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1. Introduction. In this paper we describe a complete topo logical classification

of noncompact triangulable surfaces, and give a concrete model for an arbitrary

surface, similar to the classical "normal form" for compact surfaces.

This classification of arbitrary surfaces depends on the well-known classifi-

cation theorem for compact surfaces, and on the idea, frequently used in the

theory of Riemann surfaces, of the "ideal boundary" of a surface. The ideal

boundary is a totally disconnected, compact, separable space. For our purposes,

we distinguish two nested closed subsets of this space, corresponding to portions

of the surface which are of "infinite genus" and "infinitely nonorientable"

respectively; thus our "ideal boundary" is really a nested triple of spaces.

Our first result is that, with certain fairly obvious qualifications, two surfaces

are homeomorphic if and only if their ideal boundaries are topologically equi-

valent. This was originally discovered by Kerékjártó (see Kerékjártó [5, Chapter

5]). Kerékjártó 's proof seems to contain certain gaps, so we have included an

outline of a complete proof. (See in particular the remark following Proposition

3 in §3.)

In addition we prove the theorem, which so far as I know is new, that con-

versely, every nested triple of totally disconnected, compact, separable spaces

occurs as the ideal boundary of some surface. At the same time, we show that

every surface may be represented as a sphere, punctured by a finite or infinite

number of discs and points, with the edges of the removed discs suitably identified.

Thus we get a direct generalization of the classical representation theorem for

compact surfaces.

2. Basic definitions. By a surface we mean a connected 2-dimensional

manifold. Just as for any manifold, one can define the property of "orientability,"

which a given surface may or may not have.

A subset A of a surface S is said to be bounded in S if its closure in S is compact.
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By a subsurface of a surface S, we mean a closed region in S whose boundary

in S consists of a finite number of nonintersecting simple closed curves.

When dealing with a triangulable surface S with some given triangulation T,

we shall only allow subsurfaces which can be realized as subcomplexes of the

complex formed by barycentrically subdividing iS,T) a finite number of times.

(We do not mention this point explicitly below, but in every case it is not dif-

ficult to verify that the subsurfaces which we describe can be chosen to be of

this type. This allows us to use combinatorial methods freely.)

When referring to a subsurface by itself, we shall describe it as a bordered

surface. (It is not difficult to give an intrinsic definition of "bordered surfaces,"

but we have no need for it.)

The Euler characteristic of any 2-complex is the number of its 0-simplexes,

minus the number of its 1-simplexes, plus the number of its 2-simplexes. It is a

topological invariant, that is, it is independent of the triangulation. (This is a

consequence of the invariance of the homology groups; see e.g. Aleksandrov

[2, Volume II, p. 71].)
We now give the fundamental classification theorem for compact bordered

surfaces. (This theorem is due to Brahana [3].)

Theorem. Two compact triangulable bordered surfaces are homeomorphic

if and only if they both have the same number of boundary curves, the same

Euler characteristic, and are either both orientable or else both nonorientable.

We define the reduced genus g of a. compact triangulable bordered surface A

with q boundary curves and Euler characteristic x by g = 1 — \ix + <?)• It follows

from the definition of x that if A and A' are compact bordered surfaces which

are joined along r common boundary curves, then (since the boundary curves

have the same number of 0 and 1 simplexes) xiA V A') = xiA) + xiA'), and

(1) g(A U A') = g{A) + giA') + (r - 1).

Remark. An orientable bordered surface of reduced genus g is a sphere

with g "handles" and any number of "holes;" a nonorientable bordered surface

of the same reduced genus has 2g "cross caps," or equivalently, for any k < g,

k "handles" and 2g — 2k "cross caps." (It is conventional to define the "genus"

to be g in the orientable case and 2g in nonorientable case.)

A triangulable bordered surface is said to be planar if every compact subsur-

face in it is of reduced genus zero (or equivalently, of genus zero). (A surface

without borders is planar or "schlichtartig" if and only if every Jordan curve

separates it.)

3. The ideal boundary. We shall consider as our basic topic of investigation

triangulable connected surfaces without borders. Such surfaces are clearly separ-

able; it is known that any separable surface is also triangulable. (For a proof,

see Ahlfors and Sario [1, Chapter 1, §46]; the theorem is due to Radó [6].)
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We begin by defining the ideal boundary.

Definition 1. A boundary component of a surface S is a nested sequence

Py =3 P2 => • • • of connected unbounded regions in S such that :

(a) the boundary of P„ in S is compact for all n;

(b) for any bounded subset A of S, P„ n A = 0 for n sufficiently large.

We  say that  two  boundary components Py => P2 ■=> ■ • •  and P¡=>P2 => ■■■

are equivalent if, for any n there is a corresponding integer JV such that

Pjv c P'n and vice versa. We let p* denote the equivalence class of boundary

components containing p = Py => P2 => •••.

Remark. Condition (a) above (also the corresponding restriction on U in

Definition 2 below) and the assumption that the sets P„ are connected deserve

emphasis; the ideal boundary gives a description of the way in which compact

subsets of S divide S into unbounded components.

Definition 2. The ideal boundary B(S) of a surface S is the topological

space having the equivalence classes of boundary components of S as elements,

and endowed with the following topology : for any set U in S whose boundary

in S is compact, we define U* to be the set of all boundary components p*, rep-

resented by some p = Pt => P2 => •••, such that Pnc U for n sufficiently large;

we take the set of all such U* as a basis for the topology of B(S).

Definition 3. Let p*, represented by p = Pt => P2 => •••, be a boundary

component of S. We say that p* is planar and/or orientable if the sets P„ are

planar and/or orientable for all sufficiently large n.

Remark. Of course it is necessary to verify that Definitions 2 and 3 do not

depend on the representative p chosen from the equivalence class p*. The veri-

fication is trivial.

Following Definition 3, we shall consider the ideal boundary to be a nested triple

of sets B(S) => B'(S) => B"(S), where B(S) is the whole ideal boundary, B'(S) is

the part which is not planar, and B"(S) is the part which is not orientable.

It follows directly from the definitions that B'(S) and B"(S) are closed subsets

of B(S).

Example. If, for every compact subset A of S, S — A has at most m un-

bounded components, and the number m actually occurs for some A, then the

ideal boundary of S consists of m discrete "points" (each of which may be planar,

orientable but not planar, or nonorientable). The case m = 1 deserves special

mention, as many seemingly dissimilar noncompact surfaces fall into this cate-

gory. If m = 0 the surface is compact and vice versa.

Definition 4. A bordered surface S is of infinite genus and/or infinitely

nonorientable if there is no bounded subset A of S such that S — A is of genus

zero and/or orientable.

Clearly an infinitely nonorientable surface is also of infinite genus.

On a nonorientable surface, a pair of "cross caps" is equivalent to a "handle"

(as long as at least one cross cap is left). This fact leads to the following défini-
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tion, which is only significant for finitely nonorientable surfaces S of infinite

genus—in this case, S — A is orientable for some bounded subset A of S, and

the number of cross caps in any bounded subsurface containing A is always

of the same parity.

Definition 5. We define four "orientability classes" of surfaces. Two classes

are the orientable and the infinitely nonorientable surfaces; a surface which

belongs to neither of these categories is said to be of odd or even nonorientability

type according to whether every sufficiently large compact subsurface contains

respectively an odd or an even number of "cross caps" (i.e., has half integral

or integral reduced genus).

We now state, without proof, three important properties of the ideal boundary

The first two are almost trivial. The third, which is basic for everything which

follows, is proved in Ahlfors and Sario [1, Chapter 1, §§36 and 37].

Proposition 1. Let U and Vbe subsets of a surface S whose boundaries in

S are compact. Then (referring to the corresponding neighborhoods in B(S)),

[17 U F]* = U* u V*, and [C7 n F]* = U* n V*.

Proposition 2. If Sx is a subsurface contained in a surface S, then the neigh-

borhood S* in B(S) contains nonplanar and/or nonorientable boundary com-

ponents if and only if St is of infinite genus and/or infinitely nonorientable.

Similarly, S* is nonempty if and only if Si is unbounded.

Proposition 3. The ideal boundary of a separable surface is totally discon-

nected, separable, and compact.

Remark. In the cases where the (homeomorphic) ideal boundaries of two sur-

faces are very complicated (e.g. equivalent to the Cantor set), the proof of Kerék-

jártó's theorem can involve serious combinatorial difficulties. These difficulties

are very neatly handled using the compactness of the ideal boundary (see con-

dition (5) in the proof of Theorem 1).

Finally we verify that what we have called "surfaces of infinite genus" deserve

the name. This is intuitively obvious; a careful proof is easily given using the

relationship between the genus and the Euler characteristic of a compact surface

(see formula (1) in §2).

Proposition 4. A bordered surface of infinite genus contains compact sub-

surfaces of arbitrarily large genus.

A. Kerékjártó's Theorem.

Theorem 1. Let S and S' be two separable surfaces of the same genus and

orientability class. Then S and S' are homeomorphic if and only if their ideal

boundaries (considered as triples of spaces) are topologically equivalent.

Proof.    Since, by definition, the ideal boundary is a topological invariant,
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the necessity is trivial. In proving the sufficiency, we shall assume that S and S'

are both infinitely nonorientable (and hence of infinite genus) ; it is easy to modify

our proof to treat the general case.

The proof is based on a decomposition of S and S' into compact subsurfaces

(bordered by Jordan curves), and on the fact that a connected compact bordered

surface is topologically determined by its orientability, genus, and the number

of its boundary curves. Thus a compact surface of large genus contains a sub-

surface equivalent to any given (nonvacuously) bordered surface of lower genus

and the same orientability.

Let A be the given homeomorphism of the ideal boundary B(S) onto B(S').

To construct the corresponding mapping / from S onto S', we shall represent

S and S' as unions of compact subsurfaces Ay <= A2 <= ••• and Ay' c A2 c —,

each contained in the interior of the one following it, and, for each n, construct

a homeomorphism /„ of A„ onto A„' so that/„¡.d,,-! =f„-y-

Furthermore, conditions (1) and (2) below (which mean that "/„ commutes

with A") will be imposed. We then define / as the common extension of the /„.

(1) For each n, there is exactly one simple closed curve d(t/) in the boundary

of each component U of S — A„; similarly for the components U' of S' — A'„.

(2) If f„idiU)) = diU'), then h(U*) = U'*. (Recall that, by Definition 2, U*
is the neighborhood in B(S) corresponding to U.)

We now take (totally unrelated) sequences By c B2 c — and B[ <=■ B2 <= —

of bounded subsurfaces, each contained in the interior of its consequent, which

cover S and S' respectively and satisfy conditions (1) above (with B„ replacing

A„) and (3) below.

(3) Every component of S — Bn or S' — B'„ is unbounded, either of genus zero

or of infinite genus, and either orientable or infinitely nonorientable.

Condition (3) can be satisfied by arbitrarily large bounded Bn because e.g. if

a component U of S — B„ were of finite but not zero genus, we could (by De-

finition 4) remedy this by adding some bounded portion of U"to Bn. That con-

dition (1) can always be satisfied as well seems geometrically evident; a careful

proof could be constructed along the lines of Lemma (C) below.

The construction of the triples ifn,A„,A'„) proceeds by induction (beginning

with A0 = A'o = 0). We require that /„, A„, and A'„ satisfy conditions (1), (2),

and (3). Furthermore, we use a process which alternates in the following manner:

when n is even, we make A„ large enough so that B„ c An, and then construct

A'„ to fit; when n is odd we interchange the roles of S and S". Thus both S and

S' are covered by the unions of the sets A„ and A/,.

Suppose we already have (/„, An, A'n). Assuming for the sake of definiteness

that n is even, we must construct if„+l, An+1, A'n+1) so that B'n+y c A'n+l and

(1), (2), and (3) are still satisfied.

We first construct A'n+l. For some M, A'„ lies in the interior of B'M; we let

m = max(n + 1,M) and let A'n+1 = B'm (so that B'„+1 <= A'n+1).
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To construct An+1, we use the following:

(4) For m sufficiently large, the closure of every component of Bm — A„ is

of reduced genus strictly greater than that of the corresponding component (see

the remark below) of A'„+y — A'n, unless the latter component is of genus zero;

each component of Bm — A„ is nonorientable wherever the corresponding com-

ponent of A'n+1 — A'„ is.

Remark. Recall that, by conditions (1) and (2) above, the homeomorphism

h gives a correspondence between the boundary curves of S — A„ and those of

S' — A'„. Furthermore, by condition (1), the boundary of each component of

Bm — A„ (A'n+i — A'n) contains exactly one boundary curve of S — An (S' — A'„),

as well as one or more boundary curves of S — Bm (S' — A'n+l). If A„ lies in the

interior of Bm, every component of S — A„ contains one nonvacuous component

of Bm — An (similarly for A'„ and A'n+y).

Proof of (4). Let U and U' be corresponding components of S — An and

S' — A'„, so that h(U*) = [/'*. By hypothesis, h(U*) contains nonplanar and/or

nonorientable boundary components if and only if U* does. Therefore, by Pro-

position 2 in §3 and the condition (3) satisfied by An and A'„, U and U' are either

both of infinite genus and/or infinitely nonorientable or both of genus zero and/or

orientable. The result follows from Proposition 4 in §3.

Now we consider condition (2). We need some notations: for any m, let

Vy,---,VP be the components of S — Bm; let U[,---,U'q be the components of

S' - A'n+1; finally, let ß?= [V™}* and a'k = [U'k}* be the corresponding neigh-

borhoods in B(S) and B(S'). We get the weaker condition :

(5) For m sufficiently large, every neighborhood ß,m in B(S) is contained in

the inverse image under n of one of the neighborhoods a} in B(S').

Proof of (5). This follows from the compactness of B(S). The sets/?™, m = 1,2, •••,

form a basis for the topology of B(S), since any compact subset of S is contained

in Bm for sufficiently large m (see the remark following Definition 1). Since A'n+1

is bounded, [/1¿+1]* = 0> and (by Proposition 1 in §3) the sets a} cover B(S').

Thus every element of B(S) is contained in some neighborhood ß\ which in turn

lies in one of the sets h~l [a}]; by the Heine-Borel property, a finite collection

Q of the ß\ covers B(S). Letting M be the maximum of the indices r for ß\ in Q,

it follows that (5) holds whenever m^M (since r £m implies Br c Bm, and hence,

for every i and j, either ß?c ßj or p™ n ß] = 0).

Assume that m is large enough so that both (4) and (5) hold. We shall then

remove a certain part of each component of Bm — An to get the desired set An+1,

which must have the following properties:

(6) Each component of An+1 - A„ is homeomorphic to the corresponding

component of A'n+1 — A'„ (see the remark following (4) above).

(7) Each component of S — A„+1 contains precisely those components of

S - B„, which correspond, according to (5), to some single component ofS'-A'n+i.
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In addition, A„+l must satisfy (1) and (3); we shall see that this is sufficient

to allow us to find /n+1.

We need the following properties of compact surfaces:

(A) If 2 and 2' are compact bordered surfaces which have the same reduced

genus and orientability and the same number of boundary curves, then there

are homeomorphisms g of 2 onto 2' under which the boundary curves of 2

correspond to those of 2' in any preassigned manner.

(B) If 2 is a compact bordered surface, C is a simple closed curve in the border

of 2, and 0 is any homeomorphism of C onto itself, then <p can be extended to

a homeomorphism of 2 onto itself so that every curve in the border of 2 is in-

variant under <j>.

(C) Let S be a compact bordered surface of reduced genus g, and let Tit —, Tp

be a partition of the set of its boundary curves. Then, for any k ^ max (g — \, 0),

there exist p — 1 nonintersecting simple closed curves in 2 which divide 2 into

p components Uu---, Up so that r¡ c U¡ for all i, Ux is of reduced genus k, and

U¡ is of genus zero for 1 < i < p. If 2 is nonorientable and k is integral, then

Ui can be made either orientable or nonorientable.

Remarks. (A) is simply the classical classification theorem for compact bor-

dered surfaces (see §2 above). (B) is trivial if the mapping </> preserves orientation

on the curve C; if 4> reverses orientation, we simply "turn the surface inside out"

(reflect the normal polygon in a line), then proceed as before. (C) is tedious.

But it is clear that a proof could be written down, using the normal form of 2

as a polygon in the plane (punctured by discs which, by (A), can be arranged

any way we please). The inequality kiíg — \ instead of k :£ g is needed only

where we wish to make Ux orientable when 2 is not.

We now return to the proof of Theorem 1. For convenience, in the remainder

of this proof we shall write e.g. Bm — A„, where we actually mean its closure in

S, which consists of one or more connected compact subsurfaces of S.

By condition (4) above, each component of Bm - A„ is of sufficiently large

reduced genus and the right orientability so that, using Lemma (C), we can retract

Bm to a subsurface An+l containing An(Bm=> A„+l => An) so that the reduced

genus and orientability of each component of An+i — A„ exactly matches that

of the corresponding component of A'n+l — A'n (see the remark following (4)).

(The components of An+1 — An correspond to U\ and the components of Bm—An+i

to the other U¡ in Lemma (C).)

Recall that, by condition (5), several components of S — Bm correspond (under

h, as above) to one component of S' — A'„+1. In retracting Bm to An+1, exactly

the right components of S — Bm must be joined together inside of Bm so that

the components of S — A„ + l satisfy conditions (1) and (7); again Lemma (C)

shows that this is possible. Finally, within each component of Bm - A„, we can

have every component except one of Bm -A„+l (corresponding to U¡, 1 < i < p,
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in Lemma (C)) of genus zero ; and the extra component (if any) may be added

to the part of S — Bm which is already of infinite genus or infinitely nonorientable,

so that An+y satisfies (3).

To construct f„+l, we use the classification theorem (A) to give a homeomor-

phism g of An+1 - An onto /L,'+1 - A'n; since/„ satisfies (2) and An+1 satisfies (7),

we may assume that g~lfn maps each curve in the boundary diAn) onto itself,

and that g satisfies (2) on diAn+l). We let çb = g~lfn on diAn), and extend çb to

An+y — A„as in (B) (here we use the fact that there is only one curve in the bound-

ary of each component of S - A„). Finally, we set /n+1(x) = gcbix) for

xeAn+1-An,f„+1ix)=f„ix) for xeA„; then f„+1ix) is continuous on diA„)

and satisfies (2) on diA„+1).

Thus if„+y, An+1, A'„+y) satisfies all the necessary conditions. This completes

the proof of Theorem 1.

5. Construction of a surface with a given ideal boundary. We recall that the

ideal boundary of any surface is a nested triple of compact, separable, totally

disconnected spaces. In this section we show that any such triple actually occurs

as the ideal boundary of some surface. We do this by explicitly constructing the

surface as a sphere, punctured by a certain set of points and open discs, with

specified boundary identifications for the discs.

A totally disconnected space X is of topological dimension 0, and by a well-

known theorem (see Hurewicz and Wallman [4, Chapter 5, §3]), any compact

separable space of topological dimension n may be imbedded in 2n + 1 dimen-

sional Euclidean space. Thus X may be imbedded in the real line. But it is easy

to represent a compact totally disconnected subset of the real line as a subset

of the Cantor set. Thus we have

Proposition 5. Any compact, separable, totally disconnected space X is

homeomorphic to a subset of the Cantor set.

Remark. It is not too difficult to prove Proposition 5 directly. The idea is

to form a basis for the topology of X composed of sets which are both open

and closed in X, and from this to extract a basis equivalent to the natural basis

for a subset of the Cantor set.

Theorem 2. Let (X, Y, Z) be any triple of compact, separable, totally dis-

connected spaces with Z c Yc X. Then there is a surface S whose ideal boundary

(ß(S), B\S), B"iS)) (see iAe paragraph following Definition 3) is topologically

equivalent to the triple iX, Y,Z).

Proof. By Proposition 5 above, we may assume that X is a subset of the

Cantor set, which we imbed in the one point compactification of the plane (a

sphere) as the set of all points (x,0) such that O^x^l and x admits a triadic

expansion which does not involve the digit 1.
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Let D' be the collection of all closed discs in the xy plane whose diameters

are the intervals in the x axis [(n - l/3)/3m, (n + 4/3)/3m], 0 £ « = 3"', where n

is an integer which admits a triadic expansion free from l's; let D be the sub-

collection consisting of all discs in D' which contain at least one point of X.

Then D determines a basis for the topology of X The lattice, under inclusion,

of sets in the collection D has the following properties, which we shall use below :

(1) Any two discs in D are either disjoint or else one contains the other.

(2) The intersection of the discs in any infinite ordered chain of discs in D

consists of exactly one point of X (because X is compact ; furthermore, the set

of discs containing any point of X forms an ordinary sequence under the inclusion

ordering).

Let P+ and P~ be respectively the half planes y > 0 and y < 0. For each

disc K in D, let K' and K" be the two largest discs in D properly contained in K.

(Then every disc in D properly contained in K is contained in K' or K".)

For every disc K in D, we choose two circles C+(X) and C~(K), each contained

in the interior of K, such that:

(a) C+(K) c P+, and C~(K)cp-;

(b) C+(K) and C~(K) do not intersect either K' or K";

(c) C+(K) and C~(K) are symmetric with respect to the x axis.

Then no two distinct circles C±(K) intersect.

We now construct S as a "double" of the sphere with the points in X and

the interiors of some of the circles C±(K) removed. First we fill in (or simply

ignore) the circles C^K) for all KeD for which K r\Y—0, and remove the in-

teriors of C±(K) for all K e D for which K n Y# 0. If K n Y¿ 0 but K n Z = 0,

then we identify the boundaries of C+(K) and C~(K) by reflecting C+(K) in

the x axis (preserving orientation in S). If K C\Z # 0, then we identify C+(K)

and C~(K) by translating C+(K) onto C~(K) (reversing orientation in S).

We shall show that the ideal boundary of S is equivalent to the triple (X,Y,Z).

It follows from (1) and (2) above that any point in X can be uniquely represented

as the intersection of the sets in a maximal ordered chain in the lattice of sets

in D. By comparison with Definition 1, we see that every such maximal chain

represents an (abstract) boundary component of S. This defines a mapping

from X into B(S).

Since X — Y and X — Z are open subsets of X, every point p in X — Y is con-

tained in some disk KeD such that K O Y = 0, and similarly for every peX—Z.

Hence the subsets Y and Z of X correspond precisely to the maximal chains

which represent nonplanar and nonorientable boundary components of S (see

Definition 3).

It remains to show that every boundary component of S is equivalent to one

of those which corresponds to a point in X, and that the resulting correspondence

between B(S) and X is a homeomorphism. The sets KeD form a basis for the
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topology of X, and it follows easily from Proposition 1 that the corresponding

sets K*, KeD, form a basis for the topology of ß(S). Thus it is clear that the

correspondence between maximal chains in D and points in X gives a homeo-

morphism of X into jB(S).

We now show that this homeomorphism is onto. Since B(S) is Hausdorff,

every point p* in B(S) is the intersection of some infinite collection [p] of sets

K* from the basis (X* | K e D) for the topology of B(S). (If p* is isolated in 5(S),

we can still take an infinite number of different sets K, although almost all of

the K* will coincide.) By condition (1), the collection pt = (/C | K* e [p]) of sets

in the plane is nested and represents a boundary component p* of P(S); but then

p* must be equal to p*. By (2), the intersection of all the sets in py is a single

point p' in X Finally p' corresponds to p* under the homeomorphism of X into

B(S), and p* = p*. This proves Theorem 2.

6. A representation theorem for noncompact surfaces. The ideal boundary of

any surface S' is a nested triple X => Yz> Z of compact, separable, totally dis-

connected spaces. By Theorem 1, the sets (X, Y, Z) almost determine S', and in

proving Theorem 2 we found a surface S, constructed by taking a "double" of

a modified sphere, having iX,Y,Z) as its ideal boundary.

This almost implies that every surface S' has a structure like S. In fact, accord-

ing to Theorem 1, we need only consider possible variations in the genus and

orientability class of S and S'. But, by Proposition 2 in §3, if either of these sur-

faces has infinite genus or degree of nonorientability, then the assumption that

these invariants be the same is redundant (since it is contained in the assumption

that the ideal boundaries contain nonplanar or nonorientable boundary com-

ponents). Since it is possible to vary the genus or degree of nonorientability in

the finite case by adding or subtracting a finite number of "handles" or "cross

caps," we get the following result.

Theorem 3. Every surface is homeomorphic to a surface formed from a

sphere E by first removing a closed totally disconnected set X from I, then

removing the interiors of a finite or infinite sequence D y,D2, ■■■ of nonoverlapping

closed discs in £ — X, and finally suitably identifying the boundaries of these

discs in pairs, (If may be necessary to identify the boundary of one disc with

itself to produce an odd "cross cap.''') The sequence Dy,D2, — "approaches

X" in the sense that, for any open set U in S containing X, all but a finite

number of the D¡ are contained in U.

(We remark that, in the orientable case, when the ideal boundary contains

no planar components, we could also represent the surface as the standard

"double" of a punctured sphere.)

7. Planar surfaces. We show that the (abstract) boundary components of

a region in the sphere correspond in a natural way to the ordinary components
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of the boundary of that region. (Recall that an abstract boundary component of

such a region is a nested sequence of connected subsets whose boundaries inside

the region are bounded away from the boundary of the region itself in the sphere.)

Theorem 4. Let I, be a sphere and let S be an open connected region in 2.

Let PjZ)P2=) ■•• represent an (abstract) boundary component of S; let Fn

denote the closure of P„ in 2 (not in S), and let A = Pj C\P2 O —. Then the set

A is equal to one component of the boundary B of S in 2. Every component A'

of B corresponds in this way to some abstract boundary component of S. Finally,

a sequence AUA2,--- of components of B converges (in the sense of Definition 2)

to a component A if and only if lim inf,,.,^!* — y\ |xe^4B, yeA) = 0.

Proof. Trivial compactness arguments show that A is connected and non-

empty, that any neighborhood of B in 2 contains P„ for n sufficiently large, and

that different components of B axe contained in disjoint neighborhoods in 2

and thus correspond to different abstract boundary components of S. The con-

dition for convergence of the components A„ is also trivial.

What is harder to prove is that A is not a proper subset of one of the com-

ponents A' of B, and that every A' occurs as some set of the form A. This fol-

lows once we show that, for arbitrarily small connected neighborhoods U of

A' in 2, U r\S is connected. To do this, we apply the following lemma to the

sets U and S.

Lemma. If E and F are connected open subsets of the sphere 2 whose boun-

daries in 2 do not intersect, then E OF is connected.

Proof of lemma. This depends on the fact that 2 is simply connected. Suppose

that the hypotheses of the lemma are satisfied but £ O F is the union of two

nonempty disjoint open sets G and H. Then we can construct a nonsingular two

sheeted covering surface 2* of 2, contradicting the monodromy theorem. To

do this, we put a pair of sheets GX,G2 and (2 — G)1( (2 — G)2 above the sets G

and 2 - G in 2, and attach G¡ (i = 1,2) to {(2 - G)¡/(2 - G)í±1} along the (non-

intersecting) boundaries of G in {E/F} respectively. Since E and F are connected

and intersect in H, 2* is connected. This proves the lemma.
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