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Abstract. We consider triangulations of closed surfaces S with a
given set of vertices V ; every triangulation can be branched that is en-
hanced to be a ∆-complex. Branched triangulations are considered up
to the b-transit equivalence generated by b-flips (i.e. branched diagonal
exchanges) and isotopy keeping V pointwise fixed. We extend a well-
known connectivity result for ‘naked’ triangulations; in particular, in
the generic case when χ(S) < 0, we show that each branched triangula-
tion is connected to any other if χ(S) is even, while this holds also for
odd χ(S) possibly after the complete inversion of one of the two branch-
ings. Natural distribution of the b-flips in sub-families gives rise to re-
stricted transit equivalences with nontrivial (even infinite) quotient sets.
We analyze them in terms of certain structures of geometric/topological
nature carried by each branched triangulation, invariant for the given
restricted equivalence.
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1. Introduction

Let (S, V ) be a compact closed connected smooth surface S with a set V of
n marked points, n ≥ 1, and Euler-Poincaré characteristic χ(S), such that
χ(S) − n < 0. It is well-known that (S, V ) carries ideal triangulations, say
T . This means that T is a possibly loose triangulation (self and multiple edge
adjacency being allowed) of S whose set of vertices coincides with V . The
ideal triangulations of (S, V ) share the same numbers of edges and triangles,
3(n − χ(S)) and 2(n − χ(S)) respectively. It is sometimes useful to consider
an ideal triangulation T as a way to realize (S, V ) by assembling 2(n − χ(S))
“abstract” triangles by gluing their “abstract” edges in pairs in such a way that
no edge remains unglued. Ideal triangulations of (S, V ) are considered up to the
ideal transit equivalence which is generated by isotopy fixing V pointwise and
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the elementary diagonal exchange move also called flip. Denote by T id(S, V )
the corresponding quotient set. The following is a well-known connectivity
result (for a proof see, for instance, [10, 12]).

Theorem 1.1. For every (S, V ), T id(S, V ) consists of one point.

This important result is the starting point for the study of the space of ideal
triangulations of (S, V ), optimal geodesic flip paths on it, with application
to the study of coarse geometry of mapping class groups (see, for instance,
the body and the references of the recent papers [6, 7]). On another hand,
different notions of “decorated ideal triangulations” of 3-manifolds considered
up to various transit equivalences naturally arise in the developments of 3-
dimensional quantum hyperbolic geometry and in several other instances of 3D
quantum invariants based on state sums over triangulations. Understanding
the corresponding quotient sets is an interesting and usually non-trivial task.
We refer to [1] for information about such a 3-dimensional case. In particular,
surface ‘branched’ triangulations (see below) emerged within [1], Section 5, in
a “holographic” approach to so-called 3D nonambiguous structures.

Every “naked” triangulation T of (S, V ) carries some branchings (T, b) (see
Lemma 2.10) where, by definition, b is a system of edge orientations which
lifted to every abstract triangle (t, b) of T is induced by a (local) ordering of
the vertices so that each edge goes towards the biggest endpoint. Equivalently,
b promotes T to be a ∆-complex following [9], Chapter 2. It is easy to see
that for every branching (T, b), every naked flip T → T ′ can be enhanced to a
b-flip (T, b) → (T, b′) defined by the property that every “persistent” edge in
both (T, b) and (T ′, b′) keeps the orientation. Isotopy relatively to V as above
and b-flips generate the so-called ideal b-transit equivalence and we denote by
Bid(S, V ) the corresponding quotient set. We define the symmetrized relation
by adding to the generators the complete inversion that is we stipulate that
every (T, b) is equivalent to (T,−b) where −b is obtained by inverting all edge
orientations of b, and we denote by B̃id(S, V ) the corresponding quotient sets.
It is not hard to see that σ([T, b]) = [(T,−b)] defines an involution on Bid(S, V )
and that B̃id(S, V ) ∼ Bid(S, V )/σ. By the topological homogeneity of every
surface, the cardinality of Bid(S, V ) only depends on the topological type of S
and the number n = |V |; sometimes we will write (S, n) instead of (S, V ).

Assuming Theorem 1.1, the following branched version of the connectivity
result is the main result of the present note.

Theorem 1.2. (1) If S is orientable or is nonorientable and χ(S) is even and
strictly negative, then for every (S, V ), Bid(S, V ) consists of one point.

(2) If S is nonorientable and either χ(S) = 0 or χ(S) is odd, then for every
(S, V ), B̃id(S, V ) consists of one point.
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As B̃id(S, V ) is a quotient of Bid(S, V ) by an involution, it follows that in
case (2), |Bid(S, V )| ≤ 2.

Conjecture 1.3. If S is nonorientable and either χ(S) = 0 or χ(S) is odd,
then for every (S, V ), |Bid(S, V )| = 2.

This will be confirmed at least for Bid(P2(R), 2) (Proposition 3.3).
By adding to the b-flips the positive branched 0 → 2 b-bubble moves (see

Section 2.3 below) and their inverse (or equivalently the positive stellar 1→ 3
branched moves and their inverse), we get the completed b-transit equivalence
with quotient set denoted by B(S, V ). ‘Positive’ means that the number of
triangles increases, for example, 1 → 3 means that an initial triangle t is
subdivided by three sharing one vertex internal to t. A positive bubble (stellar)
move produces an ideal triangulation of (S, V ′) where V ′ contains one further
marked point of S; if it is part of a b-transit which connects two ideal branched
triangulations of (S, V ), then it must be compensated later by a negative inverse
move. We will see a quick direct proof of the following weaker connectivity
result (no matter if S is orientable or not).

Proposition 1.4. For every (S, V ), B(S, V ) consists of one point.

We will see in Section 2 that b-flips can be naturally organized in some
sub-families so that restricted transit equivalences can be defined leading to
non-trivial, actually infinite quotient sets. We will study them by pointing
out some structures on (S, V ) of geometric/topological nature, carried by each
branched triangulation (T, b) of (S, V ) that are invariant for the given restricted
equivalence. Theorem 1.2 itself should be enlightened by the mutations of these
structures following an arbitrary ideal b-transit.

Figure 1: A branched triangle with its dual track

The dual viewpoint. Let SV be the surface with n boundary components
(n = |V |) obtained by removing from S a small open disk around each v ∈ V .
For every ideal triangulation T of (S, V ), the 1-skeleton θ = θT of the dual cell
decomposition is a generic (internal) spine of SV . That is, θ is a graph with
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3-valent vertices and SV is a ribbon graph that thickens θ. If (T, b) is branched,
this promotes θ to be a transversely oriented train track (see Remark 2.2) (θ, b)
in the interior of SV ; for simplicity we keep the same notation “b”, see Figure 1.
In such a case, the open 1-cells are called the branches, the 0-cells the switch-
points of (θ, b). If S is oriented, the transverse orientation at each branch can be
expressed by the dual orientation of the branch itself, so that it intersects the
dual b-oriented edge of (T, b) with intersection number equal to 1. In this way
(θ, b) becomes an oriented train track. By definition, (θ, b) is a branched spine
of SV . Viceversa, every ribbon graph, S̄ say, carried by a (possibly branched)
spine θ as above gives rise to a (possibly branched) ideal triangulation T = Tθ
of (S, V ) obtained by filling each boundary component of S̄ with a punctured 2-
disk. Triangulation moves, possibly branched, can be equivalently rephrased in
terms of (possibly branched) spine moves. We will freely adopt both equivalent
dual viewpoints.

Remark 1.5: Although they are equivalent, there is some qualitative difference
between spines and triangulations. A flip is a discrete transition with a cell
decomposition as intermediate “state” which is no longer a triangulation (it
includes one quadrilateral). The corresponding spine transition can be realized
by a continuous deformation passing through a nongeneric spine (with one
4-valent vertex).

2. Generalities on b-transit

An “abstract” b-flip acts on a quadrilateral Q endowed with a branched trian-
gulation (t1 ∪ t2, b) made by two triangles with one common edge e = t1 ∩ t2 (a
diagonal of the quadrilateral). A b-flip produces another branched triangula-
tion (t′1 ∪ t′2, b′) of Q made by two triangles having as common edge e′ = t′1 ∩ t′2
the other diagonal of Q, while b and b′ coincide on the persistent edges which
form the boundary of Q. An abstract b-flip can be applied at every couple
of abstract triangles of any branched ideal triangulation (T, b) of any (S, V ),
(partially) glued in T along a common edge. When we say that a b-flip verifies
a certain property we mean that this holds “universally” for every (S, V ) and
every triangulation (T, b) at which the flip operates.

2.1. A combinatorial classification of b-flips

For every branched triangulation (t1 ∪ t2, b) of Q as above, there are either one
or two ways to enhance the naked flip t1 ∪ t2 → t′1 ∪ t′2 to a b-flip (t1 ∪ t2, b)→
(t′1∪t′2, b′). This last is sometimes denoted by fe,b,b′ while the underlying naked
flip is denoted by fe. Then we can distinguish a few families of b-flips.

Definition 2.1. 1. A b-flip fe,b,b′ is forced if it is the unique branched flip
which enhances fe, starting from (t1 ∪ t2, b).
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Figure 2: Branched flips.

2. A b-flip fe,b,b′ is non-ambiguous if both fe,b,b′ and the inverse b-flip fe′,b′,b
are forced.

3. A b-flip fe,b,b′ is forced ambiguous if it is forced but the inverse b-flip is
not.

4. A b-flip fe,b,b′ is totally ambiguous if no one among fe,b,b′ and fe′,b′,b is
forced.

In Figure 2, we show typical samples of b-flips following the above classi-
fication. Note that it is invariant under the total inversion of the branchings.
We have labelled by 1 the corner of each branched triangle formed by the two
edges that carry the prevalent orientation. Here 1 is just a highlighting label.
For every branched triangulation (T, b) of (S, V ), for every vertex v of T , the
number of corners at v in its star labelled by 1 is even, say 2db(v). For the
branching b induces an orientation on each (abstract) triangle of T ; given the
(abstract) star of v an auxiliary orientation, the 1-labelled corners at v belong
to triangles (t, b) whose b-orientations alternate compared with the reference
one. It is clear that

χ(S) = |V | −
∑
v

db(v) =
∑
v

(1− db(v)) .
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Remark 2.2: Let (T, b) be a branched ideal triangulation of (S, V ) and (θ, b)
the dual (transversely oriented) track. Strictly speaking, to be a train track
in the sense, for instance, of [13], we should require furthermore that for every
vertex v of T , the index 1− db(v) < 0. But this is not relevant for the present
text.

A few remarks:

- A (abstract) b-flip fe,b is totally ambiguous if and only if the two vertices
of (t1 ∪ t2, b) opposite to the edge e are both either a source or a pit.

- A b-flip is not totally ambiguous if and only if it preserves (in the ‘uni-
versal’ sense said above) the vertex numbers db(v).

- Let us consider an oriented surface S. The orientation corresponds to a
unique simplicial fundamental Z-2-cycle

f(T, b) =
∑
t

∗(t,b)(t, b)

where every ∗(t,b) ∈ {±1}. Denote by S± = S±(T, b) the union of trian-
gles such that ∗(t,b) = ±1. Then S decomposes as S = S+ ∪ S−. Denote
by ∂S± the boundary 1-cycle of the simplicial 2-cochain supported by S±.
Then a b-flip fe,b is nonambiguous if and only if it is not totally ambiguous
and for every oriented (S, V ) and every application of the flip on trian-
gulations of (S, V ), (T, b)→ (T ′, b′), we have that S±(T, b) = S±(T ′, b′),
hence also ∂S± is preserved.

In Section 5, we will consider again this classification of b-flips in a more
conceptual way.

2.2. Inversion of an ambiguous edge

Definition 2.3. (1) Let T be a naked ideal triangulation of (S, V ). An edge
e of T is said trapped if it results by the identification of two edges of
one “abstract” triangle. Otherwise, e is said untrapped. A trapped edge
corresponds to a one-vertex loop in the dual spine θ.

(2) Given a branching (T, b), a b-oriented edge e is said ambiguous in (T, b)
if by inverting its orientation we keep a branched triangulation (T, b′).

With the notation of the above point (2), we have:

Lemma 2.4. If e is ambiguous and untrapped in (T, b), then (T, b) and (T, b′)
are connected by two b-flips.
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Proof. Denote by fe,b,b” a b-flip that enhances the naked flip fe with inverse
naked flip fe′ . We easily see that the untrapped edge e is ambiguous if and
only if either fe,b,b” is forced ambiguous or is totally ambiguous. Hence fe,b,b”
followed by fe′,b”,b′ convert (T, b) to (T, b′).

Then we can add the elementary move of inverting any untrapped ambigu-
ous edge without changing the ideal b-transit equivalence.

We have

Lemma 2.5. (1) For every T as above, there is a sequence of flips T ⇒ T ′

such that T ′ does not contain trapped edges.

(2) If T and T ′ do not contain trapped edges then they can be connected by a
sequence of flips through triangulations without trapped edges.

Proof. The vertex of a loop in the spine θ which is dual to a trapped edge of
T is connected by an edge to the rest of the spine. By performing the dual flip
at this edge we remove the loop without introducing new ones. If such a loop
appears in a sequence of flips connecting T and T ′ as in (2), then we can follow
it till it disappears so that we can eventually remove it from the sequence.

2.3. Bad nutshells

A positive naked 0 → 2 bubble produces a so-called nutshell made by two
triangles identified along two common edges. Not every branched nutshell
(N, b) supports a negative 2→ 0 b-bubble.

Definition 2.6. A branched nutshell (N, b) is bad if the two boundary edges
form an oriented circle. Otherwise (N, b) is a good nutshell.

The following Lemma is immediate.

Lemma 2.7. (1) If (N, b) is a bad nutshell, then the central vertex is neces-
sarily either a pit or a source.

(2) (N, b) is good if and only if it supports a negative b-bubble move.

(3) Two different good nutshells (N, b) and (N, b′) sharing the same oriented
boundary edges are connected by either one or two consecutive inversions
of internal (hence untrapped) ambiguous edges.

A positive naked 1→ 3 move produces a so-called triangular star. Similarly
as before, not every branched triangular star, say (S, b), supports a negative
b-(3→ 1) move.

Definition 2.8. A branched triangular star (S, b) is bad if the three boundary
edges form an oriented circle. Otherwise (S, b) is good.
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Easily we have

Lemma 2.9. (1) If (S, b) is bad, then the central vertex is necessarily either
a pit or a source.

(2) (S, b) is good if and only if it supports a negative b-(3→ 1) move.

(3) Two good b-triangular stars (S, b) and (S, b′) sharing the same oriented
boundary edges are connected by a finite sequence of consecutive inver-
sions of internal (hence untrapped) ambiguous edges.

2.4. Existence of branched triangulations

We have

a
b

c
d

e

Figure 3: Existence of branched triangulations.

Lemma 2.10. Every ideal triangulation T of (S, V ) can be branched.

Proof. Thanks to Theorem 1.1 and since for every branched triangulation
(T, b), every naked flip T → T ′ can be enhanced to a b-flip (T, b) → (T ′, b′),
it is enough to show that every (S, V ) admits a branched triangulation. Using
the b-bubbles, we see that if (S, V ) admits such a triangulation, then this holds
for every (S, V ′) such that |V ′| ≥ |V |. Then it is enough to show that for every
S, there exists a branched triangulation (T, b) of (S, V ) such that n = |V | is
the minimum for which χ(S) − n < 0. There are, of course, several ways to
do it. We indicate a way that will be suited for further use. If S is a sphere,
then n = 3 and a branched triangulation is obtained by gluing two copies of a
branched triangle along the common boundary (see Figure 3-a). If S = P2(R)
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Figure 4: Existence of branched triangulations.

is a projective plane, then n = 2 and we can use the realization of P2(R) by
identifying the two edges of a bigon and triangulating it with one internal ver-
tex (see Figure 3-b). For all other S, n = 1. If S = P2(R)#P2(R) is a Klein
bottle, that is the connected sum of two projective planes, we get a branched
triangulation of (S, V ) using the realization of S which identifies the boundary
of a quadrilateral obtained by gluing two “truncated bigons” (see Figure 3-c).
In Figure 3-d, we show another branched triangulation of the Klein bottle by
identifying in pairs the opposite edges of a quadrilateral; similarly, in Figure
3-e, we suggest a triangulation of the torus S1 × S1. In Figure 4, we show the
elementary bricks to realize all other cases. These bricks are branched triangu-
lations of certain surfaces with boundary. In Figure 4-a, we see a one-pierced
torus, in Figure 4-b, a twice-pierced torus, that is a torus from which we have
removed respectively one or two open 2-disks. They are obtained using respec-
tively a one-truncated or a twice-truncated quadrilateral with opposite edges
identified in pairs. In Figure 4-d, we see a similar realization of a one-pierced
Klein bottle. In Figure 4-c, we see a one-pierced projective plane given by
a truncated bigon with the two possible branchings. The edges without any
indicated orientation are ambiguous so that the orientation can be chosen ar-
bitrarily. If S is orientable of genus g > 1, we can realize it by a chain of g− 2
twice-pierced tori capped by two one-pierced ones. If S is nonorientable and

χ(S) = 2−r < 0 is odd, set g =
r − 1

2
; then we can obtain S by a chain of g−2

twice-pierced tori capped by a one-pierced torus and a one-pierced projective
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plane. If χ(S) − r < 0 is even, set g =
r − 2

2
, then we obtain S by a chain of

g− 2 twice-pierced tori capped by a one-pierced torus and a one-pierced Klein
bottle.

The boundary of every brick as above is the union of loops with one vertex.
The corresponding edge of the triangulation is called a connection edge. For
every triangulation of S obtained so far, the connection edges become separat-
ing loops that decompose S by the bricks; in Figure 4, these edges correspond
to the ambiguous edges on the boundary of the truncated quadrilaterals or to
the nonambiguous edge in the branched truncated bigons.

2.5. A preliminary reduction in studying the b-transit
equivalence

We assume Theorem 1.1. Isotopy relative to V will be understood. At the end
of this section, we will obtain a quick proof of Proposition 1.4.

Lemma 2.11. The following facts are equivalent to each other:

1. Bid(S, V ) consists of one point.

2. For every naked ideal triangulation T of (S, V ), every two branchings
(T, b) and (T, b′) are connected by a chain of b-flips.

3. There exists a naked ideal triangulation T of (S, V ) such that every two
branchings (T, b) and (T, b′) are connected by a chain of b-flips.

Proof. Obviously, (1) ⇒ (2) ⇒ (3). To prove (3) ⇒ (1) we argue similarly to
the proof of Lemma 2.10. Let (T1, b1) and (T2, b2) be ideal triangulations of
(S, V ). By Theorem 1.1, there is a naked ideal transit Tj ⇒ T , j = 1, 2. There
is no obstruction to enhance it to sequences of b-flips (Tj , bj) ⇒ (T, b′j). The
Lemma follows immediately.

Similar statements hold for both the symmetrized and completed b-transit
equivalences. Given (T, b) and (T, b′), denote by δ(b, b′) the set of edges of T at
which b and b′ are opposite. The previous considerations suggest two possible
ways to prove that Bid(S, V ) (or B̃id(S, V ) or B(S, V )) consists of one point.

(A) For a given (S, V ), detect a distinguished naked triangulation T for
which we can check directly that (3) of Lemma 2.11 holds.

(B) Point out a few procedures such that for every naked T and every couple
(T, b) and (T, b′) having non-empty δ(b, b′), we can apply one of them producing
b-transits (T, b)⇒ (T ′, b1) and (T, b′)⇒ (T ′, b2) such that |δ(b1, b2)| < |δ(b, b′)|.

The B-way, suitably adapted, works quickly for B(S, V ).
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Proof of Proposition 1.4. Given (T, b) and (T, b′) as above, perform on both
triangulations a b-(1 → 3) move at each triangle of T in such a way that all
the three new oriented edges point toward the new internal vertex. We get
in this way (T ′, b1) and (T ′, b2) such that δ(b1, b2) = δ(b, b′). We realize that
every e ∈ δ(b, b′) is untrapped and ambiguous in both (T ′, b1) and (T ′, b2). So
we conclude by several applications of Lemma 2.4 (by the way, in the present
situation every inversion of e is obtained by a sequence of two totally ambiguous
b-flips).

In the next section, we will prove Theorem 1.2 by implementing the A-way.

3. A-Proof of the main Theorem

We obtain stronger results. We have:

Theorem 3.1. (1) If S is orientable or is nonorientable and χ(S) is even
and strictly negative, then for every (S, V ), there exists a distinguished
ideal triangulation T such that every (T, b) and (T, b′) can be explicitly
connected by a sequence of inversions of untrapped ambiguous edges.

(2) If S is nonorientable and either χ(S) = 0 or χ(S) is odd, then for every
(S, V ), there exists a distinguished ideal triangulation T such that for
every couple (T, b) and (T, b′), either (T, b) and (T, b′) or (T,−b) and
(T, b′) can be explicitly connected by a sequence of inversions of untrapped
ambiguous edges.

For every (S, V ), let us said inversive any ideal triangulation T which, case
by case, satisfies the conclusions of Theorem 3. Finally, we have:

Theorem 3.2. For every (S, V ), every triangulation T without trapped edges
is inversive.

Proof of Theorem 3.1. For every S there is a minimum nS such that χ(S) −
nS < 0. The proof is by induction on n ≥ nS .

The initial case: (S, nS).
• (P2(R), 2). We use the naked triangulation T of Figure 3-b. Let (T, b)

and (T, b′) be supported by T . By total inversion, we can assume that b and b′

agree on the internal edges so that the internal vertex is a pit. The boundary
edges of the nutshell lift an ambiguous edge of both (T, b) and (T, b′); if b 6= b′

we conclude by inverting it in b. Then B̃id(P2(R), V ) consists of one point.

Proposition 3.3. |Bid(P2(R), 2)| = 2.
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Proof. Let (T, b) and (T, b′) be as above such that δ(b, b′) consists of the two
internal edges. If we flip an internal edge of (T, b) we produce a trapped edge;
to get the same naked configuration we must flip the same edge in (T, b′) and
|δ| is unchanged. If we flip the edge of (T, b) which lifts to the boundary edges
of the nutshell, we get a triangulation (T1, b1) which is abstractly like (T, b′) for
another nutshell, but the two vertices exchange their role, so (T1, b1) cannot be
relatively isotopic to (T, b′).

• (S2, 3). Take T made by two triangles glued along the common boundary
as in Figure 3-a. Every branched (T, b) is determined by a labelling of the
vertices by 0, 1, 2. Fix a (T, b0), then all (T, b) are indexed by the elements σ
of the symmetric group Σ3, so that (T, b0) corresponds to the identity. This
group is generated by the transpositions {(01), (12)}. If b = bσ, write σ as
a product of a minimal number of these generators. Every such a sequence
of transpositions corresponds to a sequence of inversions of ambiguous edges
going from (T, b0) to (T, b).

In all other cases nS = 1.
• S = S1 × S1. Consider T as in Figure 3-e. Every branching of T is

uniquely encoded by a total order of the three vertices of one of the abstract
triangles of T . Then we can manage similarly as for (S2, 3) by checking that
also in this case every transposition in a product of the generators corresponds
to the inversion of an ambiguous edge.

• Let S be a Klein bottle. Refer to Figure 3-c,d. If we use the triangulation
T made by two truncated bigons, it is immediate that it carries exactly two
branchings say (T, b) and (T,−b). If we use as T the other triangulation, we
see that it carries four branchings, distributed into two pairs {(T, b), (T, b′)},
{(T,−b), (T,−b′)} such that (T, b′) is obtained from (T, b) via the inversions of
an ambiguous edge.

Let us face now the remaining generic cases such that χ(S) < 0, following
the two sub-cases in the statement of Theorem 3.1.

Case (1) Let S be either orientable with χ(S) < 0 or nonorientable with
χ(S) < 0 and even. Take the naked triangulation T depicted in the proof of
Lemma 2.10; let (T, b0) be a branched triangulation constructed therein. Let
(T, b) any branched triangulation supported by T . This determines a system
of orientations on the family of connection edges. Every connection edge is
ambiguous in (T, b0) so that up to some inversions, we can assume that (T, b0)
and (T, b) share such a system of connection orientations. Let us cut S at
the connection edges. By restriction, we get a family of pairs of branched
triangulated bricks (B, b0) and (B, b) that coincide at every connection edge.
It is enough to show that every (B, b) is connected to (B, b0) by a sequence
of inversions of ambiguous edges, without touching the connection edges. This
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can be checked case by case. We have three types of B, the one-pierced torus
(Figure 4-a) or Klein bottle (Figure 4-d) and the twice-pierced torus (Figure
4-b). For each one-pierced brick, we have two possible b0-orientations at the
connection edges; for the twice-pierced torus, there are four. For every brick
and every pair of opposite local configurations at the connection edges, we see
using the total inversion that the desired result holds for one if and only if it
holds for the other. Then we are reduced to study one configuration in the
one-pierced cases, two in the twice-pierced case. We organize the discussion as
follows, referring to Figure 4:

• Denote by t the top (abstract) triangle of (B, b0). Encode (t, b0) by la-
belling its vertices by 0, 1, 2, say v0, v1, v2; do the same for the bottom tri-
angle (t′, b0), getting v′0, v

′
1, v
′
2. In the one-pierced bricks, v0 = v′0. Every

(abstract) edge of B has two vertices belonging to {v0, v1, v2, v′0, v′1, v′2}.
For every (B, b), every oriented edge (e, b) will be denoted by its vertices,
e = vw, written in the order so that the orientation emanates from the
initial vertex v toward the final vertex w. For every one-pierced brick, we
stipulate that the connection edge in (B, b0) has v2 as initial vertex. For
the twice-pierced torus we stipulate that in (B, b0) the pairs of connection
edges is either (v2v

′
2, v0v

′
0) or (v2v

′
2, v
′
0v0). Having fixed the orientation of

the connection edges, b0 is completely determined by (t, b0), that is this
propagates in a unique way to a global branching.

• For every permutation σ ∈ Σ3 we consider the corresponding branched
triangulated triangle (t, bσ) and we list all the extensions to a global
branching, generically denoted (B, bσ), if any. (B, b0) corresponds to the
identity.

• By varying σ ∈ Σ3, the so obtained (B, bσ) cover all possible branchings
(B, b) and we have to connect (B, b0) with each (B, bσ). It is convenient
to start with generating transpositions σ = (0, 1), (1, 2), and express all
other σ as a product of three or two generators.

Let us pass now to the actual verifications.

The one-pierced torus.
σ = (0, 1): there a unique extension (B, b(0,1)) which differs from (B, b0) by

the inversion of the ambiguous edge v1v0.

σ = (1, 2): there are several extensions. There is only one containing the
edge v0v2 and this differs from (B, b0) by the inversion of the ambiguous edge
v2v1. Two extensions contain the edge v2v0 and differ from each other by
the inversion of the ambiguous edge v0v

′
2. In the one containing v0v

′
2, v2v0 is

ambiguous, hence by inverting it we are in the first case.

σ = (0, 1, 2) = ((1, 2)(0, 1): there are two extensions which differ from each
other by the inversion of the ambiguous edge v0v

′
2. In the one containing v0v

′
2,
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the edge v0v2 is ambiguous, hence possibly by inverting it we reach the case
(B, b(1,2)).

σ = (0, 2, 1) = (0, 1)(1, 2): the discussion is similar to the one for (0, 1, 2);
up to some inversion of ambiguous edges we reach the case (B, b(0,1)).

σ = (0, 2) = (0, 1)(1, 2)(1, 0): there is only one extension. Here, v0v
′
1 is

ambiguous. By inverting it we reach the case (B, b(0,2,1)).
The first verification is complete.

The one-pierced Klein bottle.
σ = (0, 1): there a unique extension (B, b(0,1)) and it differs from (B, b0) by

the inversion of the ambiguous edge v0v1.

σ = (1, 2): there are no extensions.

σ = (0, 1, 2): there is only one extension (B, b(0,1,2)). The following se-
quence of inversions of ambiguous edges realizes a transit from this extension
to (B, b(0,1)) (we indicate the initial orientation before the inversion): v0v1,
v′2v0, v2v1, v2v0.

σ = (0, 2, 1): there is only one extension. The following sequence of inver-
sions of ambiguous edges realizes a transit to (B, b0): v2v0, v1v0.

σ = (0, 2): there are two extensions which differ to each other by the
ambiguous edge v0v

′
2. In the ones containing the oriented v′2v0, the edge v1v0

is ambiguous. By inverting it we reach (B, b(0,1,2)).

The second verification is complete.

The twice-pierced torus. We have two sub-cases depending on the ori-
entations either (v2v

′
2, v0v

′
0) or (v2v

′
2, v
′
0v0) of the two connection edges.

Sub-case (v2v
′
2, v0v

′
0).

σ = (0, 1): There are two extensions that differ by the ambiguous edge v′0v
′
2.

In the ones containing the oriented edge v′0v
′
2, v1v0 is ambiguous and possibly

inverting it we reach (B, b0).

σ = (1, 2): this is very similar to the case (0, 1).

σ = (0, 1, 2): there are several extensions. There is only one containing
v′2v0 which is ambiguous. In the ones containing v0v

′
2 both v0v2 and v′0v

′
2 are

ambiguous, then after at most two inversions we reach (B, b(1,2)).

σ = (0, 2, 1): this is very similar to the case (0, 1, 2); via a sequence of
inversions we reach now (B, b(0,1)).

σ = (0, 2): there are four extensions that differ by suitable inversions of the
edges v1v2 and v0v

′
2 which are both ambiguous. Then up to such inversions we

reach (B, b(0,1)).

Sub-case (v2v
′
2, v
′
0v0). At this point, the fourth verification is a routine, we

leave it to the reader.
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Case (2) Let S be not orientable such that χ(S) < 0 and odd. We manage
as in Case (1). The only difference is that the capping pierced Klein bottle
is replaced with a pierced projective plane. Again we use the triangulations
depicted in the proof of Lemma 2.10. Up to total inversion, we can assume
that (T, b0) and (T, b) coincide on the capping truncated bigon. The rest of the
proof is unchanged.

The proof of the initial case (S, nS) of our inductive proof of Theorem 3.1
is now complete.

The inductive step. Let us face at first the generic case χ(S) < 0. We
have proved the result for (S, 1), and we want to prove it for every (S, n) by
induction on n ≥ 1. We define the distinguished triangulation for (S, n) by
modifying the one used for (S, 1) as follows:

Figure 5: (B3, b3)

• We modify only the one-pierced torus brick, say B1 triangulated by T1,
used when n = 1, so that Bn carries all further n − 1 vertices. We do
it inductively as follows: the naked triangulation Tn of Bn is obtained
from Tn−1 by performing a 1 → 3 move on the triangle which contains
the connection edge.

• In the treatment for n = 1, we have also indicated a reference branched
brick (B, b0). As already said, this is completely determined by the or-
dered vertices v0, v1, v2 belonging to the top triangle in Figure 4-a, pro-
vided that we have fixed also the orientation of the connection edge, say
v2v
′
2. Set (B1, b1) := (B, b0). We define the reference branching (Bn, bn)

for every n > 1 by stipulating that the new vertex added passing from
Bn−1 to Bn is a source in the triangular star that contains it. In Figure
5 we see (B3, b3).

Consider any (Bn, b). There are two possibilities:

(a) The new vertex introduced passing from Bn−1 to Bn has a good triangu-
lar star in (Bn, b). Then b restricts to a branching (Bn−1, b). By induction, this
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is connected to (Bn−1, bn−1) by a sequence of inversions of ambiguous edges.
Finally, we conclude by applying Lemma 2.9 to the innermost triangular star.

(b) The innermost triangular star as above is bad in (Bn, b). Consider first
(B2, b); we readily see that v1 (resp. v′1) is necessarily either a pit or a source
(either a source or a pit). In any case at least one among v0v2 and v′0v

′
2 is

ambiguous; by inverting it, the triangular star becomes good and we reach the
case (a). In general, we can assume by induction that the innermost triangular
star in Bn−1 is good for the restriction of b to Bn−1, so that we can apply the
above reaisoning to the innermost triangular star in (Bn, b) and reach again
the case (a).

The proof of Theorem 3.1 in the generic cases is now complete.

For the remaining sporadic cases such that χ(S) ≥ 0 we limit ourselves to
some indications.

• (S2, n), n ≥ 3. Denote by T3 the triangulation used above for n = 3.
Select one triangle t and one edge e. For every n > 3, the distinguished trian-
gulation Tn for (S2, n) is obtained by induction on n by performing a 1 → 3
move on the triangle of Tn−1 which is contained in t and contains e. In par-
ticular, T4 corresponds to the triangulation of the boundary of a tetrahedron.
Every (T4, b) is determined by a labelling of the vertices by 0, 1, 2, 3. Fix a
(T, b); then the branchings are indexed by the elements of the symmetric group
Σ4. This is generated by the transpositions (0, 1), (1, 2), (2, 3). Write every σ
as a product of these generators with a minimal number of terms. This cor-
responds to a sequence of inversions of ambiguous edges connecting (T, b) and
(T, bσ). For n > 4 we argue by induction on n.

• (S1 × S1, n) or (P2(R)#P2(R), n), n ≥ 1. In both cases we start with
the triangulation say T1 used for n = 1. Precisely, we refer to Figure 3-e and
to Figure 3-d respectively. Then Tn is obtained from Tn−1 by performing a
1→ 3 move on the triangle contained in the top triangle of T1 and containing
its diagonal edge.

• (P2(R), n), n ≥ 2. We start with T2 used for n = 2. Referring to Figure
3-b, T3 is obtained by performing a bubble move at the internal edge on the
left side. Denote by t the new triangle contained in the top half of T2 and by
e its edge contained in the interior of this top-half. Then, for n > 3, Tn is
obtained from Tn−1 by performing a 1→ 3 move on the triangle of Tn−1 which
contains e.

The proof of Theorem 3.1 is now complete.

Proof of Theorem 3.2. As usual, we have two consider two cases.

Case (a): χ(S) is not strictly negative and odd. The distinguished inversive
triangulations Tn of (S, n) constructed in the proof of Theorem 3.1 have no
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trapped edges. Using Lemma 2.5 , we deduce that for every triangulation
T of (S, V ) without trapped edges, there exists a (possibly varying) inversive
triangulation T ∗ without trapped edges and a sequence of flips T ∗ ⇒ T through
triangulations without trapped edges. Denote by l the number of flips. We
work by induction on l. Let T ′ be obtained by performing the first l − 1 flips.
By induction, the theorem holds for T ′. Hence we are reduced to check the
case l = 1. We fix the notations as follows: e is the flipping edge, that is a
diagonal of a quadrilateral Q = t1 ∪ t2 in T ∗, t1 ∩ t2 = e; e′ denote the other
diagonal of Q, that is the edge of T which replaces e. Let (T ∗, b) and (T ∗, b′) be
connected by a sequence of k inversions of ambiguous edges. Let (T, b̃), (T, b̃′)
be obtained by b-enhancing in some way the flip (T ∗, b)→ T and (T ∗, b′)→ T .
We want to modify the sequence to get one connecting these branchings of
T . If a b-flip is not forced then the two possibilities are related by inverting
an ambiguous edge, so this is essentially immaterial for our discussion. If an
inversion concerns an edge not contained in (Q, b) then it makes sense also
on (T, b̃). By these remarks and working by induction on k, we are reduced
to analyze the inversion of an edge e∗ contained in (Q, b). There are a few
possibilities.

• e∗ = e; then the b-flip is either totally ambiguous or forced ambiguous if
the vertices of (Q, b) opposite to e are either both a pit (resp. source) or one
is a pit and the other a source. So in the first case, we possibly replace the
inversion of e with the inversion of e′.

Assume now that e∗ 6= e.
• e is ambiguous in (Q, b) as above. If the flip is totally ambiguous, there

are two possibilities for e∗. Then the inversion of e∗ can be performed on
(T, b̃), possibly after having inverted the ambiguous edge e′. If the flip is
forced ambiguous, again there are two possibilities for e∗ and in every case the
inversion of e∗ can be performed on (T, b̃).

• e is ambiguous in one of the two triangles of (Q, b) and nonambiguous in
the other. The flip is nonambiguous. There are three possibilities for e∗. We
readily check that in every case, the inversion of e∗ can be performed on (T, b̃).

• e is nonambiguous in both triangles of (Q, b). The flip is not forced. We
check that the inversion of e∗ can be performed on (T, b̃), possibly after having
inverted the ambiguous edge e′.

This completes the proof in Case (a).

Case (b): χ(S) is strictly negative and odd. The distinguished triangula-
tions Tn of (S, n) have one trapped edge carried by the one-pieced projective
plane. Let T ∗n be obtained by flipping its connection edge. T ∗n does not contain
any trapped edge and arguing similarly as above, we see that it is inversive.
Then the proof is like in Case (a).

Theorem 3.2 is achieved.
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4. On a B-proof of the main Theorem

The basic difference between the A- and the B-way is that the first deals with
distinguished triangulations while the second should apply to any couple (T, b),
(T, b′) of branchings on the same arbitrary naked triangulation. Using Lemma
2.5 and Lemma 2.4, it is not restrictive to deal under the assumptions that: (1)
T does not contain trapped edges; (2) Every edge e ∈ δ(b, b′) is nonambiguous
in both (T, b) and (T, b′). Moreover, we specify the B-way requiring that these
conditions are preserved along with the process.

Using Theorem 3.2, it is not hard to build an algorithm that connects
(T, b) with (T, b′). We can construct a (not unique) oriented tree with root at
(T, b), such that every vertex of the tree corresponds to a branching of T , every
branching appears only once, if two vertices b < b′ are connected by an edge
then we pass from b to b′ by inverting one ambiguous edge of (T, b), and every
vertex has one antecedent. Then (T, b′) is a vertex of the tree and the unique
path in the tree connecting the root (T, b) to (T, b′) corresponds to a sequence
of inversions of ambiguous edges connecting the two branchings on T .

On the other hand, genuine implementation of the B-way does not require
that the naked triangulation T is fixed along with the process. Moreover, the
above application of Theorem 3.2 is not really in the spirit of the B-way if
we make explicit the underlying idea that the modifying procedures should
be local, that is ‘universally’ applicable whenever certain local configurations
appear in a pair (T, b), (T, b′). To make concrete these considerations, we will
implement a B-way. For simplicity, we will deal in the generic (χ(S) < 0)
and orientable case. Beyond a different proof of (part of) Theorem 1.2, we
believe that this is useful to have some insight about the mutations of branched
triangulations under b-transit.

At first, we analyze the effects of flipping e ∈ δ(b, b′) in both (T, b) and
(T, b′) looking for a decrease of |δ|, if any. Sometimes, we say that an edge
e ∈ δ(b, b′) is disorientated. Let t1 and t2 be the two triangles of T which share
e. As e is nonambiguous in both triangulations, then e is nonambiguous in at
least one of the branched triangles (tj , b) and similarly for the (tj , b

′)’s. There
are two possibilities:

1. There is at least one triangle, say t1, such that e is nonambiguous in both
(t1, b) and (t1, b

′), so that necessarily (t1, b
′) = (t1,−b).

2. e is nonambiguous (resp. ambiguous) in (t1, b) (resp. (t2, b)) while e is
nonambiguous (resp. ambiguous) in (t2, b

′) (resp. (t1, b
′)).

Let us analyze the first case.

Case (1). Concerning t2, there are three possibilities: it can contain either
k = 0, 1 or 2 further edges belonging to δ(b, b′). Note that k = 2 if and only
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if b′ = −b on the whole of t1 ∪ t2. We say that the disorientated e is (1)bad if
k = 2 and e is ambiguous in (t2, b) (hence in (t2, b

′)). In all other cases, we say
that e is (1)good. We have

Lemma 4.1. Let e ∈ δ(b, b′) be (1)good. Then by flipping e in both (T, b) and
(T, b′) we get (T ′, b1) and (T ′, b2) which still satisfy our assumptions and such
that |δ(b1, b2)| < |δ(b, b′)|.

Proof. First, we note that if fe creates a trapped edge, then necessarily e is
internal to some naked nutshell say N in T . We analyze the situation case by
case, according to the value of k = 0, 1, 2.

t1

t2

Figure 6: Flipping an untrapped edge, Case (1).

1. If k = 0 both fe,b,b1 and fe,b′,b2 are nonambiguous and |δ| decreases by 1.
There are not compatible branched nutshells containing e, hence the flip
does not create any trapped edge (see the first row of Figure 6).

2. If k = 1, we can choose fe,b,b1 and fe,b′,b2 in such a way that |δ| decreases
by 1 and the new edge is ambiguous in one of the triangulations obtained
so far (see Figure 6, second row). We claim that fe does not create
any trapped edge. Otherwise, one of the branched nutshells (N, b) and
(N, b′) would be good with internal vertex which is either a pit or a source.
Then (recall Lemma 2.7 (3)) it would contain an ambiguous internal edge
ẽ belonging to δ(b, b′), against our assumption.
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bad

Figure 7: Flipping an untrapped edge, Case (2).

3. If k = 2 and e is (1)good, then necessarily e is nonambiguous also in (t2, b)
(hence in (t2, b

′)). We can choose fe,b,b1 and fe,b′,b2 in such a way that
|δ| decreases by 1 and the new edge is ambiguous in both triangulations
obtained so far (see the left side of the third row of Figure 6). If e would
belong to a naked nutshell in T , then both (N, b) and (N, b′) are good
with internal vertex which is either a pit or a source, and we can argue
as above. So fe does not create any trapped edge.

The Lemma is proved.

Concerning the (1)bad situation, we readily realize that

Lemma 4.2. If e is (1)bad, then by flipping e we keep the same value of |δ|.
The new edge is nonambiguous in both triangulations obtained so far (see the
right side of the third row of Figure 6). If the flip creates a trapped edge, then
both nutshells (N, b) and (N, b′) are bad and all edges of N belong to δ(b, b′).

Let us turn now to the second case.

Case (2). Necessarily, the boundary of t1 ∪ t2 contains exactly one couple
e1 ⊂ t1, e2 ⊂ t2 of edges which do not belong to δ(b, b′). There are two
possibilities, see Figure:

(i) e1 and e2 are consecutive edges in the (abstract) quadrilateral t1∪ t2 (see
the right side of Figure 7). In this case, we can flip e and |δ| decreases by
1. If this creates a trapped edge, then e is an internal edge of a nutshell
N , and both (N, b) and (N, b′) are bad with the two boundary edges
which do not belong to δ(b, b′).



CONNECTIVITY OF SURFACE BRANCHED TRIANGULATIONS 21

(ii) e1 and e2 are opposite edges in the (abstract) quadrilateral t1 ∪ t2 and
their orientations are necessarily compatible, that is they extend to an
orientation of the whole boundary of the quadrilateral (see the left side
of Figure 7). By flipping e, we keep the same value of |δ|. The flip does
not create any trapped edge.

If we are in case (i) and the flip does not create a trapped edge, then we say
that e is (2)good. The other cases are (2)bad. Let us call generically good an
edge e ∈ δ(b, b′) which is either (1)good or (2)good. Otherwise, let us say that
it is bad. We can successively flip good edges until this is possible so that either
δ vanishes and we have done, or δ is nonempty and all disorientated edges are
bad. Summarizing we have:

Lemma 4.3. To prove Theorem 1.2 it is not restrictive to deal under the fol-
lowing all-bad assumptions:

(1) T does not contain trapped edges;

(2) Every edge e ∈ δ(b, b′) is nonambiguous in both (T, b) and (T, b′);

(3) Every edge in δ(b, b′) is bad.

We show now that the all-bad assumptions are quite constraining.

Lemma 4.4. Let (T, b) and (T, b′) satisfy the all-bad assumptions. Then every
e ∈ δ(b, b′) is (2)bad.

Proof. Assume that there exists a (1)bad edge e ∈ δ(b, b′). This propagates
to all edges of T so that b′ = −b and all edges should be (1)bad. We want to
show that this is impossible. We note that there are not adjacent (necessarily
bad) nutshells because a common boundary edge should be ambiguous, hence
good. Let v be a vertex of T which is not the center of a nutshell and analyze
the possible configurations of its (abstract) developed star St(v, b) (T, b) (the
one in (T̃ , b′) is obtained by just reversing the orientations).

Claim: Every such a star St(v, b) has the following qualitative configura-
tion. Every edge in the boundary of the star is ambiguous in the respective
triangle. St(v, b) can contain an even number of bad nutshells sharing the
vertex v (necessarily even because otherwise, the star would contain a good
edge) and the orientations of their boundaries alternate (compared with the
reference orientation of S̃). The edges of the boundary of the star between two
consecutive nutshells have compatible orientations as well as the internal edges
of their respective triangles are all either ingoing or outgoing for the central
vertex v. Moving along the boundary of the star, the boundary orientations
and the “in-out” types switch each time we pass a nutshell. In particular, if
there are no nutshells, then the boundary of St(v, b) is an oriented circle.



22 RICCARDO BENEDETTI

Proof of the Claim. Assume that there is an edge e in the boundary of
St(v, b) which is nonambiguous in the relative triangle. Let us try to complete
the star by moving along its boundary in the direction of the orientation of e.
Possibly after some boundary edges which are oriented like e and are ambiguous
in the respective triangle (with internal edges pointing towards the central
vertex v), we necessarily find either a boundary edge e′ which is nonambiguous
in the respective triangle and has opposite orientation compared with e, or
a bad nutshell (whose boundary orientation is uniquely determined). We see
that in both cases there is an internal edge that is ambiguous in the star, hence
good. The claim is proved.

Now we can conclude by noticing that for every St(v, b) with the properties
stated in the Claim, there is a vertex v′ in the boundary of the star such that the
boundary of St(v′, b) contains an edge which is nonambiguous in the relative
triangle of St(v′, b). Lemma 4.4 is proved.

Remark 4.5: The hypothesis that S is orientable has been already employed
to limit the way a trapped edge can be produced; it will be important also
in the rest of the discussion; the key point is that it prevents that the stars
of the disorientated (2)bad edges (in a all-bad configuration) glue each other
at edges not belonging to δ(b, b′) producing a Möbius strip. For example, the
opposite edges not belonging to δ(b, b′) in a basic (2)bad configuration (t1∪t2, b),
(t1 ∪ t2, b′) cannot be identified.

Definition 4.6. (1) A terminal (2)bad type is either:

– A couple of (2)bad nutshell (N, b), (N, b′) such that |δ(b, b′)| = 2 and
the boundary edges do not belong to δ(b, b′).

– A couple of triangulated annuli (A, b), (A, b′) obtained from a basic
(2)bad configuration (t1∪t2, b), (t1∪t2, b′) by identifying the opposite
boundary edges of the quadrilateral which belong to δ(b, b′). For the
resulting triangulations we have |δ(b, b′)| = 2 and the boundary of
(A, b) (similarly for (A, b′)) is formed by two circles each containing
one vertex and endowed with opposite orientations.

(2) A couple (T, b) (T, b′) is said terminal all-bad if verify the all-bad assump-
tions and every disorientated edge e ∈ δ(b, b′) is contained in a terminal
(2)bad type.

We have

Lemma 4.7. To prove Theorem 1.2 it is not restrictive to deal with terminal
all-bad couples (T, b), (T, b′).
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Figure 8: Terminal move.

Proof. Let (T, b), (T, b′) verify the all-bad assumptions. If (T, b) presents a pat-
tern as in the top of Figure 8 (we stipulate that the dashed edges do not belong
to δ(b, b′)) we can perform the sequence of b-flips suggested by descending the
rows of the picture (the corresponding flips on (T, b′) are understood). We get
(T ′, b1) and (T ′, b2) such that |δ(b1, b2)| = |δ(b, b′)|−1 and the number of (2)bad
t1 ∪ t2 decreases by 1. We stop when we reach a terminal configuration.

We can state now the conclusive lemma.

Lemma 4.8. Let (T, b) and (T, b′) be a terminal all-bad couple. Then we can find
a sequence of inversions of ambiguous edges (T, b) ⇒ (T, b̃), (T, b′) ⇒ (T, b̃′)
such that |δ(b̃, b̃′)| < |δ(b, b′)|.

By iterating all the above procedure starting from (T, b̃), (T, b̃′) we eventu-
ally get |δ| = 0 and the main theorem follows.

Proof of Lemma 4.8. Let e be an edge not belonging to δ(b, b′) and contained
in the star of a disorientated ē ∈ δ(b, b′). If e is ambiguous, let us invert it in
both (T, b) and (T, b′). If e was in the boundary of a bad nutshell, after the
inversion the nutshell becomes good and we can apply Lemma 2.7. If e was in
the boundary of a basic (2)bad configuration (t1 ∪ t2, b), (t1 ∪ t2, b′), then after
the inversion, ē becomes ambiguous (recall Remark 4.5) and we can invert it
in (T, b) to decrease |δ| by 1. So, if e is ambiguous we have done. Assume
that e is not ambiguous. Then e is the edge of a (abstract) triangle which is
entirely formed by edges not belonging to δ(b, b′). Let v be the vertex of this
triangle which does not belong to e. We realize that there is an internal edge
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of St(v, b) which is ambiguous. Then by successive inversions of ambiguous
edges, we eventually make e ambiguous and we can conclude as above.

The B-proof in the generic orientable case is complete.

5. The ideal sliding equivalence

Consider again the classification of b-flips in Definition 2.1. Let us call sliding
flip (s-flip) any b-flip which is not totally ambiguous (sometimes, a totally
ambiguous flip is also said a bump flip).

na

ta

fa fa

Figure 9: Sliding and bump branched spine flips.

The reason for this terminology is more clear if we look at the picture in
terms of dual tracks (Figure 9) corresponding by duality to Figure 2. In the
dual picture, instead of the transverse orientations, we prefer to indicate the
local orientations on the dual tracks, using the counterclockwise planar orien-
tation as reference. If S is oriented, this has a global meaning, as we know
that in this case (θ, b) is an oriented train track. Referring to Remark 1.5,
we see that the continuous deformations of tracks associated with s-flips are
realized by the smooth sliding of track branches. This is not true for bump
flips. The sliding transits have been already considered in Section 5 of [1].
After having extended the notion of sliding move to bubble and 1 → 3 stellar
moves, in [1] we have been mainly concerned with the completed sliding equiv-
alence, more precisely, with branched triangulations of a given compact closed
oriented surface with an arbitrary number of vertices, considered all together.
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Here we focus on the ideal setting, we consider also nonorientable surfaces, and
we introduce some new constructions (the so-called horizontal foliation). The
s-flips together with isotopy relative to V , generate the restricted s-ideal transit
equivalence with quotient sets denoted Sid(S, V ). We pass from Sid(S, V ) to
Bid(S, V ) adding the bump b-flips to the sliding ones. The basic idea is that
every branched triangulation of (S, V ) carries some remarkable structures of
geometric/topological types that are preserved by the ideal sliding while, ac-
cordingly with Theorem 1.2, they can be widely modified by the bump transits.

Remark 5.1: A version of the sliding equivalence has been widely studied
in [13], in a different setting. One considers the set of generic measured train
tracks (τ, µ) on an orientable surface S, χ(S) < 0. The track τ is not necessarily
orientable nor dual to any (naked) triangulation T of S. The measure µ is a
function which assigns to each branch e of τ a nonnegative real number µ(e)
and verifies a suitable 3-terms relation at each switch-point of τ . If we forget
the orientation of the branches for the sliding flips in Figure 9, we get the
generators of the equivalence relation, provided that such (nonoriented) sliding
flips are enhanced with the transit of measures. In this setting, a measured
flip supported by a nonambiguous flip is usually called a shift, a measured
flip supported by a forced ambiguous flip is called a collapse, the inverse of a
collapse is called splitting.

5.1. The transverse foliations carried by a branched
triangulation

Given (S, V ) we recall that SV denotes the surface with boundary obtained by
removing a family of disjoint open 2-disks centred at each v ∈ V . We are going
to consider possibly singular foliations on SV or S. Every such a foliation can
be obtained by integration of some field of tangent direction (a tangent vector
field if the leaves are oriented). We will say that two foliations are homotopic
(isotopic) if they are obtained by the integration of homotopic (isotopic) fields.
Let (T, b) be a branched triangulation of (S, V ). First, we are going to show
that (T, b) carries canonically a pair of regular transverse foliations (V,H) on
SV , called respectively the vertical and the horizontal foliations. V is always
oriented. If S is oriented, then also H can be oriented in such a way that
every intersection point has the intersection number equal to 1. V and H can
be extended to singular foliations v and h defined on the whole of S. They
share the singular set Z which consists of the vertices v ∈ V where the index
1− db(v) 6= 0. The two foliations are transverse on S \Z. If S is oriented, then
both v and h are oriented; if the singularity indices are all non-positive, so that
S is of genus g ≥ 1, then (v, h) looks like the couple of vertical and horizontal
foliations of the square of an Abelian differential on a Riemann surface.
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Figure 10: Whitney field tiles

The vertical foliation. Recall a classical way to prove that the Euler-
Poincaré characteristic χ(S) defined through the sum of indices of zeros of any
tangent vector fields on S with isolated zeros coincides with its combinatorial
definition in terms of any triangulation T of S. Given such a triangulation T , we
take its first barycentric subdivision T (1) endowed with a standard ∆-complex
structure (i.e. a branching) so that, in particular, each vertex of T is a pit.
Then each branched triangle of T (1) carries a so-called Whitney tangent vector
field which can be defined explicitly in terms of the barycentric coordinates
(see [5]). These locally defined vector fields match to define a vector field on
the whole of S, with an isolated zero at the barycenter of each iterated face c
of T of index (−1)dim c, in such a way that the sum of these indices equals the
combinatorial characteristic of T . From this general construction, we retain
that every branched triangle (t, b) carries a tile for such a Whitney field. This
is illustrated in Figure 10; the two tiles are distinguished from each other when
the ambient surface is oriented. Let (T, b) be any branched ideal triangulation
of (S, V ). Up to isotopy, the intersection of SV with every (abstract) triangle
t of T is a “truncated triangle” t̄, i.e. a hexagon with 3 internal “long” edges
(each one contained in an edge of T ) and 3 “short” edges contained in the
boundary ∂SV . The short edges are in bijection with the corners of triangles of
T ; some are labelled by 1 like the associated corners. The union of the hexagons
forms a cell decomposition of SV , by the restriction to the long edges of the
gluing in pairs of the abstract edges of T . The union of the short edges forms
a triangulation of ∂SV . We endow each hexagon t̄ with the oriented foliation
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a
b

c

Figure 11: The vertical foliation on SV .

V(t̄, b) obtained by the integration of the restriction to t̄ of the Whitney field
carried by (t, b). These constitute the tiles of a puzzle that, once assembled,
realizes the so-called vertical foliation V = V(T, b) of SV carried by (T, b). A
tile V(t̄, b) is illustrated in Figure 11-a. In the dual viewpoint, recall that the
spine (θ, b) of SV is an embedded transversely oriented train track in SV ; the
foliation V is positively transverse to it. In Figure 11-b, we see the dual picture
corresponding to the puzzle tile. The foliation V has remarkable properties.

Definition 5.2. A traversing foliation on SV is a foliation with oriented leaves
such that:

1. Every leaf of F is a closed interval that intersects transversely ∂SV at its
endpoints.

2. There is a nonempty finite set of exceptional leaves of F which are simply
tangent to ∂SV at a finite number of points.

3. F is generic if every exceptional leaf is tangent to the boundary at one
point.

Then it is not hard to see that:

Proposition 5.3. (1) The vertical foliation V associated with a branched
spine (T, b) of (S, V ) is a generic traversing foliation on SV . The ex-
ceptional leaves of V are in bijection with the 1-labelled short edges of
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∂SV ; every exceptional leaf is tangent to the interior of the associated
edge. V is uniquely determined up to isotopy.

(2) The dual branched spine (θ, b) of SV intersects transversely all leaves of
V. Every exceptional leaf intersects transversely θ at two points. A leaf
passing through a singular point of θ is generic and intersects θ at one
point. A generic leaf intersects θ at one or two points. In the second
case, it is contained in a quadrilateral in SV vertically bounded by an
exceptional leaf and a leaf passing through a singular point of θ.

(3) Every generic traversing foliation on SV can be realized as the vertical
foliation of some branched spine of (S, V ).

Boundary bicoloring. Given a traversing foliation F of SV , denote by
X = XF ⊂ ∂SV the set of tangency points of the exceptional leaves. F
determines a bicoloring of the components of ∂SV \X, denoted by ∂F ; let us
say that a component c is white (resp. black) if the foliation is ingoing (outgoing)
along c. If S is oriented the color can be encoded by an orientation, in the sense
that a black component keeps the boundary orientation of ∂SV (according to
the usual rule “first the outgoing normal”), while a white component has the
opposite orientation. In Figure 11-c, we see the oriented enhancement of the
V-tile (we stipulate that in the picture the b-orientation of the triangle agrees
with the orientation of SV ; we obtain the picture for the negative branching
−b by just inverting all arrows).

The horizontal foliation. Alike V, we define H as the result of a puzzle.
In Figure 12-a we show the “horizontally” foliated hexagon, in Figure 12-b, the
corresponding dual picture. In general, H is not oriented. If S is oriented then
H is oriented as well; in Figure 12-c, we show the oriented version of the tile.
Now we realize that:

1. V and H are transverse foliations.

2. Let Y be the union of the 1-labelled short edges. Then every component
of ∂SV \Y is contained in a leaf of H, while H is transverse to the interior
of every 1-labelled short edge.

3. If S, hence H, is oriented then every boundary component in a leaf is
oriented like the leaf and is contained in a component of ∂SV \X; these
orientations propagate to the whole components of ∂SV \X and reproduce
the bicoloring orientation. V intersects H with the intersection number
equal to 1 everywhere.

4. The pair (V,H) is uniquely defined up to isotopy.
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a b

c

Figure 12: The horizontal foliation on SV .

If S is oriented, there is another way to realize the foliations (V,H) by using
the 2D case of a result of [8]. This can be described as follows. Take an abstract
(non-embedded) copy θ∗ of the oriented train track (θ, b). Consider the oriented
branched surface F := θ∗ × [−1, 1]; this carries the vertical foliation V∗ with
leaves of the form {x}× [−1, 1] and the horizontal one H∗ with branched leaves
of the form θ∗ × {y}. Then one can find an embedding of SV into F which
preserves the orientation and such that V is just the restriction of V∗ to SV .
This is suggested in Figure 13. H∗ restricts as well to a regular foliation of SV
which becomes our final horizontal foliation H after a suitable homotopy.

Extension to singular foliations. Let (S, V ) be as usual. A function

i : V → {n ∈ Z|n ≤ 1} is said admissible if χ(S) =
∑
v

i(v). For every

admissible function i, a vertical foliation of type i on (S, V ) is an oriented
singular foliation v that verifies by definition the following properties:

1. The singular set Z of v consists of the v ∈ V such that i(v) 6= 0.

2. If i(v) 6= 0, 1, then the local model of v at v is given by the vertical
foliation at 0 of the quadratic differential z−2i(v)dz2. If i(v) = 1, the
local model is given by the integral lines at 0 of the gradient of either the
function |z|2 or −|z|2.
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Figure 13: Another realization of V.

A horizontal foliation of type i on (S, V ) is a nonoriented singular foliation
h that verifies by definition the following properties:

1. The singular set Z of h consists of the v ∈ V such that i(v) 6= 0.

2. If i(v) 6= 0, 1, then the local model of h at v is given by the horizontal
foliation at 0 of the quadratic differential z−2i(v)dz2. If i(v) = 1, the local
model is given by the level curves at 0 of the function |z|2.

A transverse pair of foliations of type i is a pair (v, h) such that

1. v and h are vertical and horizontal foliations of type i respectively.

2. The two foliations are transverse on S \ Z and, case by case, the above
local models at the singular points hold simultaneously for both v and h.

3. If S is oriented, we require furthermore that also h is oriented in such a
way that v and h intersect everywhere with intersection number equal to
1.

Lemma 5.4. For every admissible function i there are transverse pairs of foli-
ations of type i on (S, V ).



CONNECTIVITY OF SURFACE BRANCHED TRIANGULATIONS 31

Proof. It is enough to prove that there exists a vertical foliation of type i, for
we can take as transverse horizontal foliation the orthogonal one for a suit-
able auxiliary Riemannian metric on S. Let SZ be the surface with boundary
obtained by removing from S a small 2-disk around every v ∈ Z. Consider
the foliation on a neighbourhood of ∂SZ determined by the i-local model at
singular points. By a simple variation of Hopf index theorem, we realize that
it extends to the whole of SZ without introducing new singularities.

Such transverse pairs of type i are considered up homotopy through trans-
verse pairs of type i which is locally an isotopy at the singular points. We denote
by T P(S, V, i) the so obtained quotient set. Set T P(S, V ) = ∪iT P(S, V, i). Fi-
nally, denote by T(SV ) the quotient set of the set of generic traversing foliations
on SV considered up to homotopy through traversing (not necessarily generic)
foliations.

The following theorem summarizes the main features of the s-transit equiv-
alence.

Theorem 5.5. For every (S, V ):

(1) The correspondence (T, b)→ V(T, b) induces a well-defined bijection

τ : Sid(S, V )→ T(SV ) .

(2) For every (T, b), consider the admissible function ib(v) = 1−db(v). Then
the associated pair of transverse foliations (V(T, b),H(T, b)) on SV ex-
tends to a transverse pair (v(T, b), h(T, b)) of type ib on (S, V ) in such a
way that this induces a well-defined map

p : Sid(S, V )→ T P(S, V ) .

(3) Fix a base point v0 ∈ V . Assume that the set of admissible functions such
that i(v0) = 0 is nonempty and denote by T P0(S, V ) the corresponding
subset of T P(S, V ). Then the set of triangulations (T, b) of (S, V ) such
that ib(v0) = 0 is nonempty and, denoting Sid0 (S, V ) the corresponding
subset of Sid(S, V ), we have that the restricted map p : Sid0 (S, V ) →
T P0(S, V ) is bijective.

Proof. The fact that the map τ in (1) is well defined and onto follows just by
looking at the sliding flips and from (3) of Proposition 5.3.

Once the extension (V(T, b),H(T, b))→ (v(T, b), h(T, b)) will be established
just below, that the map p of (2) is well defined follows from the fact that τ is
well defined.

The fact that τ in (1) is injective as well as item (3) are simpler 2D versions
of results established in [3] and [4] for branched spines of 3-manifolds with
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nonempty boundary. In [3], we essentially considered the case of closed mani-
folds, that is when the boundary consists of one 2-sphere. In [4], we faced the
general case with minor changes. We limit here to illustrate the main points,
referring to the harder proofs in 3D.

The injectivity of τ is the 2D analogous of Theorem 4.3.3 of [3]. By transver-
sality, we can assume that the homotopy is generic, that is, it contains only a
finite number of nongeneric traversing foliations, each one containing one ex-
ceptional leaf which is tangent at two points of ∂SV . Then we analyze how two
generic traversing foliations close to a nongeneric one are related to each other
and we realize that the sliding b-flips cover all possible configurations.

Figure 14: Extendible configurations at ∂SV

As for the extension of (V,H), we look at the configuration of this foliations
at each component C of ∂SV which is also the boundary of a small disk D in
S centred at one of the vertex v ∈ V (see Figure 14). If ib(v) = 0, there
are exactly two exceptional leaves of V tangent to C. Then we can extend V
without singularities through D, respecting the bicoloring of C, and manage
similarly for H. In the other cases, we easily realize that, up to isotopy, the
configuration of (V,H) at C is the restriction of the configuration of the local
models carried by D. The arbitrary choices in implementing the construction
are immaterial as the (v, h) are considered up to kind of homotopy stated above.
Note that the extension of V can be obtained by using the non-truncated tiles
of Figure 10.

Item (3) is more demanding. Notice that if χ(S) = 0, then the hypothesis
can be satisfied also when |V | = 1, in all other cases necessarily |V | ≥ 2. First,
we prove at the same time that Sid0 (S, V ) is nonempty and the restricted map
p : Sid0 (S, V )→ T P0(S, V ) is onto. The key point is to prove that every vertical
foliation v occurring in T P0(S, V ) is realized by a triangulation (T, b) with the
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given distribution of db(v)’s. This is the 2D counterpart of Proposition 5.1.1 of
[3]. The proof is based on Ishii’s notion of flow spines [11]. Let A := V \ {v0}
and define SA as usual, so that SV ⊂ SA. In general, v is not traversing SA. The
idea is to find an embedded 2-disk D in the interior of SA, centred at some point
v′0, such that v becomes traversing SV ′ and generic, where V ′ = {v′0} ∪A, and
such that only two exceptional leaves are tangent to ∂D. This is carried by a
branched triangulation of (S, V ′). Finally, via the homogeneity of S, we get the
desired triangulation (T, b) of SV . The injectivity of the restricted map p is the
counterpart of Theorem 5.2.1 of [3]. We can ‘cover’ any homotopy connecting
v(T, b) with v(T ′, b′) with a chain of flow-spines connecting (T, b) with (T ′, b′) in
such a way that the traversing foliation associated to one is homotopic through
traversing foliation to the traversing foliations of the subsequent.

Remark 5.6: Every T P(S, V, i) is an affine space over H1(SZ ;Z), Z being the
singular set prescribed by i. So in general p : Sid0 (S, V ) → T P0(S, V ) is a
bijection between infinite sets.

5.2. On the nonambiguous transit

The nonambiguous b-flips define, in the usual way, a so-called ideal na-transit
equivalence with associated quotient sets NAid(S, V ), endowed with natural
surjective projections NAid(S, V ) → Sid(S, V ). In 3D, the notion of nonam-
biguous structure (defined indeed through the transit of pre-branchings rather
than of branchings) supports nontrivial examples of intrinsic interest and inter-
esting applications to quantum hyperbolic invariants (see [1], [2]). The intrinsic
content of this 2D na-equivalence is not so evident. We limit to a few remarks
assuming furthermore that S is oriented. We refer to the notations introduced
at the end of Section 2.1.

Example 5.7: Let S be the torus and |V | = 1. Let T be the triangulation of
(S, V ) as in Figure 3-e. We check by direct inspection that for every branching
(T, b), there is not any edge of T supporting a nonambiguous flip. This holds for
every triangulation T ′ of (S, V ) because all these triangulations are equivalent
to each other up to diffeomorphism of (S, V ). Hence, in this case, the na-
transit equivalence is nothing else than the identity relation. On the other
hand, we check that the branchings on T which share the same decomposition
S = S+ ∪ S− are not s-equivalent to each other.

Question 5.8. Are branched triangulations (T, b) and (T ′, b′) of (S, V ) na-
equivalent if and only if they are s-equivalent and share the decomposition
S = S+ ∪ S−?
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