting from an explicitly
given cut system for M , if M admits a ∂-connected cut system. As an application,
in Proposition 6.23 we provide a proof of the fact that the handlebodies H1(p)
introduced in Subsection 5.6 are (3)S–knotted. For p = 3, this fact was already
known to Lambert [31]. In our opinion, the characterization described in Proposi-
tion 6.20 is easier to handle in comparison, for instance, with the original Lambert
topological treatment of his example.

Building on Proposition 6.17, we also describe a group–theoretic obstruction
for M to admit a ∂R-connected cut system. This obstruction is then exploited in
Proposition 6.24 for proving that there exist (4)L-unknotted handlebodies whose
complement does not admit any ∂R-connected cut system. As a consequence, the
notions of (4)L-knotting and (3)L-knotting are not equivalent.

Jaco’s obstruction for M to admit a ∂-connected cut system admits a nice topo-

logical interpretation in terms of the maximal free covering M̃ω of M . At the end

of the section we introduce such a covering and prove that the boundary of M̃ω is
connected if and only if M admits a ∂-connected cut system. We also show that

the study of the first homology groups of M̃ω and ∂M̃ω provides other obstructions
for M to admit ∂-connected (or ∂R-connected) cut systems.

6.1. Cut systems and epimorphisms of the fundamental group. Let M be
the complement in S3 either of a genus 2 handlebody or of a 2–component link, set
G = π1(M) and let F2 = F (t1, t2) be the free group on two generators t1, t2. Recall
that a necessary and sufficient condition for M to admit a cut system is that there
exists an epimorphism ϕ : π1(M) → F2. More precisely, if S = {S1, S2} is a cut
system for M , then we can fix a basepoint x0 ∈ M \ S and define an epimorphism
ϕ : G = π1(M,x0) → F2 in such a way that, if g ∈ G is represented by a loop
disjoint from S2 (resp. S1) and positively intersecting S1 (resp. S2) in exactly one
point, then ϕ(g) = t1 (resp. ϕ(g) = t2). We say that such a ϕ is associated to S.

The following result is due to Stallings [47] and shows that, up to post–composi-
tions with automorphisms of F2, there exists a unique epimorphism from G to F2.
Define G1 = [G,G], Gn+1 = [Gn, G], Gω =

⋂
n Gn.

Theorem 6.1 ([47]). Suppose G = π1(M,x0) is the fundamental group of M , and
let ϕ : G → F2 be any epimorphism. Then kerϕ = Gω.
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Henceforth we tacitly make the assumption that every connected component of
the boundary of a given cut system is essential, i.e. it does not bound a disk on
∂M . Of course, every cut system for M can be compressed in order to satisfy this
requirement.

6.2. Link patterns. Keeping notation from Subsection 6.1, let us now specialize to
the case when M = C(L) is the complement of an (ordered and oriented) homology
boundary link L.

As elements of G, the meridians of L are defined only up to conjugacy. For
i = 1, 2, let γi ∈ G be a representative of the i–th meridian of L, and set wi =
ϕ(γi). Then wi is well–defined up to conjugacy in F2. Adding to M two 2-handles
along the meridians of L we obtain a space homeomorphic to S2 × [0, 1], which
is simply connected, so w1, w2 normally generate G (i.e. there do not exist proper
normal subgroups of G containing w1 and w2). Also recall that any epimorphism
ψ : G → F2 is obtained from ϕ by post–composition with an automorphism of F2.

An old result by Nielsen (see e.g. [35] for a proof) ensures that every n–tuple of
generators of the free group Fn of rank n is in fact a set of free generators of Fn.
Such an n–tuple is called a base of Fn. The following definition is taken from [10].

Definition 6.2. A link pattern is a pair (w1, w2) ∈ F2 × F2 such that w1 and
w2 normally generate F2. The pattern (w1, w2) is realized by the link L if there
exist an epimorphism ϕ : π1(C(L)) → F2 and a choice of meridians γ1, γ2 such that
ϕ(γi) = wi for i = 1, 2. Two link patterns (w1, w2) and (w′

1, w
′
2) are equivalent if

there exist h1, h2 ∈ F2 and α ∈ Aut(F2) such that w′
i = hiα(wi)h

−1
i . A pattern is

trivial if it is equivalent to a base of F2.

The discussion above shows that to any homology boundary link there is as-
sociated a well-defined equivalence class of link patterns. Moreover, it is proved
in [10] that every pattern is realized by a homology boundary link (see also [3] for
an explicit construction).

Remark 6.3. Of course, every two bases of F2 are equivalent as link patterns, but if
(t1, t2) is a base of F2, then the pair (t1, wt2w

−1), while being trivial as a pattern,
is not necessarily a base of F2. More precisely, let us show that (t1, wt2w

−1) is a
base of F2 if and only if w = tn1 t

m
2 for some m,n ∈ Z (we will need this result later).

Of course, if w = tn1 t
m
2 , then t1 and wt2w

−1 = tn1 t2t
−n
1 generate the whole F2, so

(t1, wt2w
−1) is a base of F2. On the other hand, let us suppose that (t1, wt2w

−1)
is a base of F2, and let us choose n ∈ Z in such a way that w′ = t−n

1 w is either
the identity or is represented by a reduced word starting with the symbol t2 or t−1

2 .
Observe that (t1, w

′t2(w
′)−1) is also a base of F2, so there exists an element R(a, b)

in the free group over two generators F (a, b) such that R(t1, w
′t2(w

′)−1) = t2. Now
let w′′ be the reduced word representing w′t2(w

′)−1. Then it is easily seen that
in any product of the form t±1

1 (w′′)±1 there cannot be cancellations. It is easily
seen that this forces R(a, b) = b, whence w′′ = t2, and w′ = tm2 for some m. We
therefore have w = tn1 t

m
2 , as claimed.

The following result, which was already observed by Smythe in [46], characterizes
in terms of patterns those homology boundary links which are in fact boundary
links.

Proposition 6.4. A homology boundary link is a boundary link if and only if its
associated link patterns are trivial.
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Recall that an element w ∈ F2 is primitive if it is an element of a base of
F2. There is extensive literature about primitive elements in the free group on n
generators, and a particular interest has been devoted to the case of rank two. The
following lemma provides a useful characterization of trivial link patterns:

Lemma 6.5. Let F (t1, t2) = F2 be the free group on two generators t1, t2. Then:

(1) A link pattern (w1, w2) ∈ F2 × F2 is trivial if and only if w1 and w2 are
both primitives.

(2) Suppose that

w = tα1
1 tβ1

2 tα2
1 tβ2

2 . . . tαm
1 tβm

2

is a cyclically reduced word representing a primitive element, where αi �= 0,
βi �= 0 for every i = 1, . . . ,m. Then, all the αi’s share the same sign and
all the βi’s share the same sign.

Proof. Since (w1, w2) normally generate F2, they project onto a base of F2/[F2, F2]
= Z

2. Therefore, point (1) follows from [20, page 167].
Point (2) dates back to Nielsen [37] (see e.g. [59], [13], [38] for alternative proofs).

�

6.3. Jaco’s characterization of handlebody complements admitting ∂-
connected cut systems. Let us now consider the case when M is the comple-
ment of a spatial handlebody H such that cut(M) = 2. Let S = {S1, S2} be
any cut system of M , and set G = π1(M,x0), where x0 is a basepoint such that
x0 ∈ ∂M \ (S1 ∪ S2). Let F2 = F (t1, t2) be the free group on two generators t1, t2,
and let ϕ : G → F2 be the epimorphism associated to S.

Let us set G∂ = π1(∂M, x0) and denote by i : ∂M → M the inclusion. The
following result is proved in [27, Theorems 2 and 3] and in some sense extends
Proposition 6.4 to the case of spatial handlebodies. Recall from Subsection 3.8
thatM admits an (M → W )–boundary–preserving–map if there exists a continuous
map ϕ : M → W , where W is a genus 2 handlebody and ϕ|∂M is a homeomorphism
between ∂M = ∂H and ∂W .

Proposition 6.6. The manifold M admits an (M → W )–boundary–preserving–
map (or, equivalently, a ∂-connected cut system) if and only if ϕ(i∗(G∂)) = F2,
i.e. if and only if i∗(G∂) surjectively projects onto G/Gω.

In what follows we show how Proposition 6.6 can be exploited to prove that the
handlebodies H1(p) introduced in Subsection 5.6 are (3)S–knotted. Moreover, in
Proposition 6.17 we extend Proposition 6.6 in order to obtain an obstruction for a
handlebody complement to admit a ∂R-connected cut system.

6.4. Cut systems and longitudes. Suppose that X = C(L) is the complement
of a 2–component homology boundary link and let S be a cut system for X. The
boundary components of the surfaces of S belong to two families of parallel curves,
one on each component of ∂X. It is well–known that the isotopy classes of such
curves on ∂X do not depend on the particular cut system S (see also Subsec-
tion 6.14). These isotopy classes define the longitudes of L.

We would like to extend this notion to the case when M = C(H) is the comple-
ment of a handlebody H such that cut(M) = 2. It turns out that in this case the
definition of longitudes is less obvious, and longitudes are in fact no more indepen-
dent of the choice of a cut system (see Remark 7.5).
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�1

�3
�2

�3�1 �2

Figure 21. The boundary components of a cut system S. On the
top: �3 separates ∂M , so S is good. On the bottom: �3 does not
separate ∂M , and S is not good.

Lemma 6.7. Let S be a cut system for M . There exist three disjoint essential
simple closed curves �1, �2, �3 on ∂M such that the following conditions hold:

(1) each component of the boundary of S is parallel to �1, �2 or �3;
(2) the union �1 ∪ �2 is not separating in ∂M ;
(3) �1 and �2 (provided with some orientations) give a basis of

ker (i∗ : H1(∂M) → H1(M));
(4) if ∂S \ ∂RS is non–empty, then each component of the reduced boundary of

S is parallel to �1 or �2, and each further component of ∂S is parallel to �3.

Proof. Since on ∂M there exist at most three disjoint non–parallel non–trivial un-
oriented simple loops, there exist three loops �1, �2, �3 such that every (unoriented)
loop in ∂S is parallel to some �i, i = 1, 2, 3. Moreover, we may suppose that
�1 ∪ �2 does not separate ∂M so that �1, �2, �3 may be oriented in such a way that
either [�3] = [�1] + [�2] (if �3 does not separate ∂M) or [�3] = 0 (if �3 separates
∂M). In any case the submodule of H1(∂M) generated by the homology classes
[∂S1] ∈ H1(∂M) and [∂S2] ∈ H1(∂M) is contained in 〈[�1], [�2]〉. It is proved for
example in [1] that 〈[∂S1], [∂S2]〉 has rank 2, is equal to ker i∗ and is not a proper
finite–index submodule of any submodule of H1(∂M). These facts easily imply (3),
and (4) is obvious. �

Definition 6.8. Let S, �1 and �2 be as in the statement of Lemma 6.7. Then we
say that (the isotopy classes of) �1, �2 are a pair of longitudes associated to S.

If ∂S \ ∂RS �= ∅, then the longitudes of S are uniquely determined by S (see
the top of Figure 21). On the contrary, if the connected components of ∂S are
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γ2γ1
γ0

x2
x1

W1 W2

Figure 22. The definition of a handlebody pattern.

divided into three non–isotopic families of parallel curves each of which is non–
separating, then S defines three pairs of longitudes (see the bottom of Figure 21).
In Lemma 6.10 we show how to get rid of this ambiguity, which is not really relevant
to our purposes anyway.

Definition 6.9. We say that a cut system S is good if the components of ∂RS fall
into two isotopy classes of curves on ∂M (and in this case such classes define the
unique pair of longitudes associated to S).

Lemma 6.10. Let �1, �2 be a fixed pair of longitudes of the cut system S. Then M
admits a good cut system S ′ with longitudes �1, �2. If S is ∂R-connected, we may
set S ′ = S.

Proof. If every connected component of ∂S is parallel to �1 or to �2, then we may
set S ′ = S, and we are done. Otherwise, let �3 be the loop defined in Lemma 6.7.
If �3 is separating (and this is the case, in particular, if S is ∂R-connected), then
we may set S ′ = S. Otherwise, �3 separates ∂H \ (�1 ∪ �2) in two pairs of pants
Y1 and Y2 with ∂Y1 = ∂Y2 = �1 ∪ �2 ∪ �3. If ∂S has n components parallel to �3,
we define S ′ by replacing small neighbourhoods in S of such components with n
parallel copies of Y1 (or of Y2). �

6.5. Handlebody patterns. Suppose now that S is a good cut system for M ,
and fix an ordering and an auxiliary orientation on the longitudes �1, �2 of S.

We now define three elements w0(S), w1(S), w2(S) of F2 = F (t1, t2) as follows.
For i = 1, 2, let Wi be the non–annular component of ∂M \ ∂S whose closure
contains (a loop isotopic to) �i (if ∂S = ∂RS, then W1 = W2 is homeomorphic to a
4–punctured sphere; otherwise both W1 and W2 are homeomorphic to 3–punctured
spheres). Take basepoints xi ∈ Wi, i = 1, 2, and recall that every component of ∂S
inherits a well-defined orientation induced by the orientations of S1, S2.

For i = 1, 2 we fix a simple oriented loop γi on ∂M such that the following
conditions hold (see Figure 22):

• γi is based at xi and transverse to ∂S;
• γi is disjoint from every separating connected component of ∂S;
• γi is disjoint from every component of ∂S isotopic to �j for j �= i;
• γi positively intersects a representative of �i exactly in one point;
• γi transversely intersects every component of ∂S isotopic to �i exactly in
one point.

Starting and ending in x1, we now follow γ1 and write a letter ti (resp. t
−1
i ) every

time γ1 positively (resp. negatively) intersects a component of ∂Si, thus obtaining
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a (not necessarily reduced) word w̃1(S) that represents the element w1(S) ∈ F2.
The word w̃2(S) and the element w2(S) are obtained by applying the very same
procedure to γ2. Finally, we take an arc γ0 starting at x1, ending at x2, and
transversely intersecting each component of ∂S \ ∂RS exactly in one point, and
we denote by w̃0(S) the word obtained by associating the element ti (resp. t−1

i )
to every positive (resp. negative) intersection of γ0 with ∂Si. We also denote by
w0(S) the element of F2 associated to w̃0(S). Observe that wi(S) depends both on
the orientations of S1, S2 (which is part of the datum S) and on the fixed auxiliary
orientations on �1, �2. However, our notation forgets about this last dependence,
since it is not relevant to our purposes.

Our next aim is to describe as explicitly as possible the relations between the
topological properties of the cut system S and the algebraic properties of the epi-
morphism ϕ associated to S. These last properties are encoded by the wi(S)’s,
while the word’s w̃i(S)’s keep track of the actual components of ∂S. However, we
will see in Lemma 6.14 below that the wi(S)’s encode in some sense the “essential”
information about ∂S.

Let us now come back to the notation of Subsection 6.3. Suppose that S is good,
and set x0 = x1, i.e. let G = π1(M,x1) and G∂ = π1(∂M, x1).

Lemma 6.11. Let w0(S), w1(S), w2(S) be as above. Then:

(1) ϕ(i∗(G∂))⊆F2 is generated by the elements w1(S) and w0(S)w2(S)w0(S)−1.
(2) The pair (w1(S), w2(S)) normally generates F2.
(3) The kernel of the map ϕ ◦ i∗ : G∂ → F2 is normally generated by any pair

of loops which are freely homotopic to the longitudes of S.

Proof. (1) For i = 1, 2, let l1 ⊆ ∂M be a loop based at xi which is isotopic to �i
and disjoint from ∂S. Then, the group G∂ is generated by the elements

g1 = [γ1], g2 = [γ0 ∗ γ2 ∗ γ−1
0 ], n1 = [l1], n2 = [γ0 ∗ l2 ∗ γ−1

0 ] .

Since ϕ is associated to S, we have
(3)
ϕ(i∗(g1)) = w1(S), ϕ(i∗(g2)) = w0(S)w2(S)w0(S)−1, ϕ(i∗(n1)) = ϕ(i∗(n2)) = 1,

whence point (1).
(2) By point (1), it is sufficient to prove that i∗(G∂) normally generates G. Let

m1,m2 be simple closed loops of ∂M which bound disjoint compressing disksD1, D2

in the handlebody H in such a way that D1∪D2 does not separate H. The smallest
normal subgroup N of G containing i∗(G∂) also contains the (conjugacy classes of)
two elements h1, h2 which are freely homotopic to m1 and m2 in ∂M . But the
fundamental group of M ∪ D1 ∪ D2 is obviously trivial, so an easy application of
the Seifert–Van Kampen Theorem implies that the smallest normal subgroup of G
containing h1, h2 coincides with G. We have a fortiori N = G, whence point (2).

(3) Take g ∈ G∂ , and let g1, g2, n1, n2 be the generators of G∂ introduced in the
proof of point (1). There exists a word R(a, b, c, d) in the symbols a±1, b±1, c±1, d±1

such that g = R(g1, g2, n1, n2). Since ϕ(i∗(ni)) = 1 for i = 1, 2, the element
ϕ(i∗(g)) ∈ F2 is represented by the word R(ϕ(i∗(g1)), ϕ(i∗(g2))), where R(a, b) =
R(a, b, ∅, ∅) is obtained from R by replacing each occurence of c±1 and d±1 with an
empty word.

It follows from point (2) that the elements ϕ(i∗(g1)), ϕ(i∗(g2)) freely generate
a rank–2 subgroup of F2. This implies in turn that ϕ(i∗(g)) = 1 if and only if
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the word R represents the trivial element of F (a, b). This last condition is in turn
equivalent to the fact that g belongs to the subgroup of G∂ normally generated by
n1, n2, whence the conclusion. �

We are now ready to define the notion of a handlebody pattern.

Definition 6.12. A handlebody pattern is a triple (w0, w1, w2) ∈ F2×F2×F2 such
that w1, w2 normally generate F2 (i.e. (w1, w2) is a link pattern). If M , S and �1, �2
are as above, then we say that (w0(S), w1(S), w2(S)) is the pattern associated to
S. We also say that (w0(S), w1(S), w2(S)) is realized by M (or by H).

A pattern (w0, w1, w2) is trivial if the pair (w1, w0w2w
−1
0 ) is a base of F2 (by

Remark 6.3, this condition is strictly stronger than the condition that (w1, w2) is
trivial as a link pattern).

Remark 6.13. With some effort it is possible to define an equivalence relation on
the set of handlebody patterns in such a way that a fixed M uniquely defines an
equivalence class of handlebody patterns. Such an equivalence relation is a bit
more complicated than the one defined on link patterns, and since we won’t need
to exploit the notion of equivalent handlebody patterns, we are not discussing it
here (however, it is perhaps worth mentioning that Lemma 6.14 below shows for
example that, with respect to this relation, the handlebody pattern (w0, w1, w2)
should be equivalent to (1, w1, w0w2w

−1
0 )).

Moreover, putting together Lemma 6.19 with the fact that every link pattern is
realized by a homology boundary link, it can be easily proved that every handlebody
pattern is realized by a spatial handlebody.

The following lemma shows that patterns encode the relevant information about
the topology of the boundary of cut systems.

Lemma 6.14. Let S be a good cut system for M and let g1, g2 be elements in F2.
Then M admits a good cut system S ′ satisfying the following conditions:

(1) S ′ has the same longitudes as S.
(2) (w0(S ′), w1(S ′), w2(S ′)) = (g1w0(S)g−1

2 , g1w1(S)g−1
1 , g2w2(S)g−1

2 ).
(3) For i = 1, 2, 3, the word w̃i(S ′) is reduced (if w0(S ′) = 1, then it is under-

stood that w̃0(S ′) is the empty word, i.e. that ∂S = ∂RS).

Proof. Let �1, �2 be the longitudes of S = {S1, S2}, and let us denote by m1, . . . ,ml

the components of ∂S \ ∂RS and by W1 (resp. W2) the non–annular component of
∂M \ ∂S whose boundary contains a loop isotopic to �1 (resp. �2). If l ≥ 1, we
order the mi’s in such a way that m1 (resp. ml) is a boundary component of W1

(resp. W2) and mi,mi+1 bound an annulus in ∂M \ ∂S for i = 1, . . . ,m− 1.
Let us first consider the case when g1 = t±1

i and g2 = 1. Let us fix an embedded
arc α : [0, 1] → M satisfying the following properties: α(0) ∈ Si, α(1) ∈ W1 and
α(t) ∈ M \(∂M∪S1∪S2) for every t ∈ (0, 1) (such an arc exists becauseM \(S1∪S2)
is connected). Let Z = D2 × [0, 1] ⊆ M be a 1–handle satisfying the following
conditions (see Figure 23):

• α is the core of Z;
• Z ∩ (S1 ∪ S2) = Z ∩ S1 = D2 × {0} is a regular neighbourhood of α(0) in
Si \ ∂Si;

• Z ∩ ∂M = Z × {1} is a regular neighbourhood of α(1) in W1 \ ∂W1.
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Figure 23. The construction described in the proof of Lemma 6.14.

Now let γ0 and γ1 be the loop and the arc of ∂M entering in the definition of the
handlebody pattern associated to S. Let m0 ⊆ W1 be a simple loop parallel to m1

which is disjoint from γ1 and transversely intersects γ0 exactly in one point, and let
l, l′ ⊆ W1 be two loops isotopic to the components of ∂W1 \m1. We also assume
that γ1 transversely meets l and l′ exactly in one point and in this order. Finally,
we denote by W ′

1 ⊆ W1 the pair of pants bounded by m0, l, l
′. Up to shrinking Z,

we may suppose that D2 × {0, 1} is contained in the internal part of W ′
1. Now let

S′
i be defined by

S′
1 =

(
S1 ∪ (∂D2 × [0, 1]) ∪W ′

1

)
\
(
int(D2)× {0, 1}

)
,

and endow S′
i with the orientation induced by Si. It is clear that we may push

int(S′
i) ∩ ∂M slightly inside M , thus obtaining a new cut system S ′ = {S′

i, Sj} for
M . By construction, as a set we have that ∂S ′ is obtained from ∂S by adding
m0, l and l′. It is easily seen that if γ0 intersects m0 positively (resp. negatively),
then γ1 intersects l positively (resp. negatively) and l′ negatively (resp. positively).
Therefore, we get

w0(S ′) = t±1
i w0(S), w1(S ′) = t±1

i w1(S)t∓1
i , w2(S ′) = w2(S) .

In order to get the desired exponent for the added factors t±1
i , it is sufficient to

replace α, if necessary, with an arc enjoying the very same properties as α, but
exiting from Si on the opposite side with respect to α.

The very same proof also shows how S can be modified in order to obtain a cut
system S ′ such that

w0(S ′) = w0(S)t±1
i , w1(S ′) = w1(S), w2(S ′) = t∓1

i w2(S)t±1
i .

After repeating the construction just described a finite number of times, we
obtain a cut system S ′ satisying conditions (1) and (2).

In order to conclude, it is now sufficient to show that we may replace S ′ with
a cut system having the same longitudes and the same pattern, and satisfying the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LEVELS OF KNOTTING OF SPATIAL HANDLEBODIES 2137

additional property that its associated words are all reduced. So, let us suppose
that a string of the form t±1

j t∓1
j appears in w̃i(S ′) for some i = 0, 1, 2. Then, the

components c, c′ of ∂S ′ corresponding to the symbols t±1
j , t∓1

j belong to the same

surface Sj of S, bound an annulus A in ∂M \ ∂S, and inherit from Sj opposite

orientations. This implies that the surface Ŝj obtained by cutting from Sj small
neighbourhoods of c and c′ and adding the annulus A′ obtained by pushing A
slightly inside M is orientable and may be given, therefore, the orientation induced

by Sj . Moreover, Ŝj is obviously disjoint from S2, so we may modify S ′ by replacing

Sj with Ŝj . This operation has the effect of cancelling out the string t±1
j t∓1

j from

w̃i(S ′). After a finite number of operations of this type we end up with a cut system
satisfying all the properties of the statement. �

For later purposes we point out the following easy corollary of the previous
lemma:

Corollary 6.15. Let S be a good cut system for M . Then M admits a good cut
system S ′ having the same longitudes as S and satisfying the additional property
that ∂S ′ = ∂RS.

Proof. It is sufficient to apply Lemma 6.14 to the case g1 = w0(S)−1, g2 = 1. �

6.6. (4)L-knotting is equivalent to (4)S-knotting. Recall that a link L = K1∪
K2 is a homology boundary link if it admits a pair of disjoint generalized Seifert
surfaces, i.e. if its complement admits a cut system S = {S1, S2} (recall that each
of S1 and S2 may have boundary on both of K1 and K2). As an application of
Lemma 6.14 we obtain the following:

Proposition 6.16. A spatial handlebody H is (4)L-knotted if and only if it is
(4)S-knotted.

Proof. Let us prove that if H is (4)L-unknotted, then it is (4)S-unknotted, the
other implication being trivial. So, let Γ be a spine of H such that the link LΓ is
homology boundary, and let S1, S2 be a pair of generalized Seifert surfaces for LΓ.
We may suppose that Si is transverse to the isthmus of Γ for i = 1, 2. Then, up
to shrinking H onto a smaller neighbourhood of Γ, the surfaces S1 ∩ M , S1 ∩ M
define a good cut system S for M such that the components of ∂S \∂RS bijectively
correspond to the points where S1 ∪ S2 intersects the isthmus of Γ.

By Corollary 6.15, we may replace S with a cut system S ′ having the same
longitudes as S and such that ∂S = ∂RS. Now it is not difficult to realize that one
can add some annuli to S ′ in order to obtain a pair of disjoint generalized Seifert
surfaces for LΓ whose interiors do not intersect the isthmus of Γ. �

6.7. Patterns and obstructions. We are now ready to exploit patterns in order
to decide about the existence of ∂-connected or ∂R-connected cut systems for M .

Proposition 6.17. Suppose S is any good cut system for M with the associated
pattern (w0, w1, w2). Then:

(1) M admits a ∂-connected cut system if and only if (w0, w1, w2) is trivial;
(2) if M admits a ∂R-connected cut system, then there exists a trivial link

pattern whose elements are contained in the subgroup of F2 generated by
w1 and w0w2w

−1
0 .
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Proof. Point (1) is an immediate consequence of Proposition 6.6 and Lemma 6.11,
so we only have to prove point (2).

By the very definition of an associated pattern, if S ′ is a ∂R-connected cut
system for M , then, up to suitably choosing the ordering and the orientations of
the longitudes of S ′, we may assume that w1(S ′) = t1, w2(S ′) = t2. By Lemma 6.11
(applied with respect to S ′), this implies that ϕ(i∗(G∂)) contains the link pattern
(t1, w0(S ′)t2w0(S ′)−1), which is obviously trivial. But by Lemma 6.11 again (now
applied to the cut system S), the group ϕ(i∗(G∂)) is generated by w1 and w0w2w

−1
0 ,

whence the conclusion. �

6.8. Patterns of (4)L-unknotted handlebodies. Let H be a (4)L-unknotted
spatial handlebody and let Γ ∈ S(H) be a spine of H such that LΓ = K1 ∪ K2

is a homology boundary link. Also denote by S1, S2 a pair of disjoint generalized
Seifert surfaces for the link LΓ and by α the isthmus of Γ (we stress again that each
of S1 and S2 may have boundary on both of K1 and K2). Up to isotopy, we may
suppose that α transversely intersects S1∪S2 in a finite number of points x1, . . . , xl.
Moreover, we may order x1, . . . , xl in such a way that they appear consecutively
along α when running from K1 to K2, and label each xi with the letter tj (resp. t

−1
j )

if xi belongs to Sj and α intersects Sj at xi positively (resp. negatively). We define
the element

I(S1, S2,Γ) ∈ F2

as the product of the labels of x1, . . . , xl.
Up to isotopy, we may assume that H transversely intersects S1 ∪ S2 in some

annuli (each of which has one boundary component on K1 ∪K2) and in a collec-
tion of meridian disks that separate H and bijectively correspond to the points of
intersection between α and S1 ∪ S2. Let us set S = {S1 ∩ M,S2 ∩ M}, where as
usual M = C(H), and fix on Si ∩M the orientation induced by Si.

The following lemma is an immediate consequence of our definitions:

Lemma 6.18. We have

w0(S) = I(S1, S2,Γ) .

Lemma 6.19. Let L be a homology boundary link, and suppose that (w1, w2) is a
pattern realized by L. Then, for every w0 ∈ F2 there exists a spatial handlebody H
having L as a constituent link and realizing the pattern (w0, w1, w2).

Proof. Let us set X = C(L) and denote by K1 and K2 the knots such that L =
K1 ∪K2. By the very definition of an associated pattern, we may choose disjoint
generalized Seifert surfaces S1, S2 for K1,K2, a basepoint x0 ∈ X \ (S1 ∪ S2), and
two elements m1,m2 ∈ π1(X, x0) representing the meridians of K1,K2 in such a
way that ϕ(m1) = w1, ϕ(m2) = w2, where ϕ : π1(X, x0) → F2 is the epimorphism
associated to S1 ∪ S2.

Let us denote by ∂iX the component of ∂X corresponding to Ki, and choose a
basepoint xi ∈ ∂iX \ (∂S1∪∂S2). For i = 1, 2, let mi ⊆ ∂iX be a simple loop based
at xi and representing a meridian of Ki, and choose a simple arc αi ⊆ X \ (S1∪S2)
joining x0 to xi. Let m′

i ∈ π1(X, x0) be the element represented by the loop
αi ∗mi ∗α−1

i . Then there exists hi ∈ F2 such that ϕ(m′
i) = hiϕ(mi)h

−1
i = hiwih

−1
i .

Now let β be the (homotopy class of a) loop in π1(X, x0) such that ϕ(β) =
h1w0h

−1
2 and let α′ = α−1

1 ∗ β ∗ α2. Also let α ⊆ X be a simple arc satisfying
the following properties: it is properly embedded in X with endpoints x1, x2; it is
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homotopic in X relative to its endpoints to the arc α′; it transversely intersects
S1 ∪S2 in a finite number of points. Finally, let us set Γ = K1 ∪K2 ∪α, H = N(Γ)
and M = C(H). Also denote by S = {S1 ∩ M,S2 ∩ M} the cut system of M
obtained as above from S1 ∪ S2.

Our construction now implies that

w0(S) = I(S1, S2,Γ) = h1w0h
−1
2 , w1(S) = ϕ(m′

1) = h1w1h
−1
1 ,

w2(S) = ϕ(m′
2) = h2w2h

−1
2 .

Lemma 6.14 now implies that M admits a cut system S ′ such that wi(S ′) = wi for
i = 0, 1, 2, whence the conclusion. �
6.9. Patterns of (3)L-unknotted handlebodies. Building on Proposition 6.17
we are now able to describe an effective algorithm which decides if a (3)L-unknotted
handlebody admits a (M → W )–boundary–preserving–map (or, equivalently, a ∂-
connected cut system).

Proposition 6.20. Let H be a (3)L-unknotted spatial handlebody and let Γ be a
spine of H such that LΓ = K1 ∪K2 is a boundary link with Seifert surfaces S1, S2.
We also set as usual M = C(H). Then:

(1) If I(S1, S2,Γ) = tn1 t
m
2 for some n,m ∈ Z, then Γ is a boundary spine for

H. In particular, H is (3)S-unknotted and M admits a ∂-connected cut
system.

(2) Otherwise, M does not admit any ∂-connected cut system. In particular,
H is (3)S-knotted.

Proof. Let S be the cut system of M obtained from S1∪S2 as described above, and
let �1, �2 be the longitudes of S, oriented in such a way that �i ⊆ ∂Si inherits the
orientation induced by Si. By Lemma 6.18, the manifold M realizes the pattern
(I(S1, S2,Γ), t1, t2).

Let us now suppose that M admits a ∂-connected cut system. By Proposi-
tion 6.17 we have that (I(S1, S2,Γ), t1, t2) is trivial, and by Remark 6.3 this implies
in turn that I(S1, S2,Γ) = tn1 t

m
2 for some m,n ∈ Z. We have thus proved point (2).

In order to conclude, it is sufficient to show that if I(S1, S2,Γ) = tn1 t
m
2 for some

n,m ∈ Z, then Γ is a boundary spine for H.
In fact, under the assumption I(S1, S2,Γ) = tn1 t

m
2 we will show that Lemma 6.14

provides an explicit procedure which replaces S1, S2 with a pair of Seifert surfaces
for K1,K2 whose internal parts are disjoint from the isthmus α of Γ.

As mentioned above, we have w0(S) = I(S1, S2,Γ) = tn1 t
m
2 , w1(S) = t1, w2(S) =

t2. We may now apply Lemma 6.14 to the case g1 = t−n
1 , g2 = t−m

2 , thus obtaining
a cut system S ′ = {S′

1, S
′
2} such that w̃1(S ′) = t1, w̃2(S ′) = t2 and w̃0(S ′) is the

empty word. It follows that S ′ is ∂-connected. Moreover, since the longitudes �1, �2
of S ′ coincide with those of S, we may obtain the desired Seifert surfaces for K1

and K2 just by adding to S′
i an annulus Ai ⊆ H bounded by Ki∪�i for i = 1, 2. �

The following results are immediate consequences of Proposition 6.20. By The-
orem 3.10 proved in Section 7 below, in Corollary 6.21 the hypothesis that H is
(3)L-unknotted is superfluous. Note however that the proof of Theorem 3.10 relies
on very deep results, such as the genus 2 Poincaré conjecture (see Remark 7.4).

Corollary 6.21. Suppose H is a (3)L-unknotted spatial handlebody. Then, H is
(3)S-knotted if and only if M = C(H) does not admit any ∂-connected cut system.
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Corollary 6.22. Suppose H is a (3)S-unknotted spatial handlebody, and let Γ ∈
S(H) be a spine of H such that LΓ is a boundary link. Then, Γ is a boundary spine
of H.

6.10. (3)S-knotting does not imply (1)L-knotting. Let us come back to the
examples described in Subsection 5.6 (see Figure 12) and in Subsection 5.11 (see
Figure 17).

The constituent link L of the spine Γ1(p) is trivial, and it admits an obvious pair
of disjoint Seifert surfaces S1, S2 given by the disks bounded by the components
of L and lying on the blackboard plane. It is readily seen that we may choose
orientations in such a way that

I(S1, S2,Γ1(p)) = t1(t2t1)
p−1
2 t2 .

In a similar way, the isthmus of Γ3(p) intersects the union of the obvious Seifert
surfaces of LΓ3(p) in such a way that

I(S1, S2,Γ3(p)) = t1(t2t1)
p−1
2 t2 .

Therefore, the criterion described in Proposition 6.20 immediately implies the fol-
lowing:

Proposition 6.23. For every odd prime p, the manifolds M1(p) and M3(p) in-
troduced in Subsections 5.6 and 5.11 do not admit any ∂-connected cut system.
In particular, the handlebodies H1(p) and H3(p) are (3)S-knotted. Since H1(p) is
clearly (1)L-unknotted, it follows that (3)S-knotting does not imply (1)L-knotting.

In Proposition 8.18 we give a different proof of the fact that H1(p) is (3)S-
knotted.

6.11. (3)L-knotting does not imply (4)L-knotting. In this subsection we ex-
ploit Proposition 6.17 for constructing examples of (4)L-unknotted handlebodies
which do not admit any constituent boundary link. More precisely, we prove the
following:

Proposition 6.24. Let L be a homology boundary link which is not a boundary
link. Then, L is a constituent link of a handlebody H whose complement M = C(H)
does not admit any ∂R-connected cut system. In particular:

(1) H is (3)L-knotted and (4)L-unknotted.
(2) M admits a cut system but does not admit any ∂R-connected cut system.

Proof. Let (w1, w2) be a pattern realized by L. Recall that w1 and w2 project onto
a basis of F2/[F2, F2], so if we had w1 = tk1 and w2 = th2 for some h, k ∈ Z, then we
would get k = ±1, h = ±1, and (w1, w2) would be trivial as a link pattern, against

our assumption that L is not a boundary link. Let us assume that w1 �= t±h
1 , the

case w2 �= t±h
2 being similar. Then there exists n ∈ N such that the following

conditions hold:

(1) the reduced word representing tn1w1t
−n
1 is given by tk1

1 z1t
−h1
1 , where h1 ≥ 1,

k1 ≥ 1 (so z1 is not empty and contains the symbol t±1
2 );

(2) the reduced word representing tn2w2t
−n
2 is either equal to tl22 for some l2 ∈ Z

or equal to tk2
2 z2t

−h2
2 , where h2 ≥ 1, k2 ≥ 1 (and in this case z2 is not empty

and contains the symbol t±1
1 ).
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K1 K2

Figure 24. The spine of a (4)L-unknotted handlebody which is
(3)L-knotted.

By Lemma 6.19, there exists a handlebody H with constituent link L and as-
sociated pattern (t−n

1 tn2 , w1, w2). Let us set w′
1 = tn1w1t

−n
1 , w′

2 = tn2w2t
−n
2 . By

Lemma 6.14, the handlebody H also realizes the pattern (1, w′
1, w

′
2). Let us set

M = C(H). By Proposition 6.17–(2), in order to conclude it is sufficient to show
that there does not exist a trivial link pattern whose elements are contained in the
subgroup J of F2 generated by w′

1 and w′
2.

We first look at which elements of J can be primitive in F (t1, t2). So, let us
take a non–trivial element R ∈ F (a, b) such that R(w′

1, w
′
2) is primitive in F (t1, t2).

Let R′ be a cyclically reduced conjugate of R, and observe that R′(w′
1, w

′
2) is also

primitive. Let us first assume that both a and b appear in R′ (i.e. that R′ is not
of the form R′ = ah or R′ = bh for some h ∈ Z). Then, points (1) and (2) above
easily imply that the reduced word representing R′(w′

1, w
′
2) is cyclically reduced and

contains the symbol t1 both with positive and negative exponents. The criterion
described in Lemma 6.5–(2) now implies that R′(w′

1, w
′
2) cannot be primitive in F2.

Therefore, if R(w′
1, w

′
2) is primitive, then we have either R′(w′

1, w
′
2) = tn1w

h
1 t

−n
1

or R′(w′
1, w

′
2) = tn2w

h
2 t

−n
2 for some h ∈ Z. Since primitives of F2 project onto

indivisible elements of F2/[F2, F2], this forces h = ±1. Since R(w′
1, w

′
2) is conjugate

(in J) to R′(w′
1, w

′
2), we may conclude that every element of J which is primitive in

F2 is conjugated (in F2) either to w±1
1 or to w±1

2 . Since the elements of a pattern
project onto a base of F2/[F2, F2], this implies that if (z1, z2) is a link pattern whose
elements are contained in J , then (z1, z2) is equivalent to (w±1

1 , w±1
2 ). Since L is

not a boundary link, the pattern (w±1
1 , w±1

2 ) is not trivial, and this implies in turn
that (z1, z2) is not trivial. We have eventually showed that there does not exist any
trivial link pattern whose elements are contained in J , and this concludes the proof
of the proposition. �
6.12. An example. We now describe an explicit example of a (3)L-knotted han-
dlebody admitting a constituent homology boundary link.

Let Γ be the spine described in Figure 24, and set H = H(Γ), M = C(H). The
constituent link LΓ = K1 ∪K2 was introduced by Cochran and Orr in [11, 12] and
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S1

S2

Figure 25. The generalized Seifert surfaces S1 and S2. In order
to get a clearer picture, for i = 1, 2 we have cut from Si small
annular neighbourhoods of two components of ∂Si.

provides the first example of a homology boundary link which is not concordant to
a boundary link (in particular, it is not a boundary link). Following [2, Diagram
1.4], in Figure 25 we have drawn a pair S1, S2 of generalized Seifert surfaces for
K1 ∪K2. The three boundary components of S1 all lie on K1 (and exactly two of
them have the same orientation as K1), while S2 has one boundary component on
K2 and two boundary components (having opposite orientations) on K1.

Let us denote by S = {S1 ∩M,S2 ∩M} the cut system of M defined by S1 and
S2 (see Subsection 6.8). Up to isotopy, we may suppose that the isthmus of Γ is
disjoint from int(S1) ∪ int(S2). It is now an easy exercise to show that

w0(S) = I(S1, S2,Γ) = 1, w1(S) = t1t2t
−1
1 t−1

2 t1, w2(S) = t2 .

Since in each product of the form w1(S)±1w2(S)±1 there cannot be cancellations,
just as in the proof of Proposition 6.24 we can conclude that M does not admit any
∂R-connected cut system. In particular, the handlebody H is (3)L-knotted, while
being obviously (4)L-unknotted.

6.13. The maximal free covering. Let H be a spatial handlebody, set as usual
M = C(H) and suppose that cut(M) = 2. Under this assumption, we are now going

to describe the maximal free covering M̃ω of M . As mentioned at the beginning of

this section, we will discuss some aspects of the topology of M̃ω which are related
to the knotting level of H.

Let S = {S1, S2} be any cut system of M , and let V be the manifold with
boundary obtained by cutting M along S. Then, the boundary of V consists
of some “horizontal” boundary region (given by ∂M ∩ ∂V ) and some “vertical”
boundary region, coming from the cuts along S1 and S2. More precisely, recall
that Si is oriented and call S+

i , S−
i the vertical components of ∂V associated to Si,

i = 1, 2, in such a way that at any point of Si a positive basis of the tangent space
of Si is completed to a positive basis of the tangent space of M by adding a vector
pointing towards S+

i .
Let us set G = π1(M,x0), where x0 is a basepoint such that x0 ∈ ∂M \(S1∪S2),

let F2 = F (t1, t2) be the free group on two generators, and denote by ϕ : G → F2

the epimorphism associated to S.
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Let pω : M̃ω → M be the covering associated to kerϕ. The space M̃ω admits an
easy topological description as a tree of spaces (called pieces), where each piece is
homeomorphic to V . If {Vh}h∈F2

is a countable family of copies of V indexed by

the elements of F2, then M̃ω is homeomorphic to the quotient of the disjoint union⊔
h∈F2

Vh by the equivalence relation generated by

Vh � x ∼ y ∈ Vh′ ⇐⇒ h′ = hih, x ∈ S−
i ⊆Vh, y ∈ S+

i ⊆ Vh′ , and x = y inM ,

where we now consider M as the space obtained from any Vh by gluing in pairs its
vertical boundary components.

The group of the covering automorphisms of M̃ω is isomorphic to F2, and for
every h0, h ∈ F2 the covering translation associated to h0 translates Vh onto its
copy Vh0h.

The notation M̃ω is justified by Theorem 6.1, which states that kerϕ = Gω, and

implies that the topology of M̃ω does not depend on the particular epimorphism
ϕ, or on the chosen cut system S, and is therefore intrinsically associated to M

(whence to H). The covering pω : M̃ω → M is called the maximal free covering of

M because the group of the covering automorphisms of M̃ω is isomorphic to the
maximal free quotient of G.

The proof of the following lemma is elementary, and it is left to the reader.

Lemma 6.25. Suppose X ⊆ M is path–connected, choose a base point x0 ∈ X ⊆ M

and denote by i : X → M the inclusion. Let p : (M̂, x̂0) → (M,x0) be a reg-

ular covering, and set X̂ = p−1(X). Then X̂ is path–connected if and only if

p∗(π1(M̂, x̂0)) · i∗(π1(X, x0)) coincides with the whole group π1(M,x0).

We now apply the previous lemma to the case in which we are interested. The

following result provides an interesting relation between the topology of M̃ω and
the knotting level of H.

Proposition 6.26. The subspace ∂M̃ω of M̃ω is path connected if and only if M
admits an (M → W )–boundary–preserving–map.

Proof. There is an elementary topological proof of the fact that if M admits a ∂-

connected cut system S, then ∂M̃ω is connected. In fact, in this case the horizontal

boundary of V = M \ S is connected. Therefore, the boundary of M̃ω is obtained
by gluing connected spaces following a tree–like pattern, and is therefore connected.

To get both implications it is sufficient to observe that Lemma 6.25 implies that

∂M̃ω is connected if and only if G = i∗(G∂) ·Gω, and Proposition 6.6 ensures that
this last condition is equivalent to the fact that M admits an (M → W )–boundary–
preserving–map. �
6.14. Lifts of longitudes. If X = C(L) is the complement of a 2–component
homology boundary link and S is a cut system of X, we can construct in the

same way as above the maximal free covering X̃ω of X. Of course, since ∂X

is disconnected, the space ∂X̃ω cannot be connected. Also observe that every

connected component of ∂X̃ω is obtained by gluing to each other an infinite number
of annuli and is therefore homeomorphic to an annulus.

Recall that a longitude of L is (the isotopy class in ∂X of) a connected component

of ∂S. Every longitude lifts to a loop in ∂X̃ω which generates the first homology

group of the annular component of ∂X̃ω where it lies. Since two non–trivial simple
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loops on an annulus are isotopic, this readily implies the already mentioned fact
that longitudes do not depend on the fixed cut system S. Moreover, since S1 and

S2 also lift to X̃ω, if ∂S1 and ∂S2 are connected, then every lift of a longitude

bounds in X̃ω and is therefore null–homologous in X̃ω. We can summarize this
brief discussion in the following well-known:

Lemma 6.27. The Z–module H1(∂X̃ω) is generated by the lifts of the longitudes

of ∂X. If L is a boundary link, then ĩ∗(H1(∂X̃ω)) = 0, where ĩ∗ is induced by the

inclusion ĩ : ∂X̃ω → X̃ω.

In Propositions 6.28 and 6.29 below we extend Lemma 6.27 to the case when
M = C(H) is the complement of a handlebody H such that cut(M) = 2, thus
obtaining some more obstructions for M to admit ∂–connected or ∂R–connected
boundary. Notice that some difficulties arise due to the fact that in this case the
definition of longitudes is less obvious and that longitudes are in fact no more
independent of the choice of a cut system.

If S is a good cut system for M , let us define L(S) ⊆ H1(∂M̃ω) as the sub-

module generated by the lifts to ∂M̃ω of the longitudes of S. We also denote by
ϕ : π1(M,x0) → F2 the epimorphism induced by S, where x0 is a basepoint in
∂M \ (S1 ∪ S2).

Proposition 6.28. We have L(S) = H1(∂M̃ω). In particular, L(S) does not
depend on S.

Proof. Take a basepoint x̃0 ∈ p−1
ω (x0) ⊆ ∂M̃ω, and let ∂0M̃ω be the connected

component of ∂M̃ω containing x̃0. Since the maximal free covering is regular, it is

sufficient to show that H1(∂0M̃ω) is generated by those lifts of longitudes of S that

lie on ∂0M̃ω.

So, let us take z ∈ H1(∂0M̃ω). By Hurewicz’s Theorem we may suppose that

z is represented by (the class of) a loop γ̃ ∈ π1(∂0M̃ω, x̃0). Now let i : ∂M → M ,

ĩ0 : ∂0M̃ω → M̃ω be the inclusions, let us denote the restriction of pω to ∂0M̃ω

simply by pω, and set γ = (pω)∗(γ̃) ∈ π1(∂M, x0). Since pω ◦ ĩ0 = i ◦ pω and

(pω)∗(π1(M̃ω, x̃0)) = kerϕ, we have γ ∈ kerϕ ◦ i∗.
Now let γ1, γ2 be elements of π1(∂M, x0) which are represented by simple loops

isotopic to the longitudes of S, and recall from Lemma 6.11–(3) that kerϕ◦ i∗ coin-
cides with the smallest normal subgroup of π1(∂M, x0) containing γ1, γ2. Therefore,
γ is a product of conjugates of γ1, γ2 in π1(∂M, x0), so γ̃ is a product of loops each
of which is homologous to the lift of a longitude. This implies that z ∈ L(S),
whence the conclusion. �

6.15. The image of H1(∂M̃ω) in H1(M̃ω) as an obstruction. Recall that the

group of the covering automorphisms of M̃ω is isomorphic to the free group F2.

Therefore, both H1(∂M̃ω) and H1(M̃ω) admit a natural structure of ZF2–module,

where ZF2 is the group ring of F2. Moreover, if ĩ : ∂M̃ω → M̃ω is the inclusion, then

ĩ∗ : H1(∂M̃ω) → H1(M̃ω) is a homomorphism of ZF2–modules, so ĩ∗(H1(∂M̃ω)) is

a ZF2–submodule of H1(M̃ω).
We are now ready to point out a further topological obstruction to the existence

of ∂-connected and ∂R-connected cut systems for M .
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Proposition 6.29. The following facts hold:

(1) If M admits a ∂-connected cut system, then ĩ∗(H1(∂M̃ω)) = {0}.
(2) If M admits a ∂R-connected cut system, then ĩ∗(H1(∂M̃ω)) is a cyclic ZF2–

module.

Proof. (1) By Proposition 6.28, H1(∂M̃ω) is generated by the lifts of the longitudes.

But, since ∂Si is connected for i = 1, 2, the longitudes bound in M̃ω, whence the
conclusion.

(2) Let S be a ∂R-connected cut system for M with longitudes �1, �2. By
point (1), we may assume that ∂S \ ∂RS is a non–empty collection of simple loops.

Let �3 be one of these loops, and observe that �3 lifts to a loop �̃3 in ∂M̃ω. For

i = 1, 2, since S is ∂R–connected and Si lifts to M̃ω, every lift of �i is homolo-

gous in M̃ω to a sum of parallel copies of translates of �̃3 (such a sum is empty
if ∂Si is connected). This implies that every lift of a longitude of S lies in the

cyclic ZF2–submodule of H1(M̃ω) generated by �̃3. The conclusion now follows
from Proposition 6.28. �

Corollary 6.30. Let H be a spatial handlebody, set M = C(H) and suppose that
cut(M) = 2. Then:

(1) If H is (3)S-unknotted, then ĩ∗(H1(∂M̃ω)) = {0}.
(2) If H is (3)L-unknotted, then ĩ∗(H1(∂M̃ω)) is cyclic (as a ZF2–module).

Remark 6.31. Alexander–type obstructions, which will be described in Section 8,

arise from the analysis of the maximal abelian covering M̃ of M . One may wonder
if the arguments developed in this section could take place in that (more classical)
context, but this does not seem the case.

For example, an easy application of Lemma 6.25 implies that ∂M̃ is always
connected (even if cut(M) = 1) so that the maximal abelian covering cannot provide
obstructions as the one described in Proposition 6.26.

Moreover, while the last results of this section are inspired by analogous results
for links, it turns out that the maximal abelian covering of a handlebody comple-
ment (having maximal cut number) displays properties quite dissimilar from the
ones of maximal abelian coverings of (homology boundary) links. For instance,
while Lemma 6.27 (which concerns links) also holds when the maximal free cover-
ing is replaced by the maximal abelian one, even when H is unknotted the image

of H1(∂M̃) into H1(M̃) does not vanish, so Proposition 6.29 and Corollary 6.30 do

not admit analogous statements if M̃ω is replaced by M̃ .
In the case of (the complement of) homology boundary links, the structure of

the first homology group of the maximal free covering as a ZF2–module is studied
in detail in [20].

7. Extrinsic vs intrinsic levels of knotting

In this section we investigate the implications that the existence of ∂-connected
or ∂R-connected cut systems for M = C(H) has on the knotting level of H. Since
the existence of such cut systems is clearly an intrinsic property of M , this issue
mainly concerns the relations between the intrinsic and the extrinsic properties of
handlebody complements.
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More precisely, recall that if H is (3)S-unknotted (resp. (3)L-unknotted), thenM
admits a ∂-connected (resp. ∂R-connected) cut system. We now face the question
of whether the converse implications are true as well.

Definition 7.1. Let M = C(H) as usual. A cut system S = {S1, S2} of M is said
to be H-separated if there exists a simple essential curve � on ∂M such that:

(1) � separates ∂M ;
(2) � does not intersect S1 ∪ S2;
(3) � bounds a compressing 2–disk in H.

It is not difficult to show that the map that associates to any spine Γ of H
the boundary of the meridian disk dual to the isthmus of Γ establishes a bijection
between the isotopy classes (in H) of (hc)–spines of H and the isotopy classes (in
∂H) of the loops � satisfying properties (1) and (3) described in Definition 7.1
above. Building on this remark, it is not difficult to prove the following:

Lemma 7.2. Let M = C(H) be as usual. Then:

(a) H is (3)S-unknotted if and only if M admits an H-separated ∂-connected
cut system.

(b) H is (3)L-unknotted if and only M admits an H-separated ∂R-connected
cut system.

(c) H is (4)L-unknotted if and only if M admits an H-separated cut system.

On the other hand we can prove the following remarkable equivalence between
extrinsic and intrinsic properties, which was stated as Theorem 3.10 in Subsec-
tion 3.9.

Theorem 7.3. M = C(H) admits a ∂-connected cut system if and only if H is not
(3)S-knotted (equivalently, M admits an H-separated ∂-connected cut system).

Proof. By using an (M → W )–boundary–preserving–map f : M → W we can
construct a degree–1 map g : S3 → N := H ∪f W . It was remarked in [4] that such
a 3–manifold N is a homotopy sphere. As the Poincaré conjecture holds true, N
is homeomorphic to S3 and is endowed by construction with a Heegaard splitting
(of genus 2). Since every Heegaard splitting of the sphere is trivial, W admits an
H-separated ∂-connected cut system (actually made by two 2–disks), say S. We
can put g transverse to S, without modifying it on a neighbourhood of H. Then
the pull-back of S via g provides the required H-separated cut system of M . �

Remark 7.4. By [5], every 3-manifold with a Heegaard splitting of genus two is
a two-sheeted cyclic branched cover of S3 branched over a knot or link. This
reconduces the validity of the Poincaré conjecture for manifolds of genus at most
two to the positive solution to the Smith conjecture [39]. However, a statement
similar to Theorem 7.3 holds for H of arbitrary genus (see below), and in such a
generality it is very close to being equivalent to the full Poincaré conjecture. This
remark strongly suggests that the issue of characterizing the relations between
intrinsic and extrinsic properties of spatial handlebodies definitely involves deep
results in 3–dimensional topology.

Remark 7.5. In general a given ∂-connected cut system is not H-separated. For
example let H be unknotted. Then also M = C(H) is a handlebody. Let us take
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an (hc)–spine Γ of M such that at least one component of LΓ is non–trivial (see
e.g. Figure 4). We claim that the compression disks D1, D2 of M dual to the
components of LΓ form a ∂-connected cut system of M which is not H-separated.
In fact, suppose that D′

3 ⊆ H is a separating meridian disk whose boundary is
disjoint from ∂D1 ∪ ∂D2. Now, cutting M along D1 ∪D2 we obtain a ball, so ∂D′

3

bounds a meridian disk D3 ⊆ M separating M and disjoint from D1 ∪ D2. The
2–sphere D3 ∪D′

3 is a reducing sphere for the Heegaard splitting S3 = M ∪H, and
the components of LΓ appear now as cores of tori of a genus 1 Heegaard splittings
of S3. This implies that both components of LΓ are unknotted, a contradiction.

Also observe that if both components of LΓ are unknotted, then for i = 1, 2
the loop ∂Di ⊆ ∂M = ∂H cannot transversely intersect in exactly one point the
boundary ∂D′

i of a meridian disk D′
i ⊆ H (otherwise, by compressing M along Di

one would get a genus 1 Heegaard splitting of S3, so the component of LΓ dual
to Dj , j �= i, would be unknotted). This readily implies that the standard pair
of longitudes of M (i.e. the pair associated to the compressing disks dual to the
constituent link of an unknotted spine for M) and the pair of longitudes associated
to the cut system {D1, D2} have no element in common.

8. Alexander module obstructions

In this section we will recognize obstructions having a much more classical
flavour, as they are based on the elementary determinantal ideal E2(G) derived
from any presentation of the Alexander module A(G) of the fundamental group G
of M = C(H). Note that every invariant arising in this way is forced to detect only
intrinsic features of M , i.e. only properties that do not depend on the realization of
M as a cube–with–holes. The main result proved in this section is Theorem 3.12,
which states that there exists an infinite family of handlebodies {Hi}i∈I such that
every Mi = C(Hi) has cut number equal to 1 (hence Hi is (4)L-knotted) and Mi is
not homeomorphic to Mj for i �= j. However, this section is mainly devoted to dis-
cussing in detail how Alexander invariants can provide obstructions to the existence
both of generic and of ∂–connected cut systems. Such obstructions are described
in Proposition 8.7 and applied in Propositions 8.18 and 8.19. More precisely, in
Proposition 8.18 we give a different proof of Proposition 6.23, which asserts that
the handlebodies H3(p) introduced in Subsection 5.6 are (3)S-knotted, while in
Proposition 8.19 we prove that the complement of Kinoshita’s graph (see Figure 26
below) has cut number equal to one.

8.1. A short account about the existing literature. The graph ΓK of Figure
26 is the so-called Kinoshita θ-graph [29]. It is the spine of the spatial handlebody
HK , whose complement C(HK) will be denoted by MK .

In [29] Kinoshita introduced some elementary ideals Ed(Γ, z) associated to any
presentation of the Alexander module of the fundamental group of S3 \ Γ. These
ideals turn out to be isotopy invariants for the couple (Γ, z), where Γ is a spatial
graph (not necessarily of genus 2) endowed with a given Z-cycle z. By means of
these invariants he proved for example that “his” graph ΓK is knotted. In several
subsequent papers, many invariants of graphs have been tested on ΓK in order to
evaluate their effectiveness in distinguishing knotted from unknotted graphs. An
interesting property of ΓK is that all its constituent knots are unknotted (one says
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Figure 26. On the left, Kinoshita’s θ-graph. On the right,
Thurston’s knotted wye: the second vertex is understood to be
at infinity, in such a way that the complement of a regular neigh-
bourhood of the graph coincides with the complement in a ball of
a regular neighbourhood of the tangle here described.

that it is a “minimally knotted” graph), so the unknotting criterium of [41] applies
and one can conclude that:

The Kinoshita θ-graph ΓK is knotted if and only if the handlebody HK is (1)S-
knotted.

This is a rather exceptional behaviour, because we know that in general the
knotting of a given spine does not imply the (1)S-knotting of the associated han-
dlebody. On the other hand, as observed in [56], Kinoshita’s θ-graph is isotopic to
the “knotted wye” graph introduced by Thurston in [52, Example 3.3.12], where it
is also shown that the manifold MK = C(HK) admits a hyperbolic structure with
geodesic boundary (in fact, it turns out that MK is the hyperbolic 3-manifold with
geodesic boundary of smallest volume [30] and smallest complexity [16]). This im-
plies that the boundary of MK is incompressible, hence Proposition 4.3 does apply,
and HK is (at least) (2)S-knotted. For these reasons it is natural to look for the
true level of knotting of HK .

The first example of a genus 2 cube–with–holes M = C(H) not admitting any
(M → W )–boundary–preserving–map is due to Lambert [31]. In fact, Lambert’s
example coincides with the handlebody H associated to the spine of Figure 7,
equivalently H = H1(3). The proof in [31] is of a topological nature, based on an
accurate analysis of such a specific example.

The first example of a genus 2 cube–with–holes M = C(H) having a cut number
equal to 1 is due to Jaco [27]. The discussion of this example exploits the following
topological obstruction: If M has cut number equal to 2, then every map f : M →
S1 × S1 is homotopic to a non–surjective map. This obstruction looks (at least to
us) not so handy in discussing other examples.

In [49] the author remarked that Kinoshita’s invariants (and some variations of
them) can be used to face questions concerning the cut number of M or the exis-
tence of (M → W )–boundary–preserving–maps. As applications he gave a different
proof of the fact that Lambert’s example does not admit any (M → W )–boundary–
preserving–map and proved that cut(MK) = 1. In [49] Suzuki adopts Kinoshita’s
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setup in terms of spatial graphs endowed with Z-cycles. The fact that one is actually
working up to spine moves is somehow implicit. Moreover, sometimes the proofs
simply refer to different sources strewn in the literature, where formally analogous
statements had been previously achieved in the classical case of (boundary as well
as homology boundary) links. For these reasons we have preferred to provide below
an essentially self–contained, detailed account about these “Alexander module ob-
structions”, adopting as much as possible an intrinsic, geometric approach. By the
way, we will point out the analogies but also some remarkable differences between
the case of genus 2 cubes–with–holes and the case of links. As usual we will limit
ourselves to dealing with the case of present interest, although the discussion can be
generalized. A detailed and comprehensive account on Alexander modules of groups
and spaces is given in [20] (which is mainly concerned with links). Several algebraic
results we are discussing here are proved in [20] in greater generality. However, in
order to make our treatment as elementary as possible, when this does not imply
a big waste of space, we provide proofs for the statements that are relevant to our
purposes.

We stress that it is quite remarkable that easily computable obstructions are
able to recognize in some case, such as MK , that the cut number is equal to 1.
It is known that starting with the input of a finite presentation of a group G, the
determination of its corank can be done in principle by means of an algorithm (see
[34]). This is an important conceptual fact. However the time of execution of such a
generic algorithm grows too fast with the input complexity, so this is not of practical
utility, even when one deals with rather simple examples. In some cases (as already
remarked in [48]) one can associate to the finite presentation of G some pertinent 3–
dimensional (triangulated) manifolds, and try to exploit geometric/topological tools
in order to simplify the determination of the corank. Note that in our situation
the problem is 3–dimensional from the very beginning, and one can try to use for
example the theory of normal surfaces in order to detect the potential cut systems
(if any). To this respect MK should appear rather promising, as it admits a very
simple minimal triangulation as well as simple presentations of the fundamental
group. So we have tried for a while to treat MK along this way. However, there
is a complication due to the fact that the theory of normal surfaces with boundary
deals with many more elementary local configurations than the closed case. For
example, it is not hard to realize in this way, by bare hands, that MK is “small”,
i.e. that it does not contain any essential closed surface. On the other hand, the
computation of the cut number becomes rather demanding, it reasonably should
need a computer aid, and eventually we have preferred to turn towards more handy
obstructions.

8.2. The Alexander module. Let us denote by M either M = C(H) or M =
C(L), H being as usual a genus 2 spatial handlebody and L being an m–component
link (in fact we will refer mostly to the cases m = 1, 2). G denotes the fundamental
group of M , and K the abelianization of G, i.e. K = G/[G,G]. We denote the
operation of the abelian group K multiplicatively. By the Hurewicz Theorem,
there exists a canonical isomorphism K ∼= H1(M). We denote by Λ = ZK the
group ring of K.

Let pMA : M̃ → M be the maximal abelian covering of M , that is, the one associ-

ated to [G,G]. Fix a base point x0 ∈ M , and set M̃0 = (pMA )−1(x0). The group of
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covering automorphisms of M̃ is canonically isomorphic to K and acts on the pair

(M̃ ; M̃0). Hence H1(M̃ ; M̃0) admits a natural structure of Λ-module, denoted by
A(M), which is by definition the Alexander module of M . There are two important
homomorphisms defined on Λ:

(1) (Augmentation map) ε : Λ → Z, which sends every element
∑

i miki, where
mi ∈ Z and ki ∈ K, to the integer

∑
i mi. Its kernel I is called the

augmentation ideal of Λ.
(2) (Canonical involution) σ : Λ → Λ, which sends every element

∑
i miki to∑

i mik
−1
i (the fact that σ is a homomorphism relies on the fact that K is

abelian).

8.3. Finite presentations via free differential calculus. Let us briefly recall
the definition of a Fox derivative [15]. Suppose F = F (x1, . . . , xn) is a free group
on n generators. For j = 1, . . . , n, the Fox derivative

∂j : ZF → ZF

is defined as the unique Z–linear map such that

∂j(w · w′) = ∂jw + w · ∂jw′ ∀w,w′ ∈ F

and
∂jxj = 1, ∂jx

−1
j = −x−1

j , ∂jx
±1
i = 0 ∀i �= j.

Let A be a Λ–module; A is finitely presented if it is isomorphic, as a Λ–module,
to the quotient Λn/〈r1, . . . , rs〉, where each ri in an element of Λn, and 〈r1, . . . , rs〉
is the Λ–module generated by the ri’s. If B is the (s× n)–matrix whose rows are
given by the ri’s, then we say that B is a presentation matrix for A.

Let M , G be as above. A proof of the following result can be found for example
in [33]:

Theorem 8.1. Let 〈x1, . . . , xn | r1, . . . , rs〉 be a presentation of G, and let j :
F (x1, . . . , xn) → G and k : G → G/[G,G] = K be the natural projections. Then a
matrix presentation of A(M) is provided by the matrix (B)il, where

Bil = k (j (∂lri)) , i = 1, . . . , s, l = 1, . . . , n.

In particular, this implies that, up to isomorphism, A(M) := A(G) only depends
on G and is finitely presented.

8.4. Elementary ideals. Here we briefly recall the definition of an elementary
ideal of a finitely presented Λ–module. The interested reader can find a detailed
account on this issue for instance in [20].

Let A be a finitely presented Λ–module with a given (s×n) presentation matrix
B as above. For every d ∈ N, let us now define the ideal Ed(B) ⊆ Λ as follows:

• If n− d > s, then Ed(B) = 0.
• If 0 < n− d ≤ s, then Ed(B) is the ideal generated by the determinants of
the (n− d)× (n− d) minors of B.

• If n− d ≤ 0, then Ed(B) = Λ.

We therefore have Ed(B) ⊆ Ed+1(B) for every d ∈ N.
A well-known purely algebraic result on presentations of modules implies that

Ed(B) depends in fact only on A so that for every d ∈ N the Alexander elementary
ideal of A

Ed(A) := Ed(B)
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is well–defined. The k–th Alexander principal ideal Pk(A) is the smallest principal
ideal containing Ek(A). Since Λ is a UFD, a generator Δk(A) of Pk(A), which is
usually called the k-th Alexander polynomial of A, is simply the greatest common
divisor of any set of generators for Ek(A).

We can apply these definitions to A(M) so that the elementary ideals Ek(M) as
well as Pk(M) and Δk(M) are well–defined topological invariants of M (actually
depending only on the fundamental group G). In the case of a link L we also write
A(L), . . . ,Δk(L) instead of A(M), . . . ,Δk(M).

The following lemma is useful in studying these invariants. Its proof only relies
on elementary algebraic arguments involving the very definition of Alexander ideals.

Lemma 8.2. (1) Suppose A is a finitely presented Λ–module. Then for every
d, k ∈ N we have

Ed+k(A⊕ Λk) = Ed(A).

(2) Suppose

0 �� A1
i �� A2

π �� A3
�� 0

is an exact sequence of Λ–modules. Then

Ed(A1)Ed′(A3) ⊆ Ed+d′(A2) for every d, d′ ∈ N.

(3) Suppose B is a square presentation matrix for A of order n, and let

Ann(A) = {γ ∈ Λ | γ(a) = 0 ∀a ∈ A} ⊆ Λ

be the annihilator ideal of A. Then we have

E0(A) ⊆ Ann(A).

Proof. Point (1) is an easy consequence of the fact that a presentation matrix for
A⊕ Λk is obtained by adding k null columns to a presentation matrix for A.

Points (2) and (3) are stated respectively as Theorem 3.12–(1) and Theorem 3.1–
(1) in [20]. �

8.5. Polynomial ideals. K is non–canonically isomorphic to Z
m (where m = 2

when M = C(H), and m equals the number of components in the case of links).
Let 〈t1, . . . , tm〉 be the multiplicative abelian group freely generated by the symbols
t1, . . . , tm. Choosing an isomorphism K ∼= 〈t1, . . . , tm〉 is equivalent to choosing a
basis for Hom(H1(M),Z) = H1(M). In fact, since K = H1(M) is torsion–free of
rank m, then to each basis l1, . . . , lm of H1(M) there is associated the isomorphism

sending every z ∈ H1(M) to the monomial t
l1(z)
1 · · · tlm(z)

m , and every isomorphism
K ∼= 〈t1, . . . , tm〉 arises in this way. Every such isomorphism canonically extends
to a ring isomorphism between Λ and Z[t±1

1 , . . . , t±1
m ].

Alexander-Lefschetz duality provides a canonical isomorphism H1(M) ∼= H1(H)
∼= H1(L), where L is either some LΓ ∈ L(H) or L itself: every integral cycle in
H1(L) defines a cohomology class in H1(M) via the linking number. Therefore, if

c1, . . . , cm is a basis of H1(L), then the map z �→ t
lk(c1,z)
1 · · · tlk(cm,z)

m provides an
isomorphism between K and 〈t1, . . . , tm〉. If the components K1, . . . ,Km of L are
ordered and oriented, then we can select the distinguished basis of H1(L) such that
cj =

∑
j δij [Kj ]. Hence in the case of an ordered and oriented link L we have a
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distinguished isomorphism between K and 〈t1, . . . , tm〉. On the other hand, one
can prove the following:

Proposition 8.3. If M = C(H), then, by varying the (hc)–spine Γ as well as
the ordering and the orientation on LΓ, every isomorphism between K and 〈t1, t2〉
arises from the distinguished basis of some LΓ.

Proof. Of course, it is sufficient to show that every basis of H1(H) is represented by
the (ordered and oriented) components of the constituent link of some spine of H.
However, it is well–known that the group of homeomorphisms of H into itself acts
transitively on the set of bases of H1(H) (see e.g. [6, Lemma 2.2]). Therefore, if Γ
is any spine of H and B is a fixed basis of H1(H), we may find a homeomorphism
ϕ : H → H whose induced map in homology takes to B the basis associated to LΓ.
This implies that B is the distinguished basis associated to the spine ϕ(Γ) of H. �

Summing up, in the case of an ordered and oriented link L (in particular, when
L is an oriented knot) there is a canonical identification of Ek(M), Pk(M) as
polynomial ideals of Z[t±1

1 , . . . , t±1
m ], also denoted by Λ, and Δk(M) is called the k–

th Alexander polynomial of L. In the case of M = C(H) such polynomial invariants
are well–defined only up to the natural action of SL(2,Z) on Z[t±1

1 , t±1
2 ].

Remark 8.4. Let M = C(H(Γ)), G be as usual. Let c ∈ H1(Γ) be a non–trivial
primitive homology class. The map z �→ tlk(c,z) defines a surjective homomorphism
αc : H1(M) → 〈t〉 ∼= Z, which in turn induces a ring homomophism αc : Λ →
Z[t, t−1]. Since αc is surjective, if B is a presentation matrix for A(M) and αc(B)
is the matrix obtained by applying αc to every coefficient of B, then αc(Ed(M)) =

Ed(αc(B)) for every d ∈ N (see also [29, 49]). Let p : M̂ → M be the covering
associated to kerαc ◦π, where π : G → H1(M) is the Hurewicz epimorphism. Then,

M̂ is an infinite cyclic covering whose automorphism group is canonically isomorphic
to 〈t〉. A slight variation of Theorem 8.1 implies that αc(B) is a presentation matrix

of H1(M̂, p−1(x0)) as a Z[t, t−1]–module, so the ideals αc(Ed(M)) are related to

the topology of M̂ . Starting from this consideration, in [9] (which is concerned with
links) it is shown how one can deduce results about the ideals Ed(M) starting from
the study of all the infinite cyclic coverings of M . Note however that the polynomial
αc(Δd(M)) may be different from the generator Δc

d(M) of the smallest principal
ideal containing αc(Ed(M)). More precisely, it is obvious that αc(Δd(M)) divides
Δc

d(M); however, if Ed(M) is not principal, then it may happen that Δc
d(M) does

not divide αc(Δd(M)). For example, in the case when G is the fundamental group
of the complement of an m-component (oriented) link L, m ≥ 2, it is not difficult
to show that if c is the cycle given by the sum of all the components of L, then
Δc

d(L) = (t− 1) · αc(Δd(L)) (see [9, Proposition 2.1]).

8.6. The absolute module of M̃ . Instead of considering the module A(M), one

may consider the module AA(M) = H1(M̃) (the absolute Alexander module of M),
as AA(M) also admits a natural structure of Λ–module. The long exact sequence

of the pair (M̃, M̃0) in homology provides a sequence of maps of Λ–modules which
can be eventually written in the form

0 �� AA(M) �� A(M) �� Λ
ε �� Z �� 0
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or equivalently in the form

(4) 0 �� AA(M) �� A(M) �� I �� 0.

Note that under any fixed isomorphism Λ ∼= Z[t±1
1 , . . . , t±1

m ] as in the previ-
ous section, the augmentation ideal I corresponds to (t1 − 1, . . . , tm − 1). The
sequence (4) is usually known as the Crowell sequence for A(M).

8.7. The case of knots. When M = C(L), L being an oriented knot, since I is
a principal ideal, then I ∼= Λ = Z[t±1]. Therefore the sequence (4) splits, and we
have

(5) A(L) ∼= AA(L)⊕ Λ.

Putting together equation (5) and Lemma 8.2–(1) we obtain the following equal-
ities between polynomial ideals:

Ek+1(A(L)) = Ek(AA(L)) for every k ≥ 0.

Moreover, it is known that any Wirtinger presentation of G has deficiency one
(see Definition 8.9) and therefore defines a presentation matrix B for A(L) having
n rows and n + 1 columns. Another property of Wirtinger presentations implies
that the determinant of the square matrix obtained by omitting the i–th column
of B does not depend (up to units in Z[t±1]) on i, so E1(A(L)) is principal. The
generator of

E1(A(L)) = E0(AA(L))

is the classical Alexander polynomial of the knot.
In our cases of interest, M = C(H) or M = C(L), L being a link, the Crowell

sequence does not necessarily split, so the relation between A(M) and AA(M) is
less direct. We will come back to this issue later.

8.8. Alexander obstructions. In this section we focus on M = C(H).

Definition 8.5. Let J be an ideal of Λ.

(1) We say that J is unitary if ε(J) = Z, where ε : Λ → Z is the augmentation
map introduced above.

(2) We say that J is symmetric if σ(J) = J , where σ is the canonical involution
introduced above.

The proof of the following easy lemma is omitted.

Lemma 8.6. Let us fix any isomorphism Λ ∼= Z[t±1
1 , t±1

2 ] (associated to the distin-
guished basis of some LΓ as in Section 8.5). Assume that the ideal J is in principal
generated by the polynomial f . Then:

(1) J is unitary if and only if f(1, 1) = ±1.
(2) J is symmetric if and only if f(t1, t2) = ±ta1

1 ta2
2 f(t−1

1 , t−1
2 ) for some a1, a2 ∈

Z.

The following proposition collects the most important properties of the elemen-
tary ideals of M , including those providing the promised “obstructions”.

Proposition 8.7. Let M = C(H), H being a genus 2 spatial handlebody. Then:

(1) E0(M) = E1(M) = 0.
(2) E2(M) is unitary. For every LΓ ∈ L(H), we have E2(M) ⊆ E2(LΓ).
(3) E2(M) = E1(AA(M)).
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(4) If crk π1(M) = 2, then E2(M) is principal.
(5) If M admits a ∂-connected cut system (equivalently, M admits an (M →

W )–boundary–preserving–map), then E2(M) is symmetric.

We devote most of this section to the proof of this proposition. More pre-
cisely, points (1) and (2) are proved in Subsection 8.9, point (3) in Subsection 8.10,
point (4) in Proposition 8.12 (see Subsection 8.11), and point (5) in Corollary 8.17
(see Subsection 8.12).

Remark 8.8. For our purposes, the most relevant results described in Proposition 8.7
are points (4) and (5). Since π1(M) has deficiency 2 (see Lemma 8.10), point (4)
can be deduced from [20, Theorem 4.3], which implies in fact the stronger result
that E2(M) is principal if and only if π1(M) admits an epimorphism onto F2/F

′′
2 ,

where F2 = [F ′
2, F

′
2] and F ′

2 = [F2, F2].
Moreover, in [49] point (5) is described as a consequence of the results of [19],

which – however – are concerned only with links.
We have thus decided to include here a detailed account as to how the argument

in [19] can be adapted to the case of handlebody complements. In order to achieve
this, it is necessary to introduce a machinery which also allows us to give a self–
contained proof of point (4) without using too much space.

We begin by pointing out some analogies and differences with respect to the case
of links.

(a) In the case of a link L, it is proved in [53] that for every d ∈ N there exist
natural numbers k, h such that

Ed(AA(L)) · Ik ⊆ Ed+1(A(L)), Ed+1(A(L)) · Ih ⊆ Ed(AA(L)).

Since the only principal ideal containing I is the whole ring Λ, this implies
that for every d ∈ N we have the equality of Alexander polynomials

Δd(AA(L)) = Δd+1(A(L)).

(b) Let L be any link. The following facts are proved in [51]:
• If L is a knot, then all the Alexander ideals Ed(L), d ∈ N, are sym-
metric.

• If L is a knot, then the Alexander polynomial Δ1(L) satisfies

Δ1(t) = tnΔ1(t
−1),

where n is even.
• If L has m ≥ 2 components, then the first Alexander polynomial of L
satisfies

Δ1(L)(t
−1
1 , . . . , t−1

m ) = −tk1−1
1 . . . tkm−1

m Δ1(t1, . . . , tm),

where ki has the same parity of the sum of the linking numbers of Li

with all the other components of L.
A proof of these facts using Seifert surfaces can be found in [9].

(c) If L is a 2–component homology boundary link, then E2(L) is not necessarily
principal. According to [22], such an ideal is principal if and only if the

image of H1(∂M̃) in H1(M̃) vanishes. This last condition holds whenever
L is a boundary link. These results are in sharp contrast with point (3) of
Proposition 8.7 above.
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8.9. Proofs of points (1) and (2) of Proposition 8.7. We begin with the
following:

Definition 8.9. The deficiency of a finite presentation 〈S |R〉 of a group G is
equal to the difference between the number |S| of generators and the number |R| of
relations of the presentation. The deficiency of a finitely presented group G is the
maximal deficiency of finite presentations of G (note that the deficiency of a group
may be negative).

The following easy result is proved e.g. in [29, Theorem 7]:

Lemma 8.10. The deficiency of the fundamental group G of M = C(H) is 2.

Putting together Lemma 8.10 and Theorem 8.1 we deduce that A(M) admits an
n× (n+ 2) presentation matrix. Clearly this implies that E0(M) = E1(M) = 0.

Let us now show that E2(M) is unitary. It is not difficult to show that if
〈x1, . . . , xg|r1, . . . , rs〉 is a presentation of G and a : F (x1, . . . , xg) → {1} is the
trivial homomorphism, then a(∂ri/∂xj) ∈ Z[{1}] = Z computes the sum of the
exponents of xj in the word ri. It readily follows that if B is a presentation matrix
for A(M), then by applying ε to every element of B we obtain a presentation matrix
for G/[G,G] ∼= Z

2. Since the presentation of A(M) can be chosen of deficiency 2,
say of the form n× (n+ 2), this implies that the GCD of the minors n× n of ε(B)
has to be 1. Then ε(E2(M)) = Z.

If Γ is a spine of H with constituent link LΓ, then π1(S
3 \ LΓ) is obtained by

adding to any presentation of π1(M) a relation representing the boundary of a 2–
handle dual to the isthmus of Γ. It follows that a presentation matrix for A(LΓ)
is obtained by adding a row to a presentation matrix of A(M), and this readily
implies that E2(M) ⊆ E2(LΓ).

These facts already say that E2(M) is the first non–vanishing Alexander ideal
of M . It is therefore not surprising that it encodes several geometric properties of
M .

8.10. A relation between the ideals of A(M) and of AA(M). Let us now
prove that E2(M) = E1(AA(M)). This is a consequence of the more general
results proved in [53, 54]. For the sake of completeness, here we describe the proof
in the case in which we are interested.

We begin by computing the ideal E1(I). We fix an identification Λ ∼= Z[t±1
1 , t±1

2 ].
Let us consider the exact sequence

(6) 0 �� Λ
α1 �� Λ2 α2 �� I �� 0 ,

where α1(p) = ((t2 − 1)p, (1 − t1)p) and α2(p, q) = (t1 − 1)p + (t2 − 1)q. The
presentation matrix for I related to this exact sequence is given by (t2 − 1 1− t1),
so E1(I) = I.

Let us now show that E2(M) ⊆ E1(AA(M)). Since Λ and Λ2 are free Λ–modules,
we can arrange the short exact sequence (6) and the Crowell exact sequence for
A(M) in the commutative diagram

0 �� Λ
α1 ��

β

��

Λ2 α2 ��

γ

��

I ��

Id

��

0

0 �� AA(M)
ϕ

�� A(M)
ψ

�� I �� 0
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It is now easy to check that the sequence

0 �� Λ
k �� AA(M)⊕ Λ2 h �� A(M) �� 0

is exact, where k(p) = (−β(p), α1(p)) and h(a, (p, q)) = ϕ(a) + γ(p, q). We may
now apply Lemma 8.2, thus obtaining

E2(A(M)) = E2(A(M)) · E1(Λ) ⊆ E3(AA(M)⊕ Λ2) = E1(AA(M)).

In order to show the opposite inclusion, let us introduce the following notation:
if J, J ′ are ideals of Λ, then we set

(J : J ′) = {λ ∈ Λ |λ · J ′ ⊆ J}.

Since E2(M) is unitary we have E2(M) + I = Λ. As a consequence, for every
ideal J of Λ we have

E2(M) + J = (E2(M) + J) · (E2(M) + I) ⊆ E2(M) + J · I ⊆ E2(M) + J,

whence E2(M) + J = E2(M) + J · I. Applying this equality to the case J =
(E2(M) : I), we obtain

E2(M) + (E2(M) : I) = E2(M) + (E2(M) : I) · I ⊆ E2(M) + E2(M) = E2(M),

whence

(7) E2(M) = (E2(M) : I).

Now, by applying Lemma 8.2–(2) to the Crowell sequence for A(M) we have
E1(AA(M)) · I = E1(AA(M)) · E1(I) ⊆ E2(M). Together with equation (7), this
finally implies

E1(AA(M)) ⊆ ((E1(AA(M)) · I) : I) ⊆ (E2(M) : I) = E2(M).

8.11. The case when cut(M) = 2. Assume now that cut(M) = 2. Let Y be
the figure-eight graph S1 ∨ S1 and denote by y0 the singular point of Y . We also
choose a base point x0 ∈ M and set G = π1(M,x0). Recall from Subsection 3.6 that
cut(M) = crkG, so the groupG admits an epimorphism onto F2 = Z∗Z = π1(Y, y0).
In fact, a stronger result is proved in [26]: the manifold M retracts into a copy of Y
embedded in M . Therefore, there exist continuous maps f : M → Y and g : Y → M
such that f ◦ g is the identity of Y . We may also assume that f(x0) = y0 and
g(y0) = x0.

Let pYA : Ỹ → Y be the covering associated to [F2, F2]. Since f∗([G,G]) ⊆ [F2, F2]

and g∗([F2, F2]) ⊆ [G,G], the maps f and g lift to continuous maps f̃ : M̃ → Ỹ ,

g̃ : Ỹ → M̃ which can be chosen in such a way that f̃ ◦ g̃ = Id
˜Y .

Let us now consider the relative homology group A(F2) = H1(Ỹ ; (pYA)
−1(y0)).

Observe that f∗ induces an isomorphism between K = G/[G,G] and F2/[F2, F2],
which is in turn canonically isomorphic to the group of covering automorphisms of

Ỹ . As a consequence, we may also consider the induced action of K on the pair

(Ỹ ; (pYA)
−1(y0)). We therefore have that A(F2) also admits a natural structure of

Λ-module.
By construction, the maps f̃ and g̃ commute with the action of K on M̃ and Ỹ ,

so ϕ := f̃∗ : A(M) → A(F2) and ψ := g̃∗ : A(F2) → A(M) provide morphisms of
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Λ-modules such that ψ ◦ ϕ = IdA(F2):

M̃

˜f
��

��

Ỹ
g̃

��

��

M

f
��
Y,

g
��

A(M)

ϕ
��
A(F2).

ψ

��

Lemma 8.11. We have A(M) ∼= Λ2 ⊕ kerϕ. In particular, kerϕ is a finitely–
presented Λ–module, and E2(M) = E0(kerϕ).

Proof. First observe that since ψ ◦ ϕ = IdA(F2) we have A(M) ∼= A(F2)⊕ kerϕ, so

in order to prove the first assertion it is sufficient to observe that A(F2) ∼= Λ2 (this
is a consequence, for example, of Theorem 8.1).

Since A(M) is finitely presented and A(M) ∼= Λ2 ⊕ kerϕ, kerϕ is also finitely
presented, and now the conclusion follows from Lemma 8.2–(1). �

Theorem 6.1, which is due to Stallings, ensures that the kernel of any surjection
of π1(M) onto F2 does not depend on the chosen surjection. As a consequence,
kerϕ ⊆ A(M) admits an intrinsic characterization, which is actually independent
of ϕ. However, we show in Proposition 8.12 below how this characterization can be
obtained without relying on Stallings’ results.

Let us define the torsion submodule T (M) of A(M) as follows:

T (M) =
{
a ∈ A(M) | γ(a) = 0 for some γ ∈ Λ \ {0}

}
.

The following proposition implies point (4) of Proposition 8.7.

Proposition 8.12. We have:

(1) T (M) = kerϕ;
(2) T (M) is finitely presented and A(M) ∼= Λ2 ⊕ T (M);
(3) E2(M) = E0(T (M));
(4) E2(M) is principal.

Proof. By Lemmas 8.11 and 8.2 we have that Δ2(M) = Δ0(kerϕ) ∈ E0(kerϕ) ⊆
Ann(kerϕ). Moreover, since E2(M) is unitary, the Alexander polynomial Δ2(M)
cannot be null, and these facts imply that kerϕ is contained in T (M). On the
other hand, since A(M) = Λ2 ⊕ kerϕ we also have T (M) ⊆ kerϕ, whence (1).
Having proved (1), points (2) and (3) are simply a restatement of Lemma 8.11.
By Lemma 8.10 and Theorem 8.1, the module A(M) admits a presentation of
deficiency two. Since A(M) ∼= Λ2 ⊕ kerϕ, this readily implies that kerϕ admits
a square presentation matrix, and this implies in turn that E0(kerϕ) is principal,
whence (4). �
8.12. The case when M admits a ∂-connected cut system. The proof of
the last point of Proposition 8.7 is a bit more demanding and incorporates more
geometric insight about E2(M). Here we follow the strategy described in [19],
where the case of (complements of) boundary links is treated.

Assume as above that cut(M) = 2, and let us fix a cut system S = {S1, S2} on
M . We can assume that the base point x0 of M does not lie on the union S1 ∪ S2.

Then, just as the maximal free covering M̃ω introduced in Section 6, the covering

M̃ admits a concrete description in terms of the topology of M \ (S1 ∪ S2).
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So, let V and S±
i be defined as in Subsection 6.13, and let us denote by ki

the element of K = H1(M) satisfying ki ∩ Sj = δij , i, j = 1, 2. Then, any loop

representing ki and intersecting Si transversely in one point runs from S−
i to S+

i

in a regular neighbourhood of Si and from S+
i to S−

i in V . Let us also consider
the disjoint union of a countable number {Vk}k∈K of copies of V , indexed by the
elements of K = G/[G,G], and let us take the quotient of such a union under the
equivalence relation generated by

Vk � x ∼ y ∈ Vk′ ⇐⇒ k′ = kik, x ∈ S−
i ⊆ Vk, y ∈ S+

i ⊆ Vk′ , and x = y inM .

It is now easy to recognize that such a quotient is homeomorphic to M̃ . Also

observe that the action ofK on M̃ admits a very easy description: for every k0 ∈ K,
the covering translation associated to k0 translates Vk onto its copy Vk0k, for every
k ∈ K.

By Lemma 8.11, the ideal E2(M) is equal to the ideal E0(kerϕ). In what follows,

we denote by S̃ the set (pMA )−1(S1 ∪ S2) ⊆ M̃ .

Lemma 8.13. We have

kerϕ = T (M) ∼= Im
(
i∗ : H1

(
M̃ \ S̃

)
→ H1(M̃)

)
.

Proof. The Crowell sequences for the Alexander modules of A(M) and of A(F2),
together with the epimorphism ϕ : G → F2, give rise to the following commutative
diagram, where rows are exact and the last vertical arrow is an isomorphism:

0 �� H1(M̃) = G/[G,G] ��

˜f∗
��

A(M) ��

ϕ

��

Λ

∼=
��

0 �� H1(Ỹ ) = F2/[F2, F2] �� A(F2) �� Λ

and this easily implies (by chasing the diagram) that T (M) = kerϕ is isomorphic

to ker f̃∗.
Let us fix an identification of K with Z

2, set

V ′ =
⊔

i+j even

V(i,j) ⊆ M̃, V ′′ =
⊔

i+j odd

V(i,j) ⊆ M̃,

and observe that V ′∩V ′′ = S̃, V ′∪V ′′ = M̃ . Also observe that we have an obvious

homotopy equivalence between M̃ \ S̃ and the disjoint union V ′ � V ′′.

Also the covering Ỹ of the figure-eight graph Y admits a similar decomposition.
Putting together the Mayer–Vietoris sequences relative to these decompositions,

which are preserved by the map f : M̃ → Ỹ introduced above, we get the commu-
tative diagram

H1(V
′ ∩ V ′′)

θ �� H1(M̃ \ S̃) i∗ ��

��

H1(M̃) = [G,G] ��

˜f∗
��

H0(S̃) ∼= Λ2

∼=
��

0 �� H1(Ỹ ) = F2/[F2, F2] �� Λ2

,

where rows are exact and the last vertical arrow is an isomorphism. By chasing

the diagram, it is now easy to show that i∗(H1(M̃ \ S̃)) = ker f̃∗, whence the
conclusion. �
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Remark 8.14. The last diagram in the proof of Lemma 8.13 shows that T (M) is

isomorphic to the quotient of H1(M̃ \S̃) by the image of H1(V
′∩V ′′) via the map θ.

By definition, if S̃ is the component of S̃ separating V(i′,j′) ⊆ V ′ and V(i′′,j′′) ⊆ V ′′,

then θ maps every α ∈ H1(S̃) into the difference θ′(α)− θ′′(α), where θ′ (resp. θ′′)

is induced by the inclusion of S̃ into V ′ (resp. into V ′′). This remark will prove
useful in Theorem 8.16 for explicitly constructing a presentation of T (M).

From now on, we denote by W a regular neighbourhood of the set H ∪ S1 ∪ S2.
Henceforth, we also make the

Standing assumption. The cut system S is ∂-connected.

We stress that this assumption plays a fundamental role in several arguments
below.

Lemma 8.15. The inclusion S1 ∪ S2 ↪→ W induces an isomorphism

H1(S1)⊕H1(S2) ∼= H1(W ).

Proof. The decomposition W = H∪(S1∪S2) provides the Mayer–Vietoris sequence

H1(∂S1 ∪ ∂S2) �� H1(S1 ∪ S2)⊕H1(H) �� H1(W ) �� H0(∂S1 ∪ ∂S2) .

It is readily seen that our assumptions on ∂Si, i = 1, 2, imply that the last arrow
is the zero map, while the first one has exactly H1(H) as its image. This implies
the conclusion. �

Now let gi be the genus of Si, and let βi
1, . . . , β

i
2gi be a basis of H1(Si). Observe

that V = S3 \W , and let us define (βj
i )

+ ∈ H1(V ) (resp. (βj
i )

− ∈ H1(V )) as the

element obtained by “pushing” βj
i on the positive (resp. negative) side of Sj into

V .
We define the Seifert matrices A11, A12, A21, A22 as follows:

(Ahk)ij = lk((βh
i )

−, βk
j ), h, k ∈ {1, 2}, i = 1, . . . , 2gh, j = 1, . . . , 2gk,

where lk is the linking number in S3. Notice that by the symmetry properties of
the linking number we have tA12 = A21.

Let us fix the identification Λ ∼= Z[t±1
1 , t±1

2 ] which carries the element ki ∈ K
dual to Si to the variable ti, i = 1, 2.

Lemma 8.16. The module T (M) admits the presentation matrix

B =

(
tA11 − t1A

11 (1− t1)A
12

(1− t2)A
21 tA22 − t2A

22

)
.

Proof. Since V = S3 \ W , by Lemma 8.15 (and Alexander duality) there exists

a basis γ1
1 , . . . , γ

1
2g1 , γ

2
1 , . . . , γ

2
2g2 of H1(V ) which is dual to the βj

i ’s, in the sense

that lk(βj
i , γ

k
h) = δihδjk, where lk is the linking number in S3. Of course, the

γj
i ’s generate H1(M̃ \ S̃) as a Λ–module. By Remark 8.14, in order to obtain a

presentation of T (M) we now have to add the relations

ti · (βi
j)

+ = (βi
j)

−,

written in terms of the γi
j ’s. The conclusion follows. �

The following corollary, together with Lemma 8.6, achieves the proof of the last
point of Proposition 8.7.
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Corollary 8.17. Given a ∂-connected cut system S = {S1, S2} of M and fixing
the identification of Λ with Z[t±1

1 , t±1
2 ] associated to S, the principal ideal E2(M)

is generated by a polynomial Δ2(M) satisfying the condition

Δ2(M)(t−1
1 , t−1

2 ) = t−m
1 t−n

2 Δ2(M)(t1, t2),

where m,n are even.

Proof. Let B be the matrix described in the statement of Lemma 8.16, and denote
by B− the matrix obtained by replacing in B every occurrence of ti with t−1

i , i =

1, 2. By Lemma 8.16 we have Δ2(M)(t1, t2) = detB, Δ2(M)(t−1
1 , t−1

2 ) = detB−.
Moreover, B can be obtained from B− by performing the following operations:
multiplication of the first 2g1 rows by t1; multiplication of the last 2g2 rows by t2;
transposition; multiplication of the whole matrix by −1 (this operation does not
change the determinant, since the matrix has even order); multiplication of the first
2g1 columns by (1− t2); multiplication of the last 2g2 columns by (1− t1); division
of the first 2g1 rows by (1− t2); division of the last 2g2 rows by (1− t1). It readily
follows that

Δ2(M)(t−1
1 , t−1

2 ) = t−2g1
1 t−2g2

2 Δ2(M)(t1, t2).

�

The proof of Proposition 8.7 is now complete.

8.13. The elementary ideals associated to the graphs Γ1(p). For every odd
prime p, let us set M1(p) = C(H1(p)), where Γ1(p) is the graph described in Fig-
ure 12. This subsection is devoted to the proof of the following:

Proposition 8.18. For every odd prime p, the ideal E2(M1(p)) is principal, but not
symmetric. Therefore, by Corollary 8.17, M1(p) does not admit any (M → W )–
boundary–preserving–map, or equivalently it does not admit any ∂-connected cut
system. Hence H1(p) is (3)S-knotted.

Proof. We begin by providing a presentation of the fundamental group of M1(p),
via the well–known Wirtinger procedure. So, let us consider the diagram D of Γ1(p)
described in Figure 27, and let us denote by ai (resp. bi, ci, di) the element of the
fundamental group represented by a loop based above the plane of the diagram and
positively encircling the arc labelled by ai (resp. bi, ci, di) (recall that an arc is an
embedded curve in D having as endpoints either an under-crossing or a vertex of
Γ1(p)).

Let us set r = (p + 1)/2. The group G = π1(M1(p)) has a presentation with
generators ai, bj , ci, di, i = 1, . . . , r, j = 1, . . . , r − 1, and relations arising at ev-
ery crossing and every vertex of D. More precisely, the two vertices determine
the relations c1c

−1
r ar and d1d

−1
r a1. While looking at the crossings we obtain the

relations

(8) cibic
−1
i a−1

i , bicib
−1
i c−1

i+1, bidib
−1
i d−1

i+1, di+1bid
−1
i+1a

−1
i+1,

for i = 1, . . . , r − 1. Let us denote by F4r−1 the free group generated by the
symbols ai, bj , ci, di, i = 1, . . . , r, j = 1, . . . , r − 1, and by j : F4r−1 → G and
k : G → G/[G,G] the natural projections. Then we have G/[G,G] ∼= H1(M1(p)) ∼=
Z
2. Moreover, it is readily seen that we may choose generators t, s of H1(M1(p))
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ar

c1 c2 c3 cr c1

dr d2 dr

a1 a2 a3

d1

b1 b2 br−1

Figure 27. Notation for a Wirtinger presentation of π1(M1(p)).

in such a way that k(j(ci)) = t, k(j(di)) = s and k(j(ai)) = k(j(bi)) = 1 for
every i (here we denote by 1 the identity of H1(M1(p)), which is considered as a
multiplicative group). By Theorem 8.1, the module A(G) = A(M1(p)) admits a
presentation with generators ai, bj , ci, di, i = 1, . . . , r, j = 1, . . . , r−1, and relations
which can be deduced by from the relations defining G via Fox differential calculus.

Now, if x, y, z belong to the fixed set of generators of F4r−1, then we have

k
(
j
(
∂xxyx

−1z−1
))

= 1− k(j(y)),
k
(
j
(
∂yxyx

−1z−1
))

= k(j(x)),
k
(
j
(
∂zxyx

−1z−1
))

= −k(j(y))k(j(z))−1,

so the relations (8) induce the following relations for A(G):

(9) bi = t−1ai, ci+1 = (1− t)bi + ci, di+1 = (1− s)bi + di, ai+1 = sbi,

where i = 1, . . . , r − 1. Moreover, the relations arising from the vertices of D give
rise to the relations

(10) cr − c1 = ar, dr − d1 = a1.

It is readily seen that equations (9) imply that

(11)

ai =
(
st−1

)i−1
a1, i = 1, . . . , r,

bi = t−1
(
st−1

)i−1
a1, i = 1, . . . , r − 1,

ci = c1 + (1− t)t−1
(∑i−2

j=0(st
−1)j

)
a1, i = 1, . . . , r,

di = d1 + (1− s)t−1
(∑i−2

j=0(st
−1)j

)
a1, i = 1, . . . , r.
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Putting together the relations (11) and (9), we obtain that a presentation for A(G)
is given by the generators a1, c1, d1 with relations⎛

⎝(1− t)t−1

⎛
⎝r−2∑

j=0

(st−1)j

⎞
⎠− (st−1)r−1

⎞
⎠ a1 = 0,

⎛
⎝(1− s)t−1

⎛
⎝r−2∑

j=0

(st−1)j

⎞
⎠− 1

⎞
⎠ a1 = 0.

As expected (since every fixed relation of a Wirtinger presentation is a consequence
of the other ones), these last two conditions are equivalent, and

A(G) = Λ2 ⊕ Λ/(f(s, t)), f(s, t) = (1− s)t−1

⎛
⎝r−2∑

j=0

(st−1)j

⎞
⎠− 1.

By Lemma 8.2, we have E2(A(G)) = E0(Λ/(f(s, t))) = (f(s, t)), so in order to
conclude we only have to show that the ideal (f(s, t)) is not symmetric, i.e. that
the ideals generated by f(s, t) and by f(s−1, t−1) do not coincide.

However, it is readily seen that every non–null principal ideal of Λ = Z[s±1, t±1]
admits a preferred generator which lies in Z[s, t] and is not divisible (in Z[s, t]) by
s or t. Such a generator is unique up to sign. Now, the preferred generators of
(f(s, t)) and of (f(s−1, t−1)) are respectively

f1(s, t) = tr−1f(s, t) = (1− s)

⎛
⎝r−2∑

j=0

sjtr−j−2

⎞
⎠− tr−1,

f2(s, t) = sr−1f(s−1, t−1) = (s− 1)t

⎛
⎝r−2∑

j=0

sjtr−j−2

⎞
⎠+ sr−1.

Since f1(s, t) �= ±f2(s, t), the proof of Proposition 8.18 is complete. �

8.14. The elementary ideals of the Kinoshita graph complement. This
subsection is devoted to the proof of the following:

Proposition 8.19. The elementary ideal E2(MK) of Kinoshita’s manifold MK is
not principal. Therefore, cut(MK) = 1.

Proof. As showed in [52], the manifold MK admits an ideal triangulation with two
tetrahedra. By analyzing the combinatorial structure of such a triangulation, it is
immediate to write the following presentation for the fundamental group G of MK

(such a presentation is much simpler than any Wirtinger presentation associated
to a diagram of K):

〈x1, x2, x3 |x1x2x
−1
1 x3x1x

−1
3 x2x3x

−1
2 〉.

If we denote by r the above relation, then we have

∂1r = 1− x1x2x
−1
1 + x1x2x

−1
1 x3,

∂2r = x1 + x1x2x
−1
1 x3x1x

−1
3 − x1x2x

−1
1 x3x1x

−1
3 x2x3x

−1
2 ,

∂3r = x1x2x
−1
1 − x1x2x

−1
1 x3x1x

−1
3 + x1x2x

−1
1 x3x1x

−1
3 x2.
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Moreover, if j : F (x1, x2, x3) → G and k : G → G/[G,G] are the natural projections,
then we have G/[G,G] ∼= 〈t1, t2〉, where t1 = k(j(x1)), t2 = k(j(x2)) and k(j(x3)) =
t−1
1 t−1

2 . Therefore

k (j (∂1r)) = 1+t−1
1 −t2, k (j (∂2r)) = −1+t1+t1t2, k (j (∂3r)) = t2(1−t1+t1t2).

Let us now compute E2(MK). Let pi = k(j(∂ir)), i = 1, 2, 3, and observe that
E2(MK) = (p1, p2, p3). Since t1, t2 are invertible in Λ, if p′1 = t1p1 = 1 + t1 − t1t2,
p′3 = t−1

2 p3 = 1 − t1 + t1t2, then E2(MK) = (p′1, p2, p
′
3). Moreover, we have

2 = p′1 + p′3 ∈ E2(MK) and p2 = p′1 + (t1t2 − 1) · 2, so
E2(MK) = (2, p′1) = (2, 1 + t1 − t1t2).

Since 2 is irreducible in Λ and does not divide 1+ t1 − t1t2, we have Δ2(MK) =
1. Therefore, if E2(MK) were principal, there would exist Laurent polynomials
q1, q2 ∈ Z[t±1

1 , t±1
2 ] such that

(1 + t1 − t1t2) · q1(t1, t2) + 2q2(t1, t2) = 1,

whence
(1 + t1 + t1t2) · q1(t1, t2) = 1 in Z2[t

±1
1 , t±1

2 ]

for a Laurent polynomial q1 ∈ Z2[t
±1
1 , t±1

2 ]. Since (1 + t1 + t1t2) is not invertible
in Z2[t

±1
1 , t±1

2 ], this gives a contradiction; hence E2(MK) is not principal. Then it
follows from Proposition 8.7 that the cut number of MK is not equal to 2. �
8.15. Infinitely many (4)L-knotted handlebodies. We now show how starting
from any M = C(H) such that cut(M) = 1 (such asMK) we can construct infinitely
many other examples having a cut number equal to 1. Let Γ be a spine of H. Let
B ⊆ S3 be a 3–ball whose boundary transversely intersects Γ at two regular points
and such that (B, �), � := B ∩ Γ, is an unknotted 1–1 tangle. We call such an �
an untangled arc of Γ. We now replace (B, �) by a 1–1 tangle (B, T ) such that T
and � have the same end–points, thus obtaining a new graph Γ′. If K is the knot
obtained as the closure of (B, T ) in S3, then we denote the spatial graph Γ′ by
the symbol Γ#
K. If orientations on K and on Γ are not specified, then there are
non-equivalent ways of performing the “sum” Γ#
K, but to our purposes this is
not relevant.

Lemma 8.20. Suppose that crk π1(S
3 \ Γ) = 1. Then, for every sum Γ#
K as

above, we have crk π1(S
3 \ (Γ#
K)) = 1.

Proof. Let us set GΓ = π1(S
3 \ Γ), GK = π1(S

3 \K), GΓ#K = π1(S
3 \ (Γ#
K)),

and let ψ : GΓ#K → F2 be a homomorphism. We will show that ψ is not surjective.
Let (B, �) and (B, T ) be the tangles involved in the construction of Γ#
K, as

above. Then, the set Ω1 = S3 \ (Γ ∪ B) is a deformation retract of S3 \ Γ and
intersects a regular neighbourhood Ω2 of B \ T in an annulus. Also observe that
Ω1 ∪ Ω2 = S3 \ (Γ#
K), so we have the following commutative diagram:

GΓ

j1
���

��
��

��
��

Z

i1

��								

i2

��














GΓ#�K

ψ
�� F2

GK

j2
����������
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where i2 maps a generator of Z onto the class of a meridian of S3 \K. Since GK

has corank one and every subgroup of a free group is free, the group ψ(j2(GK)) is
cyclic (possibly trivial), whence abelian. This implies that ψ ◦ j2 factors through
H1(S

3 \K) ∼= Z. Since i2(Z) < π1(GK) isomorphically maps onto H1(S
3 \K) =

GK/[GK , GK ], this implies that

(12) ψ(j2(GK)) = ψ(j2(i2(Z))) = ψ(j1(i1(Z))) < ψ(j1(GΓ)).

By Van Kampen Theorem, the group GΓ#�K is generated by j1(GΓ) ∪ j2(GK).
Together with (12), this implies that ψ(GΓ#�K) = ψ1(GΓ). But ψ1(GΓ) cannot be
the whole F2 since the corank of ψ1(GΓ) is one, so ψ is not surjective. �

Now, letH1, . . . , Hn be non–isotopic handlebodies whose complements in S3 have
cut number equal to 1. We show how to inductively construct a further handlebody
Hn+1 such that cut(C(Hn+1)) = 1 and C(Hn+1) is not homeomorphic to C(Hi),
i = 1, . . . , n (in particular, Hn+1 is not isotopic to Hi, i = 1, . . . , n). Starting for
example from MK , this procedure provides the desired infinite family of examples
with cut number equal to 1, thus concluding the proof of Theorem 3.12.

So, let Γ be an (hc)–spine of Hn, having K1,K2 as constituent knots. Let � be an
untangled sub-arc of K1 which does not contain any vertex of Γ. Also let N be the
maximum of the ranks of the fundamental groups of C(H1), . . . ,C(Hn) (recall that
the rank of a group is the minimal number of generators in any presentation of the
group), and take a knotK3 which is the sum ofN+1 non–trivial knots. DefineHn+1

as the regular neighbourhood of Γ#
K3. By Lemma 8.20, the complement of Hn+1

has cut number equal to 1. Moreover, by adding to C(Hn+1) a 2–handle dual to K2,
we obtain (a manifold isotopic to) C(K1#K3) (recall that whenever J ⊆ S3 is a knot

or a graph, we denote by C(J) the subset S3 \N(J)). This readily implies that the
rank of π1(C(Hn+1)) is not smaller than the rank of π1(C(K1#K3)). But K1#K3

is the sum of at least N+1 non–trivial knots, so rkπ1(C(K1#K3)) ≥ N+1 by [58].
In particular, π1(C(Hn+1)) is not isomorphic to π1(C(Hi)) for every i = 1, . . . , n.

The proof of Theorem 3.12 is now complete.

9. Perspectives

Let us summarize what we have achieved so far. In Section 3 we asked some
questions concerning the relations that hold among extrinsic and intrinsic defini-
tions of knotting for spatial handlebodies. The results proved in our paper provide
a quite clear picture of the situation. However, two questions still remain open (as
usual, M = C(H)):

(a) Does the existence of a ∂R-connected cut system for M imply that H is not
(3)L-knotted?

(b) Does the existence of a cut system for M imply that H is not (4)L-knotted?

Taking into account Remark 7.4, we expect that in order to answer these ques-
tions, one should probably invoke very deep results. We get a potentially easier
weaker version of these questions by allowing us to work up to reimbedding of M .

We observe that the quandle obstructions we have constructed have proved to
be sufficiently effective for producing some “ad hoc” examples pertinent to our
discussion. On the other hand, they are by themselves very weak, and the quandle
invariants machinery is potentially much more powerful. For example, the basic
dihedral quandle invariants we have used are not able to distinguish Kinoshita’sMK

from the unknotted handlebody. In [24] this is done by means of more sophisticated



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LEVELS OF KNOTTING OF SPATIAL HANDLEBODIES 2165

“twisted” quandle invariants that involve the tetrahedral quandle and a suitable
quandle cocycle on it. Then the following is a natural challenge in order to test the
performances of quandle invariants theory:

Is the whole program outlined in the present paper achievable only by means of
sufficiently sophisticated instances of quandle invariants (also recovering along the
way the information derived via the analysis handlebody patterns and the Alexander
module obstructions)?

We conclude with a short outline concerning how to extend the above discussion
to H of arbitrary genus g ≥ 2.

• The instances of knotting of H can be straightforwardly generalized in
terms of multi–hand–cuff spines, which are spines Γ containing a maximal
3–valent open sub–tree (playing the role of the isthmus) and carrying a
g–component constituent link LΓ.

• The definitions concerning the cut systems of M are formally the same,
provided that they are formed by g disjoint surfaces.

• A weaker version of Proposition 4.3 holds, depending on the weaker con-
clusions of Theorem 4 in [43], when g > 2.

• The use of the quandle obstructions can be adapted, obtaining the same
conclusions of Proposition 5.1.

• The definitions and the results of Section 6 can be adapted to the general
case (but observe that the analysis of the longitudes is more complicated
when g > 2).

• The discussion about the Alexander module obstructions extends by real-
izing that the relevant elementary ideal is now Eg(M). In this way we get
results analogous to Theorem 3.12 (implying that every instance of knotting
is non-empty) and Proposition 8.18 (implying that there exist handlebodies
with a trivial constituent link which do not admit ∂-connected cut-systems).

• The conclusion of Theorem 3.10 holds in general, and the proof essentially
makes use of the full Poincaré conjecture.

• So far we have extended the discussion by focusing on two alternatives for
M : M has or does not have maximal cut number. A more demanding prob-
lem (of the same type) would arise by filtering the M ’s via the cut number
values and developing a corresponding filtering of instances of knotting of
handlebodies.
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