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Abstract

We consider classical Teichmuller theory and the geodesic flow on the cotangent bundle of the Teichmuller space. We¨ ¨
Ž .show that the corresponding orbits provide a canonical description of certain 2q1 gravity systems in which a set of

point-like particles evolve in universes with topology S =R where S is a Riemann surface of genus g)1. We constructg g

an explicit York’s slicing presentation of the associated spacetimes, we give an interpretation of the asymptotic states in
terms of measured foliations and discuss the structure of the phase spaces. q 1998 Published by Elsevier Science B.V. All
rights reserved.

1. Introduction

Ž .Gravity in 2q1 dimensions can be understood as a non trivial toy model of the physically significant
Ž . Ž .3q1 -dimensional case. Einstein equations of 2q1 gravity simplify because the Ricci tensor determines the

Ž .Riemann tensor: this 2q1 -dimensional property allows also for an approach to the problem which is much
more geometric than analytic. A matter-free solution of topological type S =R, where S is a compactg g

surface of genus g, will be called an empty universe of type g and is a locally Minkowskian 3-manifold fibred
Ž . � 4by the spatial surfaces S t sS = t .g

w xTwo main approaches have been used to study empty universes of type g: one 1,2 is based on the
Ž . Ž . w xholonomy representations of p S in the Poincare group ISO 2,1 and the other 3,4 makes use of the´1 g

canonical ADM construction. Both of them identify the cotangent bundle T ) of the Teichmuller space T as the¨g g

phase space of the empty universes of type g. In fact, the precise correspondence between these two
w xidentifications is explicitly known 5 only for genus gs1; for g)1 several open questions remain to be

answered.
In this article we shall show that classical Teichmuller theory also allows for an interpretation of T ) as a¨ g

Ž .subset of the phase space of certain 2q1 gravity systems with ‘‘matter’’. More precisely we will show that,
with respect to the dynamics described by the Teichmuller geodesic flow in T ) for g)1, each Teichmuller¨ ¨g
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line gives a canonical description of the time evolution of a particular set of point-like gravitating particles
w xmoving on a 2-dimensional surface of genus g. In the gs1 case, our construction reproduces the known 2,4,5

matter-free solutions.
Let us give a short description of the main geometric idea. Our result is based on the properties of the

Teichmuller deformations of the conformal structure associated with a Riemann surface. For each Teichmuller¨ ¨
line, the corresponding deformations are the result of a stretching of the leaves of a particular measured
foliation. This foliation determines a canonical flat structure on the surface with conical singularities which can
be interpreted as point-like particles. The effect of these particles is to ‘‘flatten’’ spatial slices. The parameter
which determines the strength of the stretching is identified with ‘‘time’’ and, with the spatially flat metric on

Ž .each time slice, one can construct a spacetime which in the complement of the particle world-lines is flat.
Ž .Moreover, the time slices have constant extrinsic curvature again, far from the singularities which is simply

related to the time parameter; so, our construction provides a natural York slicing of spacetime.
In the first part of this article, we summarize a few basic results of classical Teichmuller theory and the¨

w xgeometry of quadratic differentials 6–9 for Riemann surfaces of genus gG1. Then, we construct the
spacetimes of the gravity systems associated with Teichmuller lines and we produce an explicit York slicing¨
description of each of them. Finally, we give an interpretation of the associated asymptotic states in terms of
measured foliations on S and we discuss the structure of the phase space.g

2. The geometry of quadratic differentials and Teichmuller theory¨

Let S be a compact Riemann surface of genus gG1. A quadratic differential v on S is a holomorphic map
v:TS™C, where TS is the complex tangent bundle on S, such that for any point pgS the restriction of v to

Ž . 2TS is a quadratic form. In a system of local complex coordinates zsxq iy, we write vsw z dz . Let usp
Ž . Ž .denote by Q S the set of quadratic differentials on S; Q S is a complex vector space and, by Riemann-Roch

Theorem, it has complex dimension 3gy3 when gG2 and complex dimension 1 for gs1. One can introduce
Ž .a norm on Q S according to

5 5 < < < <v s v s w dxdy .H H
S S

Ž . � 4Any given quadratic differential vgQ S _ 0 selects a particular set of points on S in which v vanishes.
Ž .If pgS is a zero of v, one can find a local coordinate z at p, with z p s0, such that

vsz mdz 2 .

The positive integer m is the order of v at p and the coordinate z is unique up to rotations of angles
Ž .2p nr mq2 with integer n.

Ž . � 4 Ž .Let vgQ S _ 0 ; a vector XgTS is called v-horizontal if v X is real and strictly positive. The vectorp
ˆŽ . � 4YgTS is v-vertical if v Y is real and strictly negative. Let us now consider the set SsS_ zeros of v . Forp

ˆevery pgS, TS has one v-horizontal and one v-vertical directions which are mutually orthogonal with respectp
ˆto the Riemannian v-metric on S

2 < < < < 2ds s w dz .v

The integral lines of these two fields of directions are the leaves of the v-horizontal and v-vertical foliations on
Ŝ. Both the v-foliations and the v-metric extend to the whole surface S with singularities at the zeros of the
quadratic differential v. We shall now describe the geometry induced on S by the v-metric and the associated

ˆv-foliations. We shall firstly concentrate on S and then we shall analyze the singular points.
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ˆ Ž .In a neighbourhood of any pgS where the coordinate z satisfies z p s0, consider the change of
coordinates

z z
X X' (z z s v s w z dz ,Ž . Ž .H H

0

where a fixed choice of the sign for the square root has been made. If zsxq ih, the v-horizontal lines become
� 4 � 4 2 2 2 2hsconstant and the v-vertical lines correspond to xsconstant . Moreover, vsdz and ds sdx qdh .v

ˆThis makes clear that the Riemannian v-metric on S is flat.
m 2 Ž .Assume now that p is a zero of v and let vsz dz in a chart such that z p s0. Let us distinguish two

' Ž . Ž .possibilities. When m is even, v has a single valued branch and zsz z is a mq2 r2-sheeted branched
y1Ž . Ž .covering ramified over 0. Consequently, as far as the horizontal lines are concerned, z R consists of mq2

analytic rays emanating from 0 which are equally spaced. One finds a similar structure for the vertical lines.
When m is odd, one can reduce the discussion to the even case by using the trick of passing to the double
covering, in which one puts z 2 sz, with the effect of getting formally the same result as in the ms even case.1

For example, the structure of the v-foliations in a neighborhood of a point in which v has order 1 is shown in
Fig. 1.

ˆ Ž .The v-foliations on S extend to singular foliations on S which determine mq2 sectors at a zero of v of
order m; each of these sectors has angles equal to p with respect to ds2 . Consequently, the v-metric for S is av

Ž .flat metric with a conical singularity of angle mq2 p at each zero of v of order m. Finally, the area of S is
5 5equal to v and the v-metric naturally induces a transverse measure on the v-foliations.

ˆ 2By construction, the flat metric associated to v admits an atlas for S with values in Euclidean R in which
the changes of coordinates are compositions of translations and of the rotation of angle p exclusively. In fact,
this property characterizes uniquely the flat structures induced by quadratic differentials. More precisely, given a
flat metric with conical singularities admitting such a kind of atlas on a topological surface S , one cang

reconstruct a conformal structure on S and a quadratic differential v inducing the given flat metric. Theg

v-horizontal and the v-vertical foliations are just the pull-back on S of the horizontal and vertical straightg

lines of R2.
A version of the Gauss-Bonnet formula gives the relation

m sy2 x S s4 gy1 ,Ž .Ž .Ý i g
i

Ž . � 4where x S is the Euler characteristic and m are the orders of the zeros of v. In particular, this implies thatg i

for gs1 a quadratic differential v has no zeros.
Let us now describe the deformations of the conformal structure according to Teichmuller theory. Teichmuller¨ ¨

space T is the ‘‘orbifold’’ universal covering of the moduli space MM of conformal equivalence classes ofg g

Riemann surfaces of genus g. The elements of T are equivalence classes of ‘‘marked’’ Riemann surfaces, i.e.g

of homeomorphisms f:S ™S, where S is a fixed topological surface of genus g and S is a Riemanng g
Ž .surface. Two marked surfaces S ,f with is1,2 are equivalent iff there exists a conformal map f :S ™Si i 1 2

Fig. 1. Horizontal lines at a simple zero of v.
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y1 w xsuch that f ( f(f is a automorphism of S which is isotopic to the identity. We will denote by f:S ™S1 2 g g
Ž .the element of T represented by the marked surface S,f .g

w x Ž . � 4 w .Let as f:S ™S gT , vgQ S _ 0 and kg 0,1 . One can deform the conformal structure on S asg g
ˆfollows: by using the coordinates z defined on S, set

zqkz
X

z s .
1yk

X Ž . Ž .If zsxq ih, one finds z stxq ih where ts 1qk r 1yk . In this way one can define a new flat metric

X X2 2 2 2ds sdz dz s t dx qdht

ˆ 2 ˆ 2 2 2 2on S which coincides with ds for ts1. Note that any atlas for S,ds with values in R ,dx qdh , withŽ .Ž .v v

ˆ 2changes of coordinates given only by combinations of translations and p-rotations, is also an atlas for S,dsŽ .t

with values in R2 ,t 2dx 2 qdh 2 . Therefore, ds2 induces a conformal structure Sv carrying a quadraticŽ . t t

differential v such thatt

ds2 sds2 .t vt

Moreover, v and v have the same zeros with the same orders, the horizontal and vertical foliations aret

constant in t apart from the transverse measure: the length of the vertical lines remains unchanged whereas the
length of the horizontal lines gets stretched by a factor t . The line in Teichmuller space¨

w1,q` ™ T. g

v vt ™ a s id(f : S ™St g t

Ž .is called the Teichmuller ray based on a ,v . Note that the substitution of v by bv with b)0 does not¨
1Ž . Ž .modifies the Teichmuller ray. Hence, the Teichmuller rays are labeled by the unitary sphere E Q S in Q S .¨ ¨

w x 1Ž . Ž . 1Ž .Now, fix as f:S ™S gT and let Q S be the unitary open ball in Q S . Let us define p :Q S ™Tg g a g

by

a if vs0
p v sŽ . ṽa ½ a otherwiseŽ .b v

5 5 Ž . Ž 5 5. Ž 5 5.where vsvr v and b v s 1q v r 1y v . A fundamental result of Teichmuller theory states that,˜ ¨
for every agT , p is bijective.g a

Ž .For every a ,bgT such that bsp v , defineg a

5 51 1q v
d a ,b s log .Ž .T ž /5 52 1y v

d is a well defined distance on T called the Teichmuller distance; in fact, d is induced by a Finslerian metric¨T g T

on T with respect to a compatible differential structure on T , the Teichmuller rays are geodesic rays and each¨g g

p is a diffeomorphism. The cotangent bundle T ) is identified witha g

) <T f a ,v as S,f gT , vgQ S .Ž . Ž . Ž .� 4g g

v Ž . ) 5 5 2
a ,v rt with tg 0,` is the Teichmuller geodetic flow on T governed by the Lagrangian v r2. NoteŽ . ¨t t g

Ž .that we have extended each Teichmuller ray to a complete oriented Teichmuller line by setting tg 0,` in the¨ ¨
Ž .previous formulae. According to this definition, a Teichmuller line based on a ,v is just the union of two¨

Ž . Ž .Teichmuller rays: one of them is based on a ,v and the other is based on a ,yv .¨
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3. Spacetime for a gravity system

Ž .The key observation, which allows us to associate a 2q1 gravity system to each Teichmuller line, is¨
3 Ž .contained in the following change of coordinates. In R with coordinates u, y,t , consider the upper half-plane

� 4 Ž .Ps t)0 with the metric of signature qqy given by

t 2du2 qdy2 ydt 2

This metric is flat; indeed, under the change of coordinates

xst shu , ysy , t st chu ,

� 2 2 4the set P goes onto the open domain Ds t)0, x y t -0 of the standard Minkowski space with
Ž . 2 2 2 � 4coordinates x, y,t and metric dx qdy ydt . The constant-time hyperplanes tst have constant0 t ) 00

Ž .extrinsic mean curvature equal to 1r 2t , so we say that they realize a natural York slicing of P . Note that the0
Ž .isometry group of P is isomorphic with the subgroup of the Poincare group ISO 2,1 having D as invariant´

Ž .subset and consists of combinations of translations parallel to the tsconstant planes and the p-rotation
around the t axis. Then, as t varies we see a one-parameter family of flat metrics on R2 which is formally the
same occurring in the Teichmuller deformation.¨

Ž . )Consider g)1 and the Teichmuller line based on js a ,v gT , with v/0, and the homeomorphism¨ g

c : S = 0,` ™ MŽ .g

v Ž � 4. Ž . vwhere M is a 3-manifold fibred by the surfaces S 'c S = t with tg 0,` . Let S be endowed with thet g t
2 ˆv v X ˆv� 4flat metric ds with conical singularities. Let us define S sS _ zeros of v and M sj S . One can givev t t t t tt

M X the metric

ds2 sds2 ydt 2 , 1Ž .j vt

which is flat and locally Minkowskian on M X; in fact, it is immediate to produce an atlas of M X modeled on the
ˆvnatural York slice of P so that the surfaces S correspond to the t-constant hyperplanes.t

Ž . Ž .Let us consider the extension of the 3-dimensional metric 1 to the entire manifold M. Since the metric 1
has vanishing shift-vectors, the conical singularities of ds2 on Sv survive in the three-dimensional context andv tt

contribute to the three-dimensional curvature for any t . We shall now prove that the 3-manifold M is flat with
Ž .the exception of the world-lines that we call the singular lines associated with the zeros of the quadratic

Ž .differential v; at each zero of v of order m, one has a spatial conical singularity of angle mq2 p .
Consider a tubular neighbourhood V of a singular line, V;M; we shall denote by V X the complement of the

singular line in V. For ts1 suppose that, in local coordinates, one has vsz mdz 2. In a neighbourhood of
zs0, the two-dimensional metric induced by the Teichmuller deformation is given by¨

Ž . Ž . Ž . Ž .mq2 r2 mq2 r2 mq2 r2 mq2 r24 z qkz z qkz
2ds s d d .v 2t ž / ž /1yk 1ykmq2Ž .

By using polar coordinates zsrcosuq irsinu , one has

mq2 mq2
Žmq2.r2 Žmq2.r2 Žmq2.r2z s r cos u q ir sin u s A r ,u q iB r ,u ,Ž . Ž .ž / ž /2 2

Ž . Ž .and, since ts 1qk r 1yk , one finds

4 2 22 2ds s t dA r ,u q dB r ,u .Ž . Ž .Ž . Ž .� 4v 2t mq2Ž .
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Let us assume that the order m of the zero of v is even. We shall now prove that V X is isometric with a
Ž . 3 Ž .mq2 r2-branched covering of a locally Minkowskian manifold. Indeed, consider R with coordinates x, y,t
endowed with the usual Minkowski metric ds2 sdx 2 qdy2 ydt 2 and the map given by

2 2 2
t s t ch A r ,u , x s t sh A r ,u , y s B r ,u . 2Ž . Ž . Ž . Ž .

mq2 mq2 mq2

2 Ž .The pull-back of the metric ds in the coordinates r,u ,t is

4 42 22 2 2 2t dA r ,u q dB r ,u ydt sds ydtŽ . Ž .Ž . Ž . v2 2 tmq2 mq2Ž . Ž .

which coincides precisely with the three-dimensional metric ds2 on V X. The singular line in V is mapped intoj

Ž . 3the straight line xs0, ys0 in R which can be interpreted as the world-line of a ‘‘static particle’’. The map
Ž . Ž . Ž . 32 corresponds to a mq2 r2-fold cyclic covering of the complement of the xs0, ys0 straight line in R ;

Ž . Ž .therefore, the extension of the metric 1 in V has a conical spatial singularity of angle mq2 p . When m is
odd, one can apply the same argument to the double covering of V X and one obtains the same final result;

Ž .namely, the conical singularity is of angle mq2 p .
To sum up, each Teichmuller line is canonically associated with a 3-manifold M equipped with the metric¨

Ž .1 of Lorentz signature which is locally flat and has conical spatial singularities along the world-lines
w xassociated with the zeros of the corresponding quadratic differential. Thus, M can be interpreted 8–12 as the

Ž .spacetime of a certain 2q1 gravity system containing point-like gravitating particles moving on a two-dimen-
sional surface of genus g)1. In fact, for a localized particle of mass m)0, the associated conical singularity

w xin its rest frame has angle 11

2p 1y4Gm ,Ž .
w x Ž .where G is the three-dimensional gravitational constant. As noted by ’t Hooft 13 , in 2q1 dimensions the

sign of G is not fixed a priori; this property is also connected with the existence of a Chern-Simons
w x Ž .interpretation 1 of 2q1 gravity. With positive G, the conical singularity associated with the world-line of a

particle of small mass m has angle less than 2p ; whereas for negative G the conical singularity has angle
greater than 2p . As far as our particular gravity systems are concerned, the conical singularities of angles
Ž .mq2 p in M admit a physical interpretation in terms, for instance, of particles of mass msymr8G with

Ž . � 4negative G. The number of particles associated with the zeros of vgQ S _ 0 and their masses are
Ž .constrained by the Gauss-Bonnet formula and the total mass is equal to x S r4G.g

w xWhen gs1, the same construction reproduces the nonstatic matter-free solutions studied in 2–5 . Our
w xinterpretation based on the Teichmuller flow gives also a clear explanation of the already noted 4 fact that the¨

orbit in T , which is identified with the Poincare disc, is in fact geodesic.´1
Ž .In the remaining part of this article, we will call these universes associated with Teichmuller lines for gG1¨

the Teichmuller universes.¨

4. Asymptotic states

Ž .For each Teichmuller universe M, which is associated to a Teichmuller line based on a ,v , we have¨ ¨
selected a canonical time t on M realizing a York slicing of its matter-free part M X; the constant-time spatial

Ž . 5 5surfaces have mean extrinsic curvature 1r 2t and area t v . Let us consider the asymptotic behaviour of the
universe in the ‘‘initial time’’ t™0 limit and in the ‘‘final time’’ t™` limit. It seems physically interesting to
note that, for asymptotic times where time and metric do not exist, one still has something more than just a
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Ž .‘‘topological shadow’’ the genus : in fact, metrics degenerate to measured foliations. We shall now elaborate
on this point.

As we have seen in first section, T is star-shaped by the geodesic Teichmuller rays emanating from any¨g

fixed base point agT . By adding the end-point of each ray, one gets the so-called Teichmuller compactifica-¨g
6 gy6 2Ž . Ž . Ž .tion T a . When g)1, T a fB and this compactification actually depends on a ; whereas T a fB .g g 1

It is natural to identify the end-point of each ray by the associated v-vertical measured foliation
Ž .FF sFF v . The physical interpretation of the asymptotic states, which are defined by measured foliations, isÕ Õ

based on a set of observables connected to the length of simple curves. Indeed, let us denote by SS the set of
w .isotopy classes of essential simple curves on S . For each tg 1,` and for each ggSS , setg

ll g s inf ll C ,Ž . Ž .C ggt t

Ž . 2where ll C is the length of the curve C with respect to the metric ds on S . Let us denote by r thet g Õt

transverse measure of the foliation FF and defineÕ

i FF ,g s inf r C .Ž . Ž .Õ C gg Õ

Ž w x.Then, it is not hard to show that for every ggSS one has see 9

ll gŽ .t
lim s i FF ,g .Ž .Õ

tt™`

Ž . Ž .Each Teichmuller line based on a ,v determines two end-points on the boundary of T a . The measured¨ g
Ž .foliation associated with the asymptotic t™` final configuration is given by the v-vertical foliation FF v .Õ

Ž . Ž .Whereas the v-horizontal foliation FF v sFF yv describes the asymptotic t™0 initial configuration.h Õ

Ž . Ž .Therefore, FF v and FF v are interpreted as the asymptotic states of the Teichmuller universe.¨h Õ

Ž .When gs1, the Teichmuller compactification T a does not depend on a and coincides with the gs1¨ 1

version of Thurston compactification. In this case, the Teichmuller universes are completely determined by the¨
asymptotic states up to an overall rescaling.

Ž . w xFor g)1, the compactification T a nontrivially depends 9 on the choice of the base point a .g

Consequently, in order to reconstruct the spacetime of the universe, the knowledge of the asymptotic states must
be supplemented by a specific choice of the base point agT .g

5. On the phase spaces

w x Ž .Several mathematical results in Teichmuller theory, see 9,14–16 , can be reinterpreted in the present 2q1¨
gravity context. In this section we present a few examples. Assume g)1 and G-0 as before. Given a set of N
gravitating point-like particles moving on a surface of genus g, the type of this gravity system is, by definition,

� 4g , aŽ .i

where

a s2p 1y4GmŽ .i i

and m )0 is a mass for each is1,2, . . . , N. Two basic general questions arise:i
Ž . Ž � 4.1 Determine all the couples g, a which are the type of any gravity system.i
Ž .2 For each type, describe the phase space of the universes realizing it.

Ž . Ž .To our knowledge, a complete answer to question 1 is not known. As far as question 2 is concerned, it
seems to be generally accepted that the dimension of the phase space is given by

12 gy12q4Nsdim T )

R g , N

where T ) denotes the cotangent bundle of the Teichmuller space for N-punctured surfaces of genus g.¨g , N
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These questions can be specialized in the framework of Teichmuller universes; the answers in this case¨
Ž .suggest a few general speculations. For Teichmuller universes question 1 has a complete answer:¨

� 4g , a is the type of a Teichmuller universe if and only if each a is of the form a s m q2 pŽ .Ž . ¨i i i i

� 4 � 4with m gN, m G1, the Gauss-Bonnet relation is satisfied and g , a / 2, 1,3 .Ž .Ž .i i i

Apart from the exceptional case, we already mentioned the ‘‘only if’’ part of this statement; the ‘‘if’’ part is
w xnontrivial, see 14 . On the other hand, not every universe of this type is a Teichmuller universe. For example,¨
Ž . � 4 2 2for any vgQ S _ 0 consider the static universe S=R with the product metric ds ydt .v

Ž .Let us now consider question 2 ; first of all there is a subtle problem concerning which kind of
‘‘isomorphism relation’’ one stipulates to work with. This problem includes the assumption on whether particles
with equal masses may be or may not be distinguished from each other. These two possibilities reflect on the
choice of the mapping class group for the N-punctured surfaces of genus g which must be used in passing from
the ‘‘Teichmuller space’’ level to the ‘‘moduli space’’ level. Apart from this subtle point, the phase space of¨

w x Ž � Ž . 4.Teichmuller universes has a rather complicated structure, see 15,16 . Each admissible type g, a s m q2 p¨ i i
Ž � 4 . )splits into two augmented types g, a ,e where es"1. T is stratified according to the augmented types asi g

Ž . ) Ž � 4 .follows: a ,v gT belongs to the stratum of type g, a ,e if and only if it determines a universe of typeg i
Ž � 4.g, a and es1 iff v is the square of a holomorphic Abelian differential. The stratum corresponding to thei

Ž � 4 . )type g, a ,e , if nonempty, is a submanifold of T of real dimensioni g

4 gq2 n j qey3,Ž .Ý
j

Ž . � < 4where, for integer jG1, n j is the cardinality of m m s j . This stratification is invariant for the Teichmuller¨i i
Ž � 4 .flow. When at least one m is odd, the stratum of type g, a ,1 is empty. Whereas when all the m are even,i i i

Ž � 4. Ž � 4.the type g, a correspond to two nonempty strata of different dimensions, with the exception of 2, 4 as thei
Ž � 4 .stratum 2, 4 ,y1 is empty.

The maximal dimension is realized onlyin the stable case in which all m s1. It should be noted that this topi
) Ždimensional stratum is a topological nontrivial open dense subset of T in particular, its fundamental group isg

.nontrivial .
These facts suggest the following speculationsrconjectures.

Ž � 4.C1. For a given type g, a which does not correspond necessarily to a Teichmuller universe, the expected¨i
) Ž .dimension dim T is realized only for a stable situation in a sense to be specified . For gravity systemsR g , N

admitting Teichmuller universes, we conjecture that dim T ) is realized only for the type¨ R g , N

� 4g , 1,1, . . . ,1 , Ns 4 gy4 .Ž .
ŽC2. Even at the ‘‘Teichmuller space’’ level, the phase space of a given type is topologically not trivial in¨

.contrast with the case of empty universes .
C3. The fact that T ) contains all the strata corresponding to different Teichmuller universes for given g,¨g

seems to indicate that it would be natural to look for a ‘‘global phase space’’ in which any significant change
of configurations takes place; for instance, non connected surfaces and different genera should also be
admitted. In fact, already in T ) one could describe decays of particles in the framework of Teichmuller¨g

universes.
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