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Quantum hyperbolic geometry

STEPHANE BASEILHAC
RICCARDO BENEDETTI

We construct a new family, indexed by odd integers N > 1, of (2 + 1)—dimensional
quantum field theories that we call guantum hyperbolic field theories (QHFT), and
we study its main structural properties. The QHFT are defined for marked (2 4 1)—
bordisms supported by compact oriented 3—manifolds ¥ with a properly embedded
framed tangle L and an arbitrary PSL(2,C)—character p of Y \ Lz (covering,
for example, the case of hyperbolic cone manifolds). The marking of QHFT bordisms
includes a specific set of parameters for the space of pleated hyperbolic structures
on punctured surfaces. Each QHFT associates in a constructive way to any triple
(Y, L7, p) with marked boundary components a tensor built on the matrix diloga-
rithms, which is holomorphic in the boundary parameters. When N =1 the QHFT
tensors are scalar-valued, and coincide with the Cheeger—Chern—Simons invariants
of PSL(2,C)—characters on closed manifolds or cusped hyperbolic manifolds. We
establish surgery formulas for QHFT partitions functions and describe their relations
with the quantum hyperbolic invariants of Baseilhac and Benedetti [3; 4] (either
defined for unframed links in closed manifolds and characters trivial at the link
meridians, or cusped hyperbolic 3—manifolds). For every PSL(2,C)—character of
a punctured surface, we produce new families of conjugacy classes of “moderately
projective” representations of the mapping class groups.

57M27, 57Q15; 57R20, 20G42

1 Introduction

In this paper we construct a new family {Hn}, indexed by the odd integers N > 1, of
(2 4+ 1)—dimensional quantum field theories (QFT) that we call Quantum Hyperbolic
Field Theories (QHFT). Here, following Atiyah [2] and Turaev [32], by QFT we mean
a functor from a (2 + 1)-bordism category, possibly not purely topological, to the
tensorial category of finite dimensional complex linear spaces.

The QHFT bordism category is based on triples (Y, Lz, p), where Y is a compact ori-
ented 3—manifold, possibly with nonempty boundary dY, L £ is a properly embedded
framed tangle (ie a framed 1-dimensional nonoriented submanifold) in Y, and p is a
flat s/(2, C)—connection on Y \ L up to gauge equivalence (iea PSL (2, C)—character
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846 Stephane Baseilhac and Riccardo Benedetti

of Y \ L), with arbitrary holonomy at the meridians of the tangle components. We
require furthermore that L r is nonempty when N > 1, and that it intersects each of
the boundary components, if any.

We will also consider a variant, denoted QHFT?, such that the tangles L are unframed,
while the characters p are defined on the whole of Y, that is the meridian holonomies
are trivial. Finally we consider a “fusion” of QHFT and QHFT? (still denoted QHFT)
that incorporates both, by considering tangles having a framed part L x as well as an
unframed one L° (see Section 5.3).

The objects of the bordism category are suitably marked surfaces. Every such a QHFT
surface is a diffeomorphism f: (S, 7, p(8)) — X, where 7 is a so called “efficient
triangulation” of a fixed base oriented surface S with genus g and » marked framed
points p; (r >0 and r > 2 if g =0), and B is any PSL(2, C)—character of S\ {p;},
represented by points p(f) in specific parameter spaces for the representation variety
Hom(mr1 (S \{pi}), PSL(2,C)), built on 7 and particularly well suited for the QHFT.
In fact we construct several such parameter spaces with small “residual gauge groups”
acting on them, and we point out the relations to each other. One of them, the so
called (—)—exponential T-parameter space, is defined in terms of cross-ratios and
incorporates the Bonahon—Thurston shear-bend coordinates for pleated hyperbolic
surfaces with punctures.

Every QHFT bordism has marked boundary and is considered as a “transition” from its
input QHFT surfaces towards the output ones. We understand that the characters p and
B are compatible. Every QHFT functor associates to such a transition a tensor called
the amplitude, defined up to a sign and multiplication by N —th roots of unity. When
N =1, the QHFT functor is obtained by extending to QHFT bordisms the simplicial
formulas of Neumann [24] of the Cheeger—Chern—Simons invariants of PSL(2,C)-
characters on closed manifolds, or finite volume noncompact complete hyperbolic
3—manifolds (ie cusped manifolds). In particular, this functor is scalar-valued.

When Y = W is closed (that is dY = &), for any N the amplitudes Hy (W, L £, p)
are numerical invariants, called partition functions. When N > 1 the QHFT? partition
functions Hy (W, L, p) coincide with the “quantum hyperbolic invariants” constructed
by the authors in [3; 4], while the QHFT ones yield new wide families of invariants,
covering interesting geometric situations such as compact hyperbolic cone manifolds.
We will analyze the relations between H and Hpy partition functions. When N =1,
we know a geometric interpretation of the invariants H; (W, Lz, p) only when p
extends to the whole of W : by using Theorem 6.7 of the present paper we can reach
the setup of [24] (see also [4]) and, as mentioned above, identify H (W, L £, p) with
the Cheeger—Chern—Simons invariant of the pair (W, p), the link being immaterial. If
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p does not extend, we get a relative version, the meaning of which deserves careful
attention. For general QHFT bordisms the geometric interpretation of amplitudes for
N =1 is even more unclear.

In [4] we defined also quantum hyperbolic invariants Hp (M) for cusped manifolds
M . Although these invariants are not immediately QHFT partition functions, we
will show how they can be obtained in terms of these last. For that we establish a
“surgery formula” for quantum hyperbolic invariants of cusped manifolds and QHFT
partition functions that generalizes the one for Cheeger—Chern—Simons classes, and
makes crucial use of some of W Neumann’s arguments in [24, Sections 11 and 14].

By restricting QHFT to the trivial bordisms (the cylinders) we get a new family of
conjugacy classes of “moderately projective” representations of the mapping class
groups of punctured surfaces, that is, defined up to a sign and multiplication by N —th
roots of unity.

We stress that we need that any bordism includes a nonempty link, intersecting each
boundary component (so that the QHFT surfaces have punctures), in order to build a
consistent functor when N > 1 [4, Lemma 6.4]. Even when the holonomy is trivial
around the punctures, we cannot forget them, in particular for what concerns the
mapping class groups.

We show that QHFT are in fact restrictions to a geometric bordism category of
“universal functors” called Quantum Hyperbolic Geometry (QHG). QHG includes
the definition of a specific category of triangulated 3—dimensional pseudomanifolds
equipped with additional structures, and modeled on the functional properties of the
matrix dilogarithms studied in [4]. The QHG functors associate determined tensors
to every such a decorated triangulation, obtained by tracing the matrix dilogarithms
supported by each tetrahedron. The key point is that such tensors are invariant up to
QHG triangulated pseudomanifold isomorphism. The main step in order to construct
specializations with a strong geometric content, such as QHFT, consists in converting
each QHFT (marked) bordism to a QHG triangulated pseudomanifold, unique up to
QHG triangulated pseudomanifold isomorphism.

Hence we view this paper as a kind of achievement of the foundation of the theory
initiated in [3; 4].

A main interest in the QHFT comes from the fact that they relate classical 3—dimensional
hyperbolic geometry to the world of quantum field theories, two main themes of low-
dimensional topology that remained essentially disjoint since their spectacular develop-
ments in the early eighties. In particular, the celebrated Kashaev’s Volume Conjecture
for hyperbolic knots in S3 [20] appears as a special instance of the challenging general
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848 Stephane Baseilhac and Riccardo Benedetti

problem of understanding the relationships between the asymptotic behavior when
N — oo of QHFT partition functions and fundamental invariants coming from differ-
ential geometry, like the Cheeger—Chern—Simons class [3, Section 5; 4, Section 7].

We plan to face the asymptotics of QHFT partition functions in future works. Also, we
postpone to a sequel to this paper our study of the relations between the QHFT and
Turaev’s Homotopic QFT [31], as well as formulas describing the behavior of the QHFT
amplitudes under framing changes. Both rely heavily on R-matrix computations.

We refer to Benedetti and Bonsante [6] for a discussion of QHG in the framework of
gravity in dimension 3.

Here is the content of the paper. The universal QHG functors are defined in Section 2,
where we recall also from [3; 4] and [23; 24] (in Section 2.4 in particular) the notions
and results we need.

The QHFT bordism category is described in Section 4, while its objects, the QHFT
surfaces, are developed starting with Section 3. The QHFT functors are defined
in Section 5. This includes the construction of the distinguished QHG triangulated
pseudomanifolds associated to any triple (Y, Lz, p) with marked boundary components,
and of the trace tensors computed on them. The conjugacy classes of moderately
projective representations of the mapping class groups are treated in Section 5.4.

The partition functions Hy (W, Lz, p) are considered in Section 6. We concentrate
on the case when N > 1, which is technically harder because of the use of global
charges in the definition of the trace tensors. However, the results can be repeated
almost verbatim to define new Cheeger—Chern—Simons invariants.

We show in Section 6.1 that when p is defined on the whole of W, Hx (W, L, p)
coincides with Hy (W, LU L', p), where L' is a parallel copy of the unframed link
L given by the framing . In Section 6.2 we prove the surgery formula for quantum
hyperbolic invariants of cusped manifolds and QHFT partition functions. In fact the
QHG pseudomanifolds used to compute the trace tensors carry certain cohomological
weights (see Section 2.4) and the partition function values actually depend also on
them. These weights play indeed a subtle role in the surgery formulas. This eventually
leads to realize Hy (M) as the limit of Hy (My, Ly, pn), where M, is a sequence of
closed hyperbolic manifolds converging geometrically to M, L, is the link of geodesic
cores of the hyperbolic Dehn fillings of M that produce M}, and p, is the hyperbolic
holonomy of M,. In Section 6.3 we discuss alternative computations of the QHFT
partition functions for manifolds that fiber over S'. For fibred cusped manifolds, this
allows in particular to identify each Hp (M) with a special instance of QHFT partition
function. We conclude with an example in Section 6.4.
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2 Universal QHG

2.1 Building blocks

The building blocks of QHG are flat/charged T—tetrahedra (A, b, w, f,c), and matrix
dilogarithms Ry (A(b, w, f.c)) € Aut(CY ® CV) defined for every odd positive
integer NV, which were introduced in [4].

2.1.1 Flat/charged-Z tetrahedra Consider the half-space model of the oriented
hyperbolic space H3, with the group of direct isometries identified with PSL(2,C)
by the conformal action on dH3 = CP! = C U {oo0} by Moebius transformations. An
T—tetrahedron is an oriented ideal tetrahedron A in dH?3 with distinct ordered vertices
Vo, V1, vy and vy on dH?.

In fact we consider A as an abstract oriented simplex equipped with an additional
decoration. The ordering of the vertices is encoded by a branching b, that is, edge
orientations obtained via the rule: each edge points towards the biggest end-point. We
order the 2—faces dg, ...83 by the opposite vertices, and the edges ¢eg, ey, ¢, of §3
by stipulating that for j = 0,1, v; is the first end-point of e;. Each 2—face has an
induced branching, and a b—orientation, which is just compatible with that of two
edges on the boundary. For exactly two 2—faces the b—orientation and the boundary
orientation are the same, where the boundary orientation is oriented via the convention:
last in the ingoing normal. The b—orientation of A coincides with the given one if
the bh—orientation of §3 looks anti-clockwise from v3. We give A and each 2—face §
a b—sign *; and ¢(§), which is 1 if the given and the boundary orientations agree,
respectively, with the h—orientation, and —1 otherwise.

The hyperbolic structure is encoded by the cross-ratio moduli that label the edges of A.

Recall that opposite edges share the same cross-ratio moduli. We set w = (wq, wi, wy)

with w; = w(e;) € C\ {0, 1}. Hence wj41 = 1/(1 —wj) (indices mod(Z/37)), and
wo = (v2 —v1)(v3 — o)/ (v2 — Vo)(v3 — V1).

We say that the Z—tetrahedron (A, b, w) is nondegenerate if it is of nonzero volume,
that is if the imaginary part of each w; is not zero; then they have the same sign
*y = E1.

It is very convenient to encode (A, b, w) in dual terms. In Figure 1 we show the
1—skeleton of the dual cell decomposition of Int(A) (the indices i, j, k and [/ are
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considered below). Note that an oriented edge of this 1-skeleton is outgoing exactly
when the b—sign of the dual 2—face is 1, and that the over/under crossing made by
these edges also encodes the h—sign of the tetrahedron (see [4, Section 2.1.2] for more
details).

Figure 1: Z-tetrahedra and dual encoding

A flat/charged T—tetrahedron is an Z—tetrahedron equipped with a flattening f and a
charge c, two notions first introduced by Neumann [23; 24]. Flattenings and charges
are Z—valued functions defined on the edges of A that take the same value on opposite
edges and satisfy the following properties, respectively (where log has the imaginary
part in | — 7, 7]):

(F) Flattening condition: 1y +1; + 1, = 0, where
-1 1j =1(b,w, f) = log(w;) + ~/—1x f;,
(C) Charge condition: cy+c1+c =1.
We call 1; a (classical) log-branch. For every odd N > 1 we define the (level N )
quantum log-branch as
2-2) Ijn = log(w;) + vV=Tx(N + 1)(f; — #5¢;).

The bijective map

2-3) (lo.11) —> (wo: lo —log(wo) 1y —log(wl))

V=lr = =1z
yields an identification of the set of log-branches on (A, b) with the Riemann surface
C of the maps

(2-4) Pe,e't Wo > (log(wo) +em \/—_1 log((1— wo)_l) +én \/__1)
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where ¢, ¢’ € {0, 1} (there are four connected components). The space C is a maximal
abelian covering of C\ {0, 1}, and is explicitly given by

C=@x7%/)~
where ® := C\ ((—o00;0) U (1; +00)), and

(x+i0;p,g) ~(x—i0; p+2,q) if x € (—o0;0)
(x+i0;p,g) ~(x—i0; p,g+2) if x e (1;400).

Similarly, the set of triples (wg, w, w}) with w; =exp(l; y/N) gets identified with
the covering Cp of C\ {0, 1} obtained by taking the quotient of C with the subgroup
NZ x NZ of the deck transformations.

The space Cis isomorphic to the moduli space of similarity classes of triangles in the
complex plane, each corner being endowed with a lift to R of one of the two dihedral
angles between the corresponding pair of edges.

The key geometric object on C is the smooth tangent 2—vector Q € A2T C given by
(see Choi [12])

(2-5) Q(dlog(z),dlog(1—z)" 1 =1.

Here we regard d log(z) =z~ 'dz as a covector on R?, and similarly for d log(1—z)!
and d log(1 —z~1). These covectors are never zero, and

(2-6) dlog(z) +dlog(1—z) ' +dlog(l—z"1H =0
is the only relation that they satisfy over R. Denote by w the dual 2—form:

w = dlog(z) Adlog(l —z)~!
— 2 (Re(1/2)Im(1/(1 —2)) —Im(1/2)Re(1 /(1 —2))) dx A dy,

where z = x + iy, and consider the complex analytic 1-form given by
1
2-7) 0= 3 (lod1y —11d1y),

with 1g and 1; as in (2-1). Because of (2—-6) and the flattening condition, 6 and w are
invariant under any orientation preserving change of the branching of (A, ), and they
turn to the opposite under a reversing orientation one. The form w is nondegenerate
whenever Im(z) # 0, and is compatible with the usual complex structure on C. The
hermitian metric of the corresponding Kihler structure is ds? = |z|?|dz|?/Im(z/(1 —

z)).

The form w is the differential version of the extended complex Dehn invariant of [24].

Algebraic € Geometric Topology, Volume 7 (2007)



852 Stephane Baseilhac and Riccardo Benedetti

2.1.2 Matrix dilogarithms The matrix dilogarithms are tensor-valued maps
Ry: {AD,w, f,¢)} — Aut(CY ® CVY)

defined on flat/charged Z—tetrahedra, which form a family {R n} indexed by the odd
positive integers N . In fact R is scalar-valued and is obtained from the classical
dilogarithm functions; we consider it formally as a 1 by 1 matrix. For each branched
tetrahedron (A, b) thetensors Ry (A(b, w, f,c)), N >1, deﬁne amap on the Riemann
surface C N, while R (A, b) is defined on the covering C.

In this section we collect formulas for {R 5 }. We denote by log the natural logarithm,

which has the imaginary part in | — 7, 7].

The classical matrix dilogarithm (N = 1) Following Neumann [24], consider the
map R: C — C/m%Z given by

R(z: p.q) = 2/0 (1og(l —1) log(t)) 1

{ 1—1¢
(2-8) 2

i T
+ 7(1? log(1 —z) +¢log(z)) — <

By setting p = g = 0 we recover the classical Rogers dilogarithm function (shifted by
—12/6 so that R(1) = 0), which is complex analytic on C\ (—oo; 0) U (1; +00). We

can write
2 (z:p.9)
R(z;p,q)=—?—/ ¢
0

where the 1-form 6 is as in (2-7) and the integration is along any path in C from 0 to
(z;0,0), say, and then (z;0,0) to (z; p,q). The relation with hyperbolic volume is as
follows: for any oriented hyperbolic ideal tetrahedron A with cross-ratio moduli z,
1/(1—=z) or 1 —1/z we have

1
Im(R(z: p.q)) —Vol(A) = 5 (log |z|(arg(l —2)"" +qm) + (arg(z) + pr) log |1 —z)).

The right-hand side is related to the “imaginary part” of the complex Dehn invariant
(see Neumann [24] or Dupont and Zickert [13] for details).

The map R: C— C/n27 is holomorphic, and lifts to a map with values in C/27%7Z
on the component with even-valued flattenings [24, Propositions 2.5-8.1]. We define
the classical matrix dilogarithm R; of flattened Z—tetrahedra (hence without integral
charge ¢) by

(2-9) Ri(A.bow, f) = exp( Rwo: fo. fl)).

*p
A/ —1
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Note that *;R(wo; fo, f1) is invariant under any change of the branching b, up to the
addition of integer multiples of 72/6 [4, Section 4.2].

The quantum matrix dilogarithms (N > 1) These depend on a primitive N —th
root of unity ¢, with N odd, that we fix once and for all as { = exp(2in/N) (see
Remark 2.1).

Consider the complex-valued function g given by (we put x'/V = exp(log(x)/N)
and 0'/N = 0)

N-1

(2-10) g(x):= l_[ (1—x¢7)IIN

j=1

and set h(x) := g(x)/g(1) (we have |g(1)| = N 1/2). It is analytic on the cut complex
plane C\{r¢* r>1,k=1,..., N—1}. Forany u’, v’ €C satisfying (u’)N +(v)N =1
and any n € N, let
/ / “ v,
w(u',v'n) = 1_[ i
j=1

with w(u’,v’|0) = 1 by convention. The functions w are periodic in their integer
argument, with period N . Write [x] = N~!(1 —x")/(1 — x). Given a flat/charged
T—tetrahedron (A, b, w, f,c), set

(2-11) w; =exp(l;,n/N)

with 1; n as in (2-2). Put the standard tensor product basis on CN ® CV. The matrix
dilogarithm of level N > 1 is the tensor-valued function of flat/charged Z—tetrahedra
defined by

N—1

(2-12)  Ry(A.b,w, fre) = ((wp) ™ (w)®) 7 (Ln)™ (wp, (w))™")
e Aut(CV @ CN)
where LG V)gh = hu'y IR 00! i — k) 8+ j —1)
(Ln ' v = T pil=mt1)i2 S(k+1—J)

KL (' o' /¢ vk —1)

Here we put m = (N —1)/2, and § is the Kronecker symbol with period N, that is
d(n) =1if n =0 mod(N ), and §(n) = 0 otherwise. Note that we use the branching
in order to associate an index among i, j, k and / to each 2—face of A. The rule is
shown in Figure 1.
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By using properties of the functions g and w [4, Lemma 8.2 and Lemma 5.4] we can
write the matrix dilogarithm entries in various ways. For instance we have
_ -’- ( /;-i—k) . 2 . _ . .
(EN)(U)Z)’ (w/l) 1)2{[ — g(“;o(—)l) g-k]-i-(m-i-l)(k +(k—i)(f1—c1)) S+ j—1)
/ Y k—i _ _ . .
= S0 OIS ()™ —wig?" ) 86+ —1)

where g = —¢™*1 = exp(+~/—17/N). Note the main role played by the function g in
the first expression, while the second shows a polynomial in ¢.

Because w]/ = exp((1/N)(1; — *pmicj))exp((fj — *pcj)mi) and the parity of f;
is unaltered when we move /; continuously, the entries of Ry (A, b, w, f,¢) define
holomorphic functions on C (whence on ® N ), up to multiplication by N —th roots of
unity coming from the discontinuities of g along the cuts {r{k, r>1,k=1,...,N—1}.

The map R also satisfies some sxfmmetry properties, with a sign ambiguity coming
from the factor ((wg)~*! (u/l)c")( ~1/2 and the relation wyw|w) = —¢ oD,
and an N root ambiguity due to the branch cuts of the function g in (2-10); see

[4, Proposition 5.3 and Corollary 5.6].

Remark 2.1 The choice ¢ = exp(2iw/N) is the one used in our previous papers
[3; 4]. However, the matrix dilogarithms satisfy the very same fundamental properties
(stated in Sections 5 and 8 of [4]) by replacing ¢ with any primitive N —th root of unity
tqg =exp(2din/N) if we simultaneously put wj/. =exp(dlj n/N) in (2-11). In fact
there is no other possibility for w; : the inversion formula of R takes the same form
at the root ¢4 [4, Proposition 8.6], so that the symmetry relations of Ry are satisfied
only if wyw]w) = —é‘;*b(mﬂ) (see the computation at the top of p 528 of [4]). This,
in turn, implies w; = exp(dlj n/N). (Another instance of this argument is detailed at
the bottom of p 532 of [4]).

Matrix dilogarithms via geometric quantization The quantum matrix dilogarithms
were derived in the appendices of [3; 4] from the Kashaev’s 6j-symbols of the cyclic
representation theory of a Borel quantum subalgebra B; of Ug(s/(2,C)), where { =
exp(2im/N). Let us outline here very briefly an alternative construction based on the
geometric quantization of the classical dilogarithm R, that may shed some light on
their geometric nature and the results of Section 3.3 and Section 5.4 (for details see
Baseilhac and Benedetti [5]).

Let us regard C as the Riemann surface of log, ie

C={(z; p) e C*x2Z}/((z+i0; p) ~ (z—i0; p+2), forall z € (—00;0)).
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Similarly as in (2-1), set 1(z; p) = log(z) + ~/—1mp. Consider the space
(2-13) X ={(u,v,w) € (C** | uvw = —1}
and put

X = {((w; p), (v;9), (w; r)) € C* | 1(u; p) +1(v; q) + (w3 r) = 0},
We can identify X with C* x C* and X with C2 via the first two coordinates. Define

by =dlogu Adlogv e A2O0T*X

(2-14) Ox = % ((I(u; p)d logv —1(v; q)d logu) € AVOT*X.

Note that the one-form Oy is holomorphlc and is a primitive of the lift of by to X.
Consider the connected component Co o of C with even-valued flattenings, ie the
Riemann surface of the map ¢g ¢ in (2-4). We have an embedding

@0’0 — X

(2-15) w; p.q) — ((u: p), (1 —u)"';q))

mapping @0,0 onto a submanifold of (AA’ ,bx) which is Lagrangian. In fact the re-
striction of by to this submanifold gets identified with the linear extension to the
complexified tangent bundle 7' (@0,0)@ of the symplectic form w on @0,0. Geomet-
rically, we can view X as the tangent space at the identity of the group of complex
plane similarities, the projective Borel group PB(2,C).

Consider an abstract oriented quadrilateral Q, triangulated by two triangles. Order the
triangles of Q, and associate to each a copy X;, i = 1,2, of the space X in (2-13),
where u, v and w correspond to the triangle corners, ordered cyclically by using
the orientation. Consider the quadrilateral Q’ obtained from Q by exchanging the
diagonal, and fix any ordering of its triangles. Denote by S 2 the 2—sphere obtained
by gluing Q and Q' along the boundary in the natural way Any triangle of S 2
uniquely determined by its vertex set, so the permutation group of the Vertlces of
S é acts naturally by permutation on the spaces X; attached to the triangles of S2,,
i =1,...,4. Moreover, on each triangle it permutes the coordinates.

Define bg = by, + by, and 0g = 0Oy, + Ox,, where by, and Oy, are as in (2-14) and
correspond to the space X;, and similarly for by, and 6. Note that they are invariant
under any even permutation of the vertices of Q and turn to the opposite under odd
ones. We regard (X L X Xa, bg) and (X 3 X X4, bg’) as complex symplectic spaces
attached to Q and Q’. Consider the family {¢Q}nez of maps

¢Q3 (X1 x X2.bg) —> (X3 x X4.bg)
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givenby ¢ ((1u1: p1). 1(v1:q1)). ((ua: p2).1(v2:42)))
= (A} p)): w13 g))), ((uh: 95), 1(v5: 95))),

where (see Figure 2)

{l(u’l;pﬁ) = (uy; p1) —1(u; p3)
1(v];97) = 1(vi;q1) +1(ua; p2)
(2-16)
{1(u/2§P/2) = W(uz: p2) = W(1 —uyv2)~"im)
1(v3:q5) = W(vasq2) +1(u; ph) +1(v1547)-

%) v

U U/ ,
U V1 uy vy

Figure 2: A diagonal exchange

Proposition 2.2 The maps ¢” are holomorphic, equivariant under the group of
permutations of the vertices of the sphere S?, and satisfy bo = (¢ Q)*bQ/ Moreover,
we have the pentagon relation

(2-17) 96,090, ° b, ° 95, °bp, =1dg

for any n; € Z, where Q; has diagonal the i —th edge exchanged in Figure 3, for the
positive cyclic ordering of the pentagons starting from the top left one.

The maps ‘;'é can be characterized as the unique (up to scalar factors) equivariant
holomorphic maps which preserve the sums of coordinates at the quadrilateral corners.
Geometrically, if X is a pleated hyperbolic punctured surface with pleating locus an
ideal triangulation A, and Q is realized as the abstract star of an edge of A, the maps
5’(’2 encode the change of tangent vectors at the exponential shear-bend coordinates of
the boundary edges of Q when we change the diagonal to get Q’, that is, when we
glue a flattened hyperbolic ideal tetrahedron to 3. We can see this (for instance in the
third identity in (2-16)) by noting that the diagonal of Q is associated a copy of the
space C, namely

Cluyvasm,n) = {0@u1; pr) +1(v2:g2), (1 —uyv2) "5 m))},
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Figure 3: The pentagon relation

where 7 is specified by ‘;’é and m = (log(uqv2) —1(u1; p1) —1(v2: 42))/~/—17. In
particular, the pentagon relation (2-17) corresponds to a 2 <> 3 QHG transit. The
choice of coordinates of the various spaces X; determines the branching, and the
integers n; in the 531 fix the transit of flattenings. In this setting no charge is needed.

Since bg — b’Q vanishes identically on the graph of a'é, the 1-form 0 — ((Z’é)*QQ/
should be locally the differential of some holomorphic function on X7 x X,. In fact
we easily check the following:

Lemma 2.3 We have 0 — (q;’é)*GQ/ = —dR, where R: @(ulvz;m, n) — C/2n%7
is the extended dilogarithm defined in (2-9).

The embedding (2-15) and the form by can be used to derive the combinatorial formulas
obtained in Papadapoulos and Penner [25] (see also Bonahon [8] and Bonahon and S6zen
[29]) for the Thurston’s intersection form, which is a complex antisymmetric bilinear
form on the shear-bend parameter spaces of pleated hyperbolic punctured surfaces. In
this setting 6y encodes the complex length differential form of [5, Section 11]. By
Lemma 2.3, 'R encodes the variation of the latter under shear-bend coordinate changes
induced by changes of the triangulation.

Consider the four copies of (2-15) corresponding to the X;, where we replace @0,0
with its quotient (@0,0) N, defined as at the end of Section 2.1.1, endowed with the
form Nw and its primitive N 6. We can apply the technics of geometric quantization
to produce an N —dimensional vector space 'V of holomorphic sections of a line
bundle over (@0 0)N » the coherent states. This construction behaves well with respect
to branchings if we use half forms, which are encoded by charges. Then, the maps
CDQ FN®FN — FN®FN induced by pull back via {d)Q} that is such that ®” (s) =
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S0 $’é for any s € Ffv ® I'N | coincide with the matrix dilogarithms Ry for some
suitable basis of the FI.N .

Hence the matrix dilogarithms relate the sections of some line bundles over spaces of
cross-ratios. In this setting the flattenings have to do with the coordinates on the base
space, while the charges have to do with the sections.

2.2 QHG triangulated pseudomanifolds

We restrict the discussion to pseudomanifolds for simplicity, but all what follows makes
sense for arbitrary singular 3—cycles whose nonmanifold locus is of codimension > 2.
By a pseudomanifold Z, possibly with nonempty boundary dZ, we mean a compact
oriented polyhedron with at most a finite set of nonmanifold points. The boundary is a
pseudo-surface.

A QHG triangulated pseudomanifold (Z,7T) is a pseudomanifold Z obtained as the
quotient of a finite family Z = {(A’, b, w’, f*,c")} of flat/charged Z—tetrahedra, via
a system of orientation reversing simplicial identifications of pairs of 2—faces such
that the branchings match. The resulting triangulation 7" of Z is endowed with a
global branching b, and is possibly singular (multiple adjacent as well as self adjacent
tetrahedra are allowed). The set of nonmanifold points of Z is contained in the set of
vertices of 7. We do not impose for the moment any global constraint on the moduli,
flattening and charges. Hence Z is equipped with a rough flat/charged I —triangulation
T =(T.b,w, f.c), where w = {w’} and so on.

Next we define the QHG triangulated pseudomanifold isomorphisms. Fix a QHG
triangulated pseudomanifold (Z,7), and let e7: E(Z) — E(T) be the identification
map of edges. We define the fotal modulus, log-branch and charge of an edge e,
respectively, by:

Wre)= [[ wh*

hea;l(e)

(2-18) Lr(e)= Y =31(h)
hee;l(e)

Cre)= Y_ c(h)
hee;l(e)

where x, = +1 according to the h—orientation of the tetrahedron in Z that contains
h, w(h) is the cross-ratio modulus at /2, /(%) the log-branch at /, and c¢(/) the charge
at h.
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Remark 2.4 Tt is easily seen that Wy (e) is a cross ratio for the four “extremal” points
on dH? determined by gluing oriented hyperbolic ideal tetrahedra with moduli w (/1)*®
along a common edge (by continuity Wr(e) = 1 for a degenerate quadrilateral with
three distinct vertices).

It is known that any two arbitrary naked triangulations 7', T’ of Z with the same
boundary triangulation can be connected (keeping the boundary triangulation fixed) by
a finite sequence of the local moves shown in Figure 4, the 2 <> 3 move (top) and the
bubble move (bottom) (see Turaev and Viro [33, Theorem 3.2.A and Appendix 2]). The
bubble move consists in replacing a 2—simplex by the cone on a 2—sphere triangulated
by two 2—simplices.

Figure 4: The moves on naked singular triangulations

For any such a local move T <> T’ we have two triangulations of a same portion of a
polyhedron Q. Assume that both 7" and 7" extend to portions (Q,7) and (Q,7’) of
QHG triangulated pseudomanifolds. We have to specify the admissible QHG transits
7T <> T'. In any case we require that they are local (that is, the portions complements
remain unchanged), and that the branchings coincide at every common edge of 7" and
T.

For the 2 <> 3 move we also require that at every common edge e as above the total
modulus, log-branch and charge coincide:

(2-19) Wr(e) =Wri(e), Lz(e)=Lg(e), Cr(e)=Cr(e).
It is easily checked that there is one degree of freedom for choosing flattenings or

charges after a 2 — 3 transit.
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The same rule restricted to the total modulus and total log-branch holds also for the
bubble move; however, the total charge behaves in a different way: any bubble transit
T <> 7' includes a marked edge ¢ common to 7 and 7’. Referring to the bottom of
Figure 4 we require that C7(e) = C7(e) — 2, while for the other two common edges
the total charges are unchanged.

Remark 2.5 For every QHG transit supported by a 2 <> 3 move (top of Figure 4), if
Eq denotes the new edge in 7" then

(2-20) Wr(Eo) =1, L1/(Eg) =0, Cr(Ep) = 2.

For every QHG bubble transit, let f” be the unique new 2-simplex of 7 that contains
the marked edge ¢. Denote by E; and E, the other edges of f’, and by E; the
further new edge of T"’. Then we have

2-21) WT/(EJ')=1, LT/(Ej)=0, j=12,3
Cr(Ey) =Cr(E2) =0, Cr(E3) =2.

Definition 2.6 A QHG isomorphism between QHG triangulated pseudomanifolds is
any finite composition of QHG transit and oriented simplicial homeomorphisms that
preserve the whole decoration.

2.3 QHG universal functor

For every odd N > 1, we associate to every QHG triangulated pseudomanifold (Z,7)
a trace tensor Hy(7), as follows. Define an N —state of T as a function that gives
every 2—simplex an index, with values in {0,..., N — 1}. Every N —state determines
an entry for each matrix dilogarithm Ry (A, b, w, f,c). As two tetrahedra induce
opposite orientations on a common 2-face, an index is down for the R of one
tetrahedron while it is up for the other (see Figure 1). By summing over repeated
indices we get the fotal contraction of the tensors {Rn (A, b, w, f,c)}, that we denote

—I]—VACTRN(A,b, w?ﬁc) = ZS HACTRN(A’b’ w, f»C)S

where the sum is over all N —states of 7" and Ry (A, b, w, f, ¢)s stands for the matrix
dilogarithm entry determined by s. Let vy and vg be the number of vertices of 7'\ 0T
and 07, respectively, that correspond to manifold points. We set

(2-22) Hy(T) = N~Ws/209D Tp) o RN (A, b, w, fc)

The type of a trace tensor H (7)) depends on the h—signs of the boundary triangles
of (T, b). The matrix dilogarithms themselves are special instances of trace tensors.
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When N = 1, denoting by (Ai, b wi, fi, ci) the flat/charged Z—tetrahedra of 7, we
can write (2-22) as
HN(T) = [ Ru(A 0w, 17,6
AiCT

(2-23) 1 o
:exp( Z*bin(wg;fg,f;)).

V-l AiCT

We have the following:

Proposition 2.7 The trace tensors Hy (7) and Hy (7') of QHG isomorphic triangu-
lated pseudomanifolds (Z,T) and (Z,7’) coincide up to sign and multiplication by
N —th roots of unity.

This result is a restatement of Theorem 2.1 (2) and Lemma 6.7 of [4], and summarizes
the fundamental functional relations satisfied by the matrix dilogarithms. In particular
those corresponding to 2 <> 3 QHG transits are usually called five terms identities. In
Figure 5 we show one instance in dual terms. The normalization factor N ~%! in (2-22)
is due to the bubble move, that changes by 1 the number of internal vertices.

Figure 5: A 2 <3 QHG move (x; = y/x, x, = y(1—x)/x(1 —y), and
x3=(1-x)/(1-y))

Remark 2.8 It is shown in [4, Section 5.2] that the quantum matrix dilogarithms
satisfy “nice” symmetry relations only when wywjw), = —¢ —*»(m+1) This, in turn,
forces the use of flattenings and charges for defining the N —th root moduli in (2—-11).
On another hand, the symmetry relations are needed for the whole set of five term

Algebraic € Geometric Topology, Volume 7 (2007)



862 Stephane Baseilhac and Riccardo Benedetti

identities to be true [4, Section 5.3]. A more intrinsic but equivalent way to see the
role of charges should be via half-form geometric quantization, as mentioned at the
end of Section 2.1.1.

Remark 2.9 The ambiguities in Proposition 2.7 are consequences of the symmetry
relations satisfied by the matrix dilogarithms (see before Remark 2.1). We will show in
Proposition 2.16 how the sign ambiguity can be gauged out. It could be that the N root
ambiguity can be removed by working on the Riemann surface of the function g in
(2-10) and using Maslov indices, but the authors have not tried this yet.

The notions of “boundary” (also allowing only portions of the standard boundary —
see eg Turaev [32]), bordism, and bordism gluing are well defined for the category of
QHG triangulated pseudomanifolds considered up to QHG isomorphisms. Hence the
association of the trace tensor to each bordism defines a functor. The normalization
factor N ~v8/2 in (2-22) compensates the change in the number of internal vertices
when gluing along complete connected components of the (usual) boundary (this is
easily adapted to more general gluings).

Any bordism is the gluing of flat/charged 7—tetrahedra, considered as elementary
bordisms between the couples of 2—faces having h—sign equal to —1 or +1. The
matrix dilogarithms can be interpreted as the amplitudes of a diagonal exchange that
relates two quadrilateral triangulations (recall the above discussion about the geometric
quantization derivation of matrix dilogarithms.)

2.4 Towards geometric specializations

The category of QHG triangulated pseudomanifolds is built ad hoc on the functional
properties of the matrix dilogarithms. In order to eventually get specializations with a
geometric content, such as QHFT, it is necessary to refine more and more our rough
flat/charged Z—triangulations. In fact we have to impose some global constraints that
would be preserved by (possibly refined) QHG isomorphisms. It is useful to recall at
once some of these refinements, and related matter. We adopt the notation introduced
above.

Definition 2.10 A triple 7 = (T, b, w) is an Z—triangulation if at each edge e not
contained in d7 we have the edge compatibility relation Wz (e) = 1. We say that
T =(T,b,w, f) is a flattened T—triangulation (and [ a global flattening) if moreover
Lz(e)=0.
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It is easily seen that the collection of cross-ratio moduli of an Z—triangulation 7 of
a pseudomanifold Z defines a PL pseudo developing map d.: 7 — H3, unique up
to post composition with the action of PSL(2,C), and a holonomy representation
h: ,(Z)— PSL(2,C) suchthat d(y(y)) =h(y)(d(y)) forevery y €1 (Z), y€ Z.

Our main tool for producing 7 —triangulations is the following idealization procedure:

Definition 2.11 Let 7 = (T, b, z) be a branched triangulation of a pseudomanifold
Z equipped with a PSL(2,C)—valued 1—cocycle z, where the cocycle relation is
z(eg)z(e1)z(e2)~! =1 on a branched triangle with edges eg, e; and e,. A 3-simplex
A of (T, b, z) with vertices xg, X1, X2, X3 is idealizable if

(2-24) ug =0, uy = z(x0x1)(0), uzy = z(x9x2)(0), uz = z(x0x3)(0)

are four distinct points in C C CP! = 9H?. The convex hull is a hyperbolic ideal tetra-
hedron with ordered vertices, denoted (ug, u1, 4, u3). Let us give each edge e of A
the cross-ratio modulus w(e) € C\ {0, 1} of the corresponding edge in (uq, 11, Uz, U3),
and put w = (wg, wy, wy) € (C\ {0, 1})3. We call (A, b, w) the idealization of
(A, b, z). If all 3—simplices of (T, b, z) are idealizable we say that 77 = (T, b, w) is
the idealization of T .

Note that the idealization includes the choice of a base point (ie 0 in Definition 2.11;
we make this choice once for ever). The idealization of each single 3—simplex strongly
depends on this choice, but taking a different base point is equivalent to conjugating the
cocycle z. Not all branched triangulations support idealizable cocycles (for example an
ideal triangulation of a knot in S only supports the trivial constant cocycle). However,
when it exists we have:

Lemma 2.12 [3, Section 2.4] The idealization 77 is an T —triangulation of Z .

The following fact will be important below (a version of it was implicitly used in [3];
see (3), Lemma 2.12 and Section 3.2 in that paper):

Lemma 2.13 The idealization Tz is canonically flattened by taking for each 3 —simplex
the log-branches (with the notation of Definition 2.11):

lo :=log(uz —uy) + log(us) —log(uz) —log(uz —uy)

1y :=log(uz) + log(usz —uy) —log(uy) —log(us —us)

1, :=log(us —uz) +log(uy) —log(usz) —log(uz —uy).
Moreover, canonical flattenings are related by QHG transits, and replacing at each edge
of I the standard log with any other log determination still makes it flattened.

Algebraic € Geometric Topology, Volume 7 (2007)



864 Stephane Baseilhac and Riccardo Benedetti

Proof These expressions are just signed sums of the standard logs of the edge vectors in
the cross-ratio moduli wo = (uy —uq)usz/uy(uz—uy), wy =uy(us—u1)/uy(us—uy)
and wy, = —(u3 —uy)uy/(uy —uy)us. They clearly define triples of log-branches. The
idealizations for two distinct branchings with the same b—orientation are related by an
element in PSL(2,C), that is, a conformal transformation of CP'. We deduce that
triples (lp,17,1,) are invariant under a change of branching, because the angle formed
by any pair of vectors is preserved (for instance #, —u; and u;, or u3 and uz —uq).
Then, the edge compatibility relations L7 (e) = 0 follow easily by developing the
tetrahedra around e with branchings such that e = ¢(, similarly as for Lemma 2.12.The
last claim is a straightforward checking: in particular note that any log correction
appears for each 3—simplex in two distinct 1;, with opposite signs. O

Remark 2.14 The canonical flattening is even-valued, in the sense that it takes values
in 27 on the edges ep and e; of each 3—simplex (compare with (2-3)). Note that a
general QHG transit need not preserve even-valued flattenings, though a subfamily
does (see the comment after (2-19)). This subfamily generates the five term relations
defining the “more” extended pre-Bloch group of [24, Section 8] (see also [13]).
In fact, by the discussion after Theorem 2.20 below, general flattenings on a given
T —triangulation form affine spaces over an explicitly known integral lattice, while
even-valued flattenings form affine spaces over a sublattice of finite index 2"!, where
n1 is the number of interior edges.

Remark 2.15 The authors see no way to define a notion of canonical charge. In fact
such a notion would contradict the need of half forms to construct the quantum matrix
dilogarithms via geometric quantization.

Proposition 2.16 The statement of Proposition 2.7 holds true with no sign ambiguity
if the flattenings of both T and T’ are even-valued as in Remark 2.14.

As noted in [4, p 532], there is no sign ambiguity for any flattening whenever N = 1
mod(4) and N > 1.

Proof By Lemma 6.7 in [4], the result for QHG bubble transits is a consequence of that
for 2 <> 3 QHG transits. There is a preferred “basic” 2 <> 3 QHG transit for which even-
valued flattenings give no sign ambiguity in Proposition 2.7 (see the proof of Theorem
5.7 in [4] for N > 1, and Proposition 2.5 and the Appendix in [13] for N = 1). The
corresponding branching configuration is defined by ordering the vertices as 1 and 3 on
the bottom and top of the central edge, and 0, 2, 4 counterclockwise as viewed from
the 3rd vertex. Since all the possible branching configurations of 2 <> 3 QHG transits
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are obtained, up to obvious symmetries, from the basic one by applying any of the
transpositions (01), (12), (23) or (34) of the vertices, we have to check how any such
a transposition changes the matrix dilogarithm of each tetrahedron. By Corollary 5.6 of
[4], when N > 1 this action is by matrix conjugation and multiplication by a determined
scalar factor. These scalar factors come from the terms ((wo) 1 (w] )CO)(N /2
(2-12), and the relation w —¢7*0m+1) They are described in the following
table, where v = exp(\/Ln(l — N)/ZN) =(— §m+1)(N /2 and the tetrahedron
A is opposite to the i —th vertex, with charge values ¢}, at the edges:

AV A3 A | AZ | A%

O o [v5 | o |vd|v%

(12) || 0 | v (v | 0 |4

23) || v | 0O vl | 0 | v

(34) [ v | 0 || w0 | v | 0

The last equation in (2-19) shows that the scalars at both sides of each row are equal.
A similar table leading to the same conclusion can be written for N =1 [4, p 519].
This concludes the proof. |

Distinguished flat/charged 7 —triangulations Given an arbitrary nonempty and prop-
erly embedded tangle L in Z, we say that (T, H) and 7 = (T, H, b, w, f,¢) are
distinguished if H is a subcomplex of the 1—skeleton of T isotopic to L and passing
through all the vertices that are manifold points, and containing no singular vertices
(we say that H is Hamiltonian).

Definition 2.17 A distinguished Z -triangulation 7 = (T, H, b, w, f, ¢) is flat/charged
if f is a global flattening, and

0 ifecH

(225 Crle) = { 2 ifec T\ (HUJT).

In such a case c is called a global charge.

The existence of global flattenings of an arbitrary Z—triangulation with empty boundary,
and of global charges (such that Cr(e) = 2 at all edges ¢) on any topological ideal
triangulation of an oriented 3—manifold whose boundary consists of tori, was proved
by Neumann in [24, Section 9; 23, Section 6]. This last result is easily adapted to the
existence of global charges on distinguished triangulations (7', H) [3, Theorem 4.7].
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We have to refine the QHG isomorphisms in order to deal with distinguished flat/charged
T —triangulations. First we have to incorporate the Hamiltonian tangles into the bare
moves. Any positive 2 — 3 move T — T’ naturally specializes to a move (7, H) —
(T’, H'); in fact H' = H is still Hamiltonian. For positive bubble moves, we assume
that an edge e of H lies in the boundary of the involved 2—simplex f'; then e lies in
the boundary of a unique 2—simplex f’ of 7’ containing the new vertex of 7”’. We
define the Hamiltonian subcomplex H’ of T just by replacing e with the other two
edges of f’. The inverse moves are defined in the same way; in particular, for negative
3 — 2 moves we require that the edge disappearing in T belongs to 77\ H’. The
2 <> 3 QHG transit specializes verbatim. For the bubble transit we just impose that
the marked edge e (see Section 2.2) coincides with the above edge of H . Thanks to
(2-20) and (2-21) we see that distinguished flat/charged Z—triangulations are closed
under such refined QHG transits.

Remark 2.18 The residue mod (2+/—17N) of the classical log-branches of a flattened
7 —triangulation are equivalently given by N —th roots w’(%) of the cross-ratio moduli
w(h) such that w’(eq)w’(es)w’(e3) =1 ateach 3—simplex and ]—[hee;l(e) w/(h)*r =1
at each edge, with the notation of (2—-18). For level N quantum log-branches of
distinguished flat/charged 7 —triangulations this is replaced with

w'(en)w’ (e2)w’(e3) = exp(— *p v/—17/N)

1 ifeCH
/ *p —
and 1_[ w'(h) { exp(—2+v/—1x/N) otherwise.

hee;l (e)

Cohomological weights and the structure of flat/charges Given an Z—triangulation
T = (T, b, w) without boundary, let Ty be the boundary of an open cone neighborhood
of each O—simplex. This is a disjoint union of triangulated closed oriented surfaces, the
links of the vertices in 7. To each flattening f of 7 aclass y(f) € H'(3Ty;C) is
associated as follows. Represent any integral 1-homology class a of a7 by “normal
paths”, that is, a disjoint union of oriented simple closed curves transverse to the
triangulation and such that no component enters and exits from the same face of a 2—
simplex. Such a curve selects a vertex for each 2—simplex. The value ¥ ( f)(a) is defined
as the signed sum of the log-branches of the edges ending at the vertices selected by «.
For each vertex v the sign is *; if the path goes in the direction given by the orientation
of T, as viewed from v, and —#j otherwise. Using the flattening condition F in
Section 2.1 and the edge compatibility relations of Definition 2.10 it is easily checked
that y (f)(a) does not depend on the choice of normal path representative, and maps
unessential loops to zero. Hence y (/) assigns a complex-valued “winding number” to
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integral 1-homology classes on d7}, and eventually defines a cohomology class in
H'(dTy; C). Similarly we can define y,(f) € H'(Ty;Z/27) by using normal paths
in Ty and taking modulo 2 sum of the flattenings we meet along the paths. Assume now
that 07T is a union of tori. By replacing the log-branches with the charges and setting
xp = 1, the same procedure defines an integer—valued map y(c) on the set of essential
oriented simple normal loops. Let us extend y (¢) by mapping every unessential normal
loop to 0 (in spite of the fact that the procedure itself would give the value £2 on such
a small loop about a vertex of 07 ). Because of the charge condition C in Section 2.1
and the edge compatibility relations (2-5), we can prove that this eventually defines a
class y(c) € H'(0Ty; Z). By replacing the flattenings with the charges we can also
define y»(c) € H' (Ty:Z2/27).

Definition 2.19 (Weights) The pairs (y(f), y2(f)) € H'(3Ty; C) x H(Ty:Z/27)
and (y(c),y2(c)) € HY(0Ty:Z) x H'(Ty;Z/27) are called the (cohomological)
weights of f and c, respectively.

In [23, Section 4] (and [24, Section 9]), Neumann defines an integral chain complex J
from which the global charges are derived. The maps y and y, above are well-defined
on the third homology group H3(J) and satisfy:

Theorem 2.20 [23, Theorem 5.1] The sequence

0— Hy(7) X B (To:2/22) @ H' (9T0: 7) = H'(0Ty: 7/27) — 0
is exact, where r: H'(0Ty;Z) — H'(0Ty:Z/27) is the coefficient map and the map
i*: H'(Ty;2/27Z) — H'(dTy; Z/2Z) is induced by the inclusion 0Ty — Ty .

It is easy to check that the weights (/i¢, kc) = (y2(c), y(¢)) of a global charge ¢ satisfy
r(ke) = i*(he). Conversely, by using Theorem 2.20 it can be shown that for any
pair (h,k) € H'(Ty;Z/27) x H'(3Ty; Z) such that r(k) = i*(h) there exist global
charges ¢ such that (4., k) = (h, k) (see Neumann [23, proof of Lemma 6.1]). This
fact extends to log-branches as follows. Let y’(a) be defined as y ( f)(a) above, except
that for each 3-simplex the log-branches are replaced with the natural logs of the
cross ratios. In fact y’ € H'(8Ty: C/2+/—17Z). It can be checked that y'(a) is the
logarithm of the derivative of the holonomy of a (a similarity), up to multiples of
2+/—17. Then, any pair (A, k) in the product H'(Ty;Z/27) x H'(3T,; C) such that

k(a) = y'(a) mod(~/—17), for all a € Hy(3Ty; Z)

(2-26) { (k(a) — y'(a))/~—1x = i*(h)(a) mod(2), for all a € H,(3Tp; Z)
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is a weight for some flattening. For instance, when y’(a) € 2+/—1xZ for all a the first
condition means that k is integral.

Finally, the structure of the spaces of flattenings and integral charges is given by
Theorem 2.4 in [23]. For each fixed weight (%, k) they form an affine space over
an integral lattice. Generators have the following combinatorial realization: for each
3—simplex in the star of an edge e, add 41 to the flat/charges of one of the two other
pairs of opposite edges, and —1 for the other pair, so that the total log-branches or
charges stay equal everywhere. In particular, for flattenings of an idealization 77 any
generator is obtained by adding +1 to the log determination at some edge. Hence any
flattening of 77 inducing the weight of the canonical flattening of Lemma 2.13 differs
from it as described in the statement.

We note that the above refined QHG isomorphisms preserve the weights; see eg
[3, Lemma 4.12]. The difference in considering global flattenings or charges with
different mod(2) weights in H'(Ty; Z/2Z) seems to carry not so essential information;
see Theorem 5.4 and Remark 5.6. This contrasts with boundary weights in H'(37p; C),
which play a key role in surgery formulae; see [24, Theorems 14.5 and 14.7] and
Section 6.2. We note that a process involving 2-handle surgery allows to define
explicit isomorphisms between lattices of flat/charges with different boundary weights
[24, Section 11, p 457].

3 Parameters for PSL (2, C)—characters of surfaces

Fix a compact closed oriented surface S of genus g with a nonempty set V =
{vi,..., v} of marked points, and negative Euler characteristic x(S \ V) < 0. Denote
by 7 the fundamental group of S\ V, and by

R(g,r) =Hom(xz, PSL(2,C))/PSL(2,C)

the set of all conjugacy classes of PSL(2,C)—valued representations of . The group
7 is free of rank k = 2g +r — 1. Any choice of free generators of m identifies
the set Hom(w, PSL(2,C)) with PSL(2,C)*. Different such identifications are
related by algebraic automorphisms of PSL(2,C)*. Moreover, the isomorphism
PSL(2,C)=S0(3,C) induced by the adjoint action Ad: PSL(2,C)— Aut(s/(2,C))
implies that Hom(r, PSL (2, C)) is an affine complex algebraic set, with the complex
algebraic action of PSL(2,C) by conjugation.

As the rough topological quotient space R(g, r) is not Hausdorff, it is more convenient
to consider the algebro-geometric quotient

X (7r) = Hom(xr, PSL(2,C))// PSL(2,C)
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of invariant theory, called the variety of PSL(2,C)—characters (see eg Heusener and
Porti [19]). Recall that X (;r) is a complex affine algebraic set such that there exists a
surjective regular map

t: Hom(mz, PSL(2,C)) — X ()

inducing an isomorphism ¢* between the regular functions on X(7r) and the regular
functions on Hom(sr, PSL(2,C)) invariant by conjugation. In general #(y) = (o)
does not imply that y and o are conjugate, but this is true if we restrict to irreducible
representations: we have Hom™ (7, PSL(2,C)) = t~1(X™(x)), where X'™(7) =
t(Hom'™ (7, PSL(2,C)), so that the (restricted) rough quotient R(g,r)™ and the
algebraic quotient X'™(7r) coincide.

We can deal with the whole of R(g,r) to construct the QHFT. Hence below we
treat the complex dimension of subsets of R(g,r) somewhat formally, as everything
can be substantiated in terms of X (i), or by restriction to X™(xr). For instance,
as PSL(2,C) has trivial center and complex dimension 3 we say that the complex
dimension of R(g,r) is 3k —3 = =3x(F).

3.1 Efficient triangulations

Fix a surface F with r boundary components, obtained by removing from S the
interior of small 2—disks D; such that v; € dD;. The boundary of F is oriented via
the convention: last is the ingoing normal.

A triangulation 7" of S with the set of vertices equal to V is called a topological
ideal triangulation of S\ V. Given such a T’, we need a marking of corners of
the 2—simplices. The best suited for 3—dimensional extension are induced by global
branchings b’ of T’, and it is known that pairs (7’,b") always exist. Then, as in
Section 2, we have a sign function 0 = o7~ py. A corner map v > ¢, associates to
each vertex v of T the corner at v of a triangle, say 1, in its star. We say that v > ¢,
is t—injective if v — t is injective.

Lemma 3.1 For every (g,r) # (0, 3), every triangulation T’ of S with r vertices
admits t —injective corner maps.

Proof For (g,r) = (0,4) or g > 0 and r = 1, it is immediate to construct such a
triangulation. Subdividing a triangle by taking the cone from an interior point preserves
the existence of ¢—injective corner maps. By induction on r we deduce that for every
(g,r) # (0, 3) there exist triangulations of S as in the statement.

In Figure 6 the corner selection is specified by a *, and the rows show all the possible
flip moves on triangulations of S, up to obvious symmetries, that preserve the injectivity
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of corner maps. Consider triangulations 7”7, T” of S with r vertices, such that 7"
supports a 7—injective corner map. It is well known that 7" is connected to 7’ via a
finite sequence of flips. The ¢—injective corner map for 7" yields a ¢—injective corner
map for 7"’ by decorating these flips as in Figure 6. |

L <
P <
< <=

Figure 6: The flips with marked corners

There are no obstructions to use arbitrary corner maps in what follows. Specializing
to injective ones just simplifies the exposition. For (g,r) = (0, 3), triangulations
have two 2—simplices, one with two selected corners. From now on, we assume that
(g,r) # (0, 3), the extension to the (0, 3) case being straightforward.

Given a pair (g,r) # (0,3) and (7’,b’) as in Lemma 3.1, fix a ¢—injective corner
map v — ¢y. In the interior of each triangle ¢, consider a bigon D, with one vertex
at v, and call v’ the other vertex. Remove from #, the interior of D,, and triangulate
the resulting cell s, = #, \ Int(D,) by taking the cone with base v’. Repeating this
procedure for each #,, we get a triangulation 7" of F with 2r vertices and p + 2r
triangles, where p denotes the number of triangles of 7. The set of edges of T,
E(T), contains E(T’) in a natural way, and |E(T)| = |E(T’)| 4+ 4r. We extend b’
to a branching b on T as in Figure 7, and the sign function oz~ p) to the triangles of
(T, b) in the natural way. Note that the figure shows only one of the possible branching
configurations. In general we extend b’ to b so that we can recover (T7’,5") from
(T, b) by “zipping” and “collapsing”, as suggested at the bottom of Figure 7. In what
follows, for simplicity we will refer to this configuration, as the treatment of the others
is similar.

Definition 3.2 We call a pair (7, b) constructed as above from a pair (7’,5’) an
efficient triangulation (e —triangulation for short) of F. For each vertex v, the preferred

Algebraic € Geometric Topology, Volume 7 (2007)



Quantum hyperbolic geometry 871

T T// T/

Figure 7: The branched triangulated cell s,

inner triangle at v is the triangle 7, in s, with an edge on dF whose b—orientation
coincides with the boundary orientation of F'.

3.2 Cocycle parameters

The inclusions of Int(F) into F and S \ V induce identifications of the respective
fundamental groups.

Fix an e—triangulation (7, b) of F. Denote by Z(T,b) the space of PSL(2,C)-
valued 1-cocycles on (7, b); we stipulate that on a triangle with ordered b—oriented
edges eg,e;, e, the cocycle relation is z(eg)z(e;)z(e2)™! = 1. In this section we
construct a parametrization of R(g, r) based on cocycle coefficients by specifying
subsets of Z (T, b) with small “residual gauge groups”, that make principal algebraic
bundles over the “strata” of a suitable partition of R(g, r). These strata are determined
by the holonomies around the boundary components of F'.

Write C(T, b) for the space of PSL(2,C)—valued 0—cochains on (7, b), that is the
PSL(2,C)—valued functions defined on the set of vertices of 7. Two 1—cocycles z
and z’ are said equivalent up to gauge transformation if there is a 0—cochain A such
that, for every oriented edge e = [xg, x1], we have

Z'(e) = Mxo) ' z(e)A(x1).

It is well known that the quotient set H(7,b) = Z(T,b)/C(T,b) is in one-one
correspondence with R(g, r). Indeed, for any fixed xo € T we have a natural surjective
map

Jxo: Z(T,b) — Hom(w, PSL(2,0C)),
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where 7w = 71 (F, x¢), and two representations fx,(z) and fx,(z') define the same
point in R(g, r) if and only if z and z’ are equivalent up to gauge transformation. Note
that the complex dimension of H(T,b) is 3(|E(T)|—(p+2r)—2r)=—=3x(F), which
is the dimension of R(g,r). This is because the complex dimension of C(T,b) is
equal to 67, the set Z(T, b) is defined by 3(p + 2r) polynomial relations on 3| E(T)|
variables, and PSL(2,C) has trivial center. (Recall that p is the number of triangles
of the initial triangulation 7’ of S with r vertices.)

Denote by BT (2,C) (respectively B~(2,C)) the Borel subgroup of SL(2,C) of
upper (respectively lower) triangular matrices. Let PB*(2,C) = B*(2,C)/ 4+ I and

put
01
r=(1s):

(3-1) W: SL(2,C) — SL(2,C), W(A)= PAP,

Define a map

and denote by W the induced automorphism of PSL(2,C). We have W(B*(2,C)) =
BT(2,0).

For any g € PSL(2,C) we distinguish the type of g as trivial, parabolic or generic
(the latter for elliptic or loxodromic) with the obvious meaning. We denote by

Ct(g) e PBT(2,0)

the canonical upper triangular matrix (up to sign) representative of the conjugacy class
of g (for generic g we normalize CT (g) by stipulating that the top diagonal entry has
absolute value > 1), and we set

C™(g) = W(C*(2)).

We define the type of p € R(g,r) as the r—tuple of types of the p—holonomies of the
oriented boundary components yy, ...,y of F. Put

R(g,r.t)={p € R(g,r) | phas type 1}
R(g,r.CE) = {peR(g,r1) | CE(p(y)) = CE}

where C* = (CF,... ,Cri), Cl.jE is an arbitrary diagonal or unipotent element in
PB*(2,C), and C* has type ¢.

For any g € PB*(2,C) let us write g = [a, b]*, where a is the top diagonal entry of
g and b is the nondiagonal one (we do the abuse of confusing g with its projective
class). For every vertex v; of (T, b), let e be the boundary edge of the preferred inner
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triangle 7y, (see Definition 3.2), and y; the oriented boundary loop of F based at v;.
Recall the projections fy,: Z(T,b) — Hom(sr, PSL(2,C)).

Definition 3.3 The set of (& )—cocycle parameters for R(g,r,CT) is
Z(T,b,CF)={ze Z(T.b) |fori =1,....r, fy,(2)(i) =CZ, z(e}) =[1,1/2]F}.

i

Clearly Z(T,b,CT) is nonempty. In fact, any z € Z(T, b) such that conjo f(z) €
R(g,r,CT) is equivalent to one in Z(T,b,C*F) via some gauge transformation. More-
over, given a vertex v; and a O—cochain s with support at v; and v;, s maps Z(7',b,C +)
onto itself if and only if

s(v;) € Stab(CF)
and s /21 s () = [1,1/2]F.

As the triangles 1y, are in one-one correspondence with the v;, we deduce that there is
a projection

(3-2) pF: Z(T.b,CY) - R(g.r.C¥H)
with fiber isomorphic to the group
G(T,b,C%) := Stab(CE) x -+ - x Stab(CE)

that we call the residual gauge transformations. Denote by Z(T, b, t)* (respectively
p,i) the union of the Z (T, b,C*) (respectively pg:) over all C* with type ¢, and put

Z(T,b)* =], 2(T,b,0)*, p* =11, pi.

For future reference, we summarize the above constructions in the following proposition.

Proposition 3.4 For every C*, the projection p*: Z(T,b)* — R(g,r) restricts to
a complex affine algebraic principal G(T, b, C*)—bundle

Z(T,b,C*) —> R(g,r,CF).

The map W in (3-1) yields an isomorphism Z(T,b,C*) = Z(T,b,CT). Moreover we
have

dim(Z(T, b,Ct) = =3x(F)
dim(R(g. r.C*)) = =3x(F) — dim(G(T. b. 1c))
dim(R(g. 7, t¢)) = dim(R(g. r.CF)) + a(tc)

where tc is the type of C* and (1) is the number of generic entries of fc.
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Observe that if 74, is the purely generic type, then dim(R(g, 7, fgen)) = =3 x(F); if
Ipar 18 purely parabolic, then dim(R(g, 7, fpar)) = —3x(F) —r; if 7 is purely trivial,
then dim(R(g.r, 1)) = —3x(F) —3r = —=3x(S) = 6g — 6. Hence R(g,7, lgen) is
a dense open subset of R(g, 7). Moreover, via the inclusion of closures, we have a
filtration of R(g, r) for which R(g, r, t7) is the “deepest” part. It would be interesting
to study the singularities of the closure of each R(g, r,7) in R(g, r), in order to check
if this filtration induces a “stratification” of R(g,r).

Remark 3.5 For parabolic elements g € PSL(2,R) we have two conjugacy classes,
that can be distinguished by a sign. So, replacing PSL(2,C) with PSL(2,R), the
constructions of this section still work by associating a sign to each parabolic end of the
surface S\ V. Note that for PSL (2, R)—valued cocycles the idealization procedure
described in Section 3.3 below gives only degenerate tetrahedra (with real cross-ratio
moduli).

Example 3.6 (The Fricke space) Suppose that S has a unique marked point v.
Choose a standard curve system S = {a;, b,-}‘l?’;l based at v, so that

m(S,v) =(ai,by,...,ag,bg |[a1,b1].. . [ag.bg] =1).

Cutting open S along & we get a 4g—gon P with oriented boundary edges. Taking
the cone to a vertex it is easy to construct a branched triangulation of P, which induces
one, say (7’,0"), for (S,v). Denote by (T,b) any e—triangulation obtained from
(T',0").

Recall that the Teichmiiller space 7 (S) can be identified with the set of conjugacy
classes of PSL(2,R)—valued discrete faithful representations of 1(S), and that we
have the well-known (real-analytic) Fricke parametrization 7 (S) = R%~° (see eg
Abikoff [1]). For each z € 7(S) the Fricke coordinates of z are matrix entries of the
Z(y) for all y € S, where Z is a representative of z specified by fixing once and for
all three of the fixed points of z(ag) and z(bg). So 7 (S) embeds in the space of real
cocycle parameters for F with trivial type #7. This embedding is generalized easily
to the Teichmiiller space of arbitrary bordered Riemann surfaces, by considering the
spaces Z(T, b,t) for all types ¢ and e—triangulations of (S, V') with arbitrary V (see
Remark 3.5).

3.3 Cross-ratio parameters

In this section we derive from the cocycle parameters Z(T,b)* other parameters
for R(g, r) which are related to the exponential shear-bend coordinates for pleated
hyperbolic surfaces. These parameters are obtained via an idealization procedure that
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includes the choice of a base point on the Riemann sphere. We fix this base point as 0.
Note that the B¥ (2, C)-orbit of 0 is the whole of C, while B~ (2, C) fixes 0. Hence
the symmetry between Z(T,b)™ and Z(T,b)~ given by the map V¥ in (3—1) shall be
broken.

Definition 3.7 (Compare with Definition 2.11.) Let (K, ) be any oriented surface
branched triangulation. Let z be any PSL (2, C)—valued cocycle on (K, b). We say
that z is idealizable if for any triangle ¢ of (7, b) with b—ordered edges eq, e; and
ey, the points g = 0, uy = z(eg)(0) and u, = z(e;)(0) are distinct in C. We say
that the complex triangle with vertices ug, #; and u, is the idealization of t.

Because we use the cocycle rule corresponding to the multiplication from the right
in PSL(2,C), the property of a cocycle to be idealizable does not depend on the
branching.

Definition 3.8 Let (7, 5) be an e—triangulation of F obtained from a branched ideal
triangulation (77,b") of S\ V. A cocycle z € Z(T,b)™" is strongly idealizable if:

(a) z isidealizable.

(b) W(z) e Z(T,b)~, which cannot be idealizable at the triangles having an edge on
0F, is nevertheless idealizable at every other triangle.

Denote by Z;(T,b)™ the set of strongly idealizable cocycles, and put Z;(T,b)™ =
W(Z((T,b)") and Ry(T.b) = p™(Z((T,b)") = p~(Z1(T.b)7).

Clearly, Z;(T,b)™ is a nonempty dense open subset of Z(T,b)". If every edge
of T has distinct endpoints (in which case we say that T is quasi-regular), then
Ri(T,b) =R(g,r). In general, characters of representations with a free action on a
nonempty domain of CP! (such as quasi-Fuchsian representations) always belong to
R(T,b), for any (T, b). By using the arguments of Kashaev [21, Theorem 1], it can
be shown that for any character p € R(g, r) of irreducible representations, there exists
an e—triangulation (7, b) with idealizable cocycles representing p. In fact, the union
of a finite number of spaces Z; (T, b)" cover the whole of R(g,r)™™.

(+)-Exponential Z-parameters For any strongly idealizable cocycle z € Z; (T, b)™
we associate a nonzero complex number W T (z)(e) to each edge e of T that is not
contained in dF, as follows. Let p, be the initial endpoint of e, and #; and #, the left
and right adjacent triangles (as viewed from e). Locally modify the branching on #; Uz,
by cyclically reordering the vertices on each triangle, so that p, is eventually the source
of the new branching on both #; and ¢, . The (4 )-exponential T—parameter W (z)(e)
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is the cross-ratio modulus at e of the (possibly degenerate) branched oriented hyperbolic
ideal tetrahedron spanned by the idealization of z, U #;, where the branching completes
the one of #; Ut so that x5 = 1.

(—)-Exponential Z—parameters For each v € V, denote by e) and e? the edges of
the triangle ¢, of T’ having ¢, as corner. At an edge e of T distinct from any of
the ef,, we define the (— )—exponential T—parameter W™ (z)(e) in the same way as
W T (z)(e), but taking the idealization for W(z) € Z;(T,b)™ instead of z. If e is one
of the ef) , the formula works as well, except that each left/right triangle with an edge
on JF is replaced with the innermost triangle in the corresponding triangle #, of 7’.
Again t, U1 is a quadrilateral, because 0 is a fixed point of the cocycle values at the
boundary edges of F.

By varying the edge in T or T”, for every tuple CT of conjugacy class representatives
of the boundary holonomies these constructions give us two (= )—exponential -
parameter maps (recall that the number of edges of 77 is —3x(F), and p denotes the
number of triangles of 7"):

Wt: Z(T,b,CT) — (C\ {0} 3x)+2p
W= Zi(T,b,C7) —> (C\{0})3x(F),

Definition 3.9 We call W*(T,b,C) = WE(Z; (T, b,C?F)) the (& )—exponential T—
parameter space of Ry(T,b,C).

We stress again that the result of the idealization strongly depends on the choice of
the base point, here 0. In particular, the exponential Z—parameters are not invariant
under arbitrary gauge transformations of cocycles. A remarkable exception is for
gauge transformations associated to O—cochains A with values in PB~ (2, C). Indeed,
these act on the idealization of quadrilaterals as conformal transformations of the four
vertices (this is because 0 is fixed by every A(v), v € V'), and cross-ratios are conformal
invariants. This makes a big difference between W+ and W . In fact the whole of
the residual gauge group G(7T,b,C*) acts on W (T, b,C) via the map WT. On the
other hand, consider the subgroup of G(T, b,C™) defined as

BG(T.b.C7):= [] Stab(C;)NPB~(2,0).

Any fiber (W ™)1 (W™(z)) is given by the BG(T, b,C™)—orbit of z in Z;(T,b,C™).
Hence the actual residual gauge transformations of W™ (T, b,C) are in one-one cor-
respondence with the quotient set G(7,b,C™)/BG(T,b,C™), where the equivalence
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class of A is BG(T, b,C™)A. For the matter of notational convenience, formally put
BG(T,b,C"):=T];—; _,1d. The map

.....

O*: WH(T,b,C) — R(g,r )

S W) > pE(2)

with pét defined in (3-2), is a principal G(T,b,C¥)/BG(T,b,CT)-bundle. The
situation is particularly clean when C™ has no trivial entries:

Proposition 3.10 If C™ has no trivial entries the (— )—-exponential Z —parameter map
W= Zi(T,b,C™) - W—(T, b,C) is invariant under gauge transformations.

(—)-Exponential Z—parameters and pleated surfaces When C has no trivial en-
tries, there is a nice interpretation of the parameter space W (7, b,C) in terms of
pleated hyperbolic surface structures on S\ V' (see eg Canary, Epstein and Green [10];
compare also with Bonahon and Liu [9, Section 8]).

As before, let T’ be a triangulation of S with vertices V', viewed as an ideal trian-
gulation of S° = S\ V. A pleated surface (with pleating locus 7") is a pair (? r),

where 7: 71(S°) — PSL(2,C) is a group homomorphism (not up to conjugacy), and
f S° >H3isa map from the universal cover S° of S° such that

. f sends homeomorphically each component of the preimage T' of T' in S° to
a complete geodesic in H?;

J 'fu sends homeomorphically the closure of each component of S° \ T’ to an ideal
triangle in H3;

. ?is r—equivariant, that is, for all x € Se, y €m1(S°) we have ?()/x) = r(y)?(x).

Two pleated surfaces (f r) and (f/ ') are said isometric if there exists an isometry
Ae PSL(2,C) and a lift ¢ S° — S§° of an isotopy of S° such that )‘/ Aof ¢ and
r'(y) = Ar(y)A~! forall y € 1(S°®). The set of isometry classes of pleated surfaces
(?, r) is in one-one correspondence with arrays {x.}. of nonzero complex numbers
Xe associated to the edges e of T’, the exponential shear-bend parameters [8). For
instance, it is shown in [30] that the subset corresponding to real positive shear-bend
parameters is real-analytic diffeomorphic to the Teichmiiller space of hyperbolic metrics
on S°, with totally geodesic boundary completion or noncompact finite area completion
at v; according to the type of the holonomy, loxodromic or parabolic. In fact, to any
pleated surface (‘f, r) we can associate a tuple C~ of conjugacy class representatives
of the boundary holonomies in the conjugacy class of r, as in Section 3.2.

In general, we can also associate a sign to each loxodromic puncture. Namely, if A is
a small annulus neighborhood of v;, each connected component A of the preimage
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of A in S° is the fixed point set of a subgroup 7 of 71(S°). This subgroup is the
image of the fundamental group of A for some choice of base points and paths between
these base points. All the edges of T’ that meet A are sent by ’fv to geodesics lines
that meet at one of the two fixed points of (7). We specify this fixed point by a sign,
as it determines an orientation (whence a generator) for the axis of the group (7).
Since any two subgroups 7 as above are conjugated, for each puncture the fixed point
assignment is r—equivariant, so that the sign is canonically associated to the puncture.

Recall that in Definition 3.3 we used the boundary orientation to assign C;” to the
i —th puncture of dF. Let us remove this constraint, and associate to each boundary
component with loxodromic type an orientation that we specify by a sign, positive
for the boundary orientation, and negative otherwise. Then, for each tuple C~ with /
loxodromic entries and each /—tuple of signs s, we get a space Z7(7T,b,C™,s). We
define W—(T,b,C,s) = W(Z;(T,b,C™,5)).

Proposition 3.11 For each tuple C~ with nontrivial entries C;, [ being loxodromic,
and for each [ —tuple of signs s, the space W~ (T, b, C, s) coincides with the exponential
shear-bend parameter space PS}; of isometry classes of pleated surfaces with boundary
holonomies C~ and signs s :

(3-4) PSS ={{xe} € C\{ODXED | fori =1,....r, []xe = mi}.

Here the product is over all edges e with v; € de (counted with multiplicities), jt; is 1
if C;” is parabolic, and, if C;” is loxodromic, j; is the dilation factor of the generator
of (C;”) specified by the sign of v;. (Hence, in either case this is an eigenvalue of C;”.)

Proof By the results of [8] recalled above, each point of W™ (T,b,C,s) is identi-
fied with the family of exponential shear-bend parameters of an isometry class of
pleated hyperbolic surface on S° with pleated locus 7”. The definition of the map
®: W—(T,b,C,s) > Ry(T,b,C™) shows that this isometry class has C™ as conjugacy
class representatives of the boundary holonomies. Furthermore, by using the recipe
given in the next paragraph for computing ®, we check that the holonomy of any
positively oriented (with respect to the boundary orientation) small loop about the
puncture v; is exactly C;”. The upper left diagonal entry is just the product of a square
root of the exponential Z—parameters at the edges with endpoint v;. From (3-4),
which is an easy consequence of results in [8, Sections 12.2-12.3], we deduce that
W=(T.b.C,s) CPS;.

Conversely, for any (?, r) € PS} we have conj(r) € Ry(T,b,C™). Itis also known
that the isometry class of (f, 7) is determined by r and the signs s [9, Proposition 33].
As the map © is onto, let us take z € Z;(T,b,C™,s) with conjo f(z) = conj(r) and
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consider the isometry class of pleated hyperbolic surfaces associated to W~ (z). There
is a representative (f', ) with the same holonomy r. As the signs of (f',r) are s, the
same as for (f,r), the two pleated surfaces coincide. So PS(SZ cW—(T,b,C,s). O

Remark 3.12 Exponential shear-bend parameters do not depend on branchings but
the orientation of F. (In fact, by taking the edge orientation opposite to the branching
one in the definition of W™ (z), the left and right triangles are exchanged so that the
result is the same). However, the interpretation as (—)—exponential Z—parameters is
meaningful for QHFT because branchings govern all the choices in QHFT tensors, and
these parameters are defined simultaneously as the (4)-ones from 1—cocycles on the
triangulated boundary of arbitrary compact orientable 3—manifolds (eg not necessarily
mapping cylinders). When C has no trivial entries, the maps W define decorated
shear-bend parameter spaces similar to those occurring in [21; 26].

Remark 3.13 For tuples C with no trivial entries we can use simpler e—triangulations
of F to define exponential Z—parameters (see Figure 8). Namely, for each of the
triangles #, of the base surface S we remove the interior of a monogon inside t,, and
triangulate the resulting quadrilateral by adding an edge e, with endpoints v and the
b—output vertex of the opposite edge. We extend b by orienting e, from that vertex to
v. Proposition 3.4 applies to the cocycle parameters based on such e—triangulations,
and the treatment of exponential Z—parameters works as well.

Figure 8: More economic e-triangulation

Geometry and computation of ©F The maps ®F in (3-3) can be defined directly
in terms of Z—parameters. A way to see this is to consider Z triangulations of
cylinders C = F x [0, 1], as discussed in Section 5.5, and the corresponding pseudo-
developing maps. We give here another description. Let us just consider ®~ . Recall
that PSL(2,C) is isomorphic to Isom*(H3), with the natural conformal action on
CP! = 9H? via linear fractional transformations. For any p € R(g.r,C™), take
a representative p: w1 (F,q) — PSL(2,C) in the conjugacy class. Consider the
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associated flat principal PSL(2,C)-bundle F5. A trivializing atlas defines a cocycle
ze Z(T,b,C7). If p e Ry(T,b,C™), we can take z € Z;(T,b,C™), so that the
trivializing atlas of Fy associated to the cellulation 7"* dual to T, with edges oriented
by using the orientation of F and the branching orientation of the edges of 7", has
nontrivial transition functions. These can be viewed as transition functions for the fiber
bundle associated to F and with fibre H3. For each 2—simplex ¢ of T’, there is a
unique g; € Isom(H?) (possibly reversing the orientation) mapping the vertices u,
u1 and u, of the idealization of 7 to 0, co and —1 respectively. Then, the transition
function along the edge of T"* positively transverse to a given edge e of T’ is of the
form (g,l)_1 op(z)(e)ogy € Isom™ (H?), where #; is the triangle on the left of e,
and ¢(z)(e) is the isometry of H*® of hyperbolic type fixing 0 and co and mapping 1
to W™ (z)(e). Analytic continuation defines the parallel transport of F} along paths
transverse to 7", whence a representation into PSL(2,C) of the groupoid of such
paths, well-defined up to homotopy rel(d). In particular, it gives a practical recipe to
compute p, that we describe now.

Figure 9: The recipe for reading off holonomies from exponential Z—parameters

Let the base point ¢ be not in the 1-skeleton of 7. Given an element of 71 (F,q),
represent it by a closed curve y in F transverse to 7', and which does not depart
from an edge it just entered. Assume that y intersects an edge e of T positively with
respect to the orientation of F'. Figure 9 shows three possible branching configurations
for the two triangles glued along e. Fix arbitrarily a square root W~ (z)(e)!/? of
W~ (z)(e). Consider the elements of PSL(2,C) given by

(W (2)(e)/? 0 (01 (11
ro=("% W—<z>(e)-1/2)’ p=(} 0)’ "(—1 )

and r = [~!. The matrix y(e) represents the isometry with fixed points 0, co € CP!
and mapping 1 to W™ (z)(e). The elliptic elements p and / send (0, 1, 00) to (o0, 1, 0)
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and (o0, 0, 1) respectively. For the portion of y on the left of Figure 9, if y turns to the
left after crossing e the parallel transport operator is y(e)- p -/, while itis y(e)-p-r
if y turns to the right. (The matrix multiplication is on the right, as is the action of
PSL(2,C) on the total space of Fz). In the middle and right pictures the parallel
transport operators along the portion of y are given by y(e)-/ or y(e)- p-/, and
y(e)- p-r or y(e)-r respectively. We see that the action of p, / and r depends on
the reordering of the vertices after the mapping y(e). If y intersects e negatively, we
replace y(e) with y(e)~! in the above expressions. A similar recipe applies for any
other branching of the two triangles glued along e.

Continuing this way each time y crosses an edge of 7" until it comes back to ¢,
we get an element [W(z)];(y) € PSL(2,C) that depends only on the homotopy
class of y based at ¢ and coincides with p(y), because of the identity D,(y - x) =
[(W(2)]ly(y)- Dz(x) for any x € F,where D,: F —CP! isa p—equivariant pseudo-
developing map from the universal cover Fof F. Varying y, we eventually get the
representation [W(z)]; = p: m1(F,q) - PSL(2,C).

4 The QHFT bordism category

We define first a topological (2 4+ 1)-bordism category. Then we will give it more
structure, including the parameter spaces of the previous sections.

4.1 Marked topological bordisms

Like in Section 3, for every (g,r) € NxN such that g>0,r >0,and r >2 if g =0,
fix a compact closed oriented base surface S of genus g withaset V ={vy,...,v,}
of r marked points. Denote by —S the same surface with the opposite orientation,
and write %S for S = +S or —S. Moreover, fix a set of disjoint embedded closed
segments ay; in S such that a,, has one end point at v;. We say that v; is framed by
Ay, -

1

We say that two orientation preserving diffeomorphisms ¢: *S — X; and ¢;: %S —
>, are equivalent if there is an orientation-preserving diffeomorphism 4: ¥; — X,
such that (¢5) "' oho¢; pointwise fixes the segments ay; and is isotopic to the identity
automorphism of ' relatively to {ay, }. We write [*S, ¢] for such an equivalence class.

Let Y be an oriented compact 3—manifold with (possibly empty) boundary dY , with
an input/output bipartition 0Y = d_Y Ud1Y of the boundary components (we say that
0_Y is “at the bottom” of Y, while d4+Y is “on the top”). Each boundary component
inherits the boundary orientation, via the convention last is the ingoing normal.
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Let L be a nonempty framed tangle in Y . This means that

L= (L) | [(Lr)

is a disjoint union of ribbons, that is, properly embedded quadrilaterals and orientable
annuli: (Lr); CInt(Y) is made of the components homeomorphic to S x[0, 1], while
(Lx)p is made of the components homeomorphic to I x [0, 1], which intersect dY
along the image of d/ x [0, 1] in Y. Associated to L we have an unframed tangle L,
obtained by collapsing each component to its core, homeomorphic to S! or I.

We consider L up to proper ambient isotopy. For every boundary component X
of Y, we assume that (Lr), N X # &, and that (L), N X consists of at least two
segments if g(X) =0 (we do not require that every component of (L r)p goes from d_—
towards d4 ). Hence, on each boundary component X of Y we have a set of marked
points framed by Lz N 2. Also, associated to d+ we have a finite disjoint union
ar =] b(+S)ed i[>x<S , ¢] of equivalence classes of diffeomorphisms as above.

Consider the topological (2 4 1)—bordism category with objects the empty set and any
finite union of the [*.S, ¢], and morphisms the triples (Y, Lr, ®1) as above. We say
that (Y, Lr,a4) is a bordism from a— to a4 with support (Y, Lr). We allow the
case when Y is a closed manifold, so that 0Y = & and (Y, L) is a morphism from
the empty set to itself. We stress that L £ is nonempty in any case.

We can reformulate this category in a setup closer to that of the phase space parameters
of Section 3, as follows. If we cut open each a,;, in S we get an oriented surface
F with r boundary bigon components. This is the domain of an elementary object
[* F, ¢], where the target surfaces ¥ have now r boundary components, and the
diffeomorphisms ¢ are considered up to isotopy rel(d).

Consider a bordism (Y, Lz, a+). On the boundary of each component of Lz we have
the tangle line and the longitudinal line, corresponding respectively to X x {0} and
X x {1} in the annulus or quadrilateral X x[0,1] (X = S or I). The longitudinal
line specifies a framing of the normal bundle of the parallel tangle line. The tangle and
longitudinal lines of all components of Lz determine a pair A = (A, A') of unframed
tangles in Y. Cutting open each ribbon we get a 3—manifold with corners Y. The
boundary 9Y has two “horizontal” parts d.Y contained in 9+Y, and a “vertical”
tunnel part L F. The horizontal parts intersect the tunnel part at the corner locus; this
is a union of bigons contained in dY . Each boundary component X of Y corresponds
to a horizontal boundary component of Y, still denoted by X. Each tunnel boundary
component is made by the union of two copies of X x (0, 1), glued each to the other
at A U L. The horizontal boundary components are the targets of elementary objects
[* F, ¢], and each triple (?, L F) supports a morphism between such objects. Clearly,
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we can recover (Y, Lx) from (Y, Lyz), so that we have two equivalent settings to
describe the same topological bordism category.

4.2 Boundary structures

We equip a marked topological bordism with additional boundary structures by using
the notions of Section 3. Fix an e—triangulation (7, ) of F. Following Remark 2.4
and the definition of log-branches, we put:

Definition 4.1 Let z € Z;(T,b)T, and e be a nonboundary edge of 7. Denote 1, (¢)
the canonical log-branch of W*(z)(e), computed from the idealization of Star(e) as
in Lemma 2.13 and before Definition 3.9. For any collection m = {m;, }, of integers,
one for each edge A in T, the classical Log—T—parameter of (z,m) at e is

1(z,m)(e) =l;(e) + V—=ln(mg +me—mp —mg),

where «, ..., d make Link(e) with a, ¢ opposite and e, a have coherent branching
orientations (see Figure 10). Similarly, for every N > 1 and any other collection
n = {n,)}, of integers, the quantum Log—T—parameter at e is

lizmy(e) + V—=1aN(mg +me—mp —mg) —xp ¥ =10 (N + 1)(ng +ne —np —ng).
We call the collections

[ ={fete = {(zmy(e) —log(WE(2)(e))) /7~ 1}e

and c={cete ={ng+nc—np—ngie

the flattenings of (z,m) and the charge of n respectively, and we denote generically
by L any such a system of classical or quantum (4 )-Log—Z—parameters.

Remark that if z € Z;(T,b,C™) and C has no trivial entries, then the (—)-Log-Z—
parameters depend on W™ (z), not on z, because of Proposition 3.10.

Figure 10: Notation for Log—Z —parameters
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Definition 4.2 The QHFT category is the (2 4+ 1)—bordism category with objects
the empty set and any finite union of the [« F, (T, b, L), ¢], where L is a system of
(+)-Log—Z —parameters. The morphisms are the 4—tuples ()7, L F,p,0+), where p is
a conjugacy class of PSL(2, C)-valued representations of 7y (Y \ L F),and oy are
QHFT objects with targets 04 Y, such that for every [*F, (T, b, L), ¢], the character
¢*(p) coincides with ®(W *(z)). We say that (?, Ly, p) is the support of a QHFT
bordism from o— to o4, and that o is a QHFT surface.

Given bordisms B and B’ from a— to a4 and a’ to a_, respectively, assume that
B+ and B’ are subobjects of a4+ and o’ that coincide up to the change of orientation.

Definition 4.3 The bordism B” from a” = a— U (a_\ B.) to &/} = o/, U (a4 \ f+)
obtained by gluing B and B’ along B is called the composition of B followed by B’.
We write B” = B x B.

Examples from hyperbolic geometry Any topologically tame hyperbolic 3—mani-
fold Y with hyperbolic holonomy p and a tangle L of singularities makes a QHFT
bordism. More specifically, any geometrically finite noncompact complete hyperbolic
3—manifold Y defines a triple (Y’, L, p) with a nonempty link Lz, as follows. The
manifold ¥ has a natural compactification ¥, with ¥ 2 Int(Y), which is a “pared”
manifold (Y, P). Here P is a union of disjoint tori or annuli embedded in the boundary
of Y. The tori correspond to the cusps of Y. Each annulus A4 of P comes from a
couple of cusps on some boundary component of (a small neighborhood of) the convex
core of Y'; A is fibered by geodesic arcs. If A is separating the cusps belong to
different components. Define Y as the result of attaching a 2—handle to Y at each
annulus A, so that P is contained in the interior of Y” and is transverse to dY"” .
Equivalently, Y contains a properly embedded framed 1-tangle L’ made by the
cocores of the 2—handles, the framing being determined by the fibration by intervals
of the annuli of P. Let us choose a framing at each torus of P. By Dehn filling
we get a manifold Y’, and Y” is the exterior in ¥ of the union L' of the framed
cores of the filling solid tori. Hence, if every boundary component of the convex
core of Y contains at least one cusp, associated to Y and the cusp framings we have
(Y',Lr,p), where Ly = L’ U L. intersects all the boundary components of Y,
and p is a PSL(2,C)—character of Y'\ Lz = Y . If furthermore p is the holonomy
of a complete hyperbolic metric on Y and Y has infinite volume ends, then 9Y is
nonempty. We can give the triple (Y’, Lx, p) a natural boundary structure o— U ot ,
induced by exponential Z—parameters of the pleated surfaces in the boundary of the
convex core (see eg Epstein and Marden [14]).
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5 The QHFT functor

Consider a QHFT bordism B = (Y, L, p,a+). For every odd integer N > 1, we
associate a finite dimensional complex linear space V(«+) to a4, and a linear map
Hy(B): V(a—) — V(ay) to B, well-defined up to sign and multiplication by N —th
roots of unity. This defines a (moderately projective) functor H: QHB — Vect, where
Vect is the tensor category of complex linear spaces. The construction immediately
implies that H  is a modular functor, in the sense of [32, III.1.2].

5.1 From QHFT bordisms to QHG-triangulated pseudomanifolds

First we associate to B a pseudomanifold Z(B5). Fill each tunnel boundary component
of ¥ with a solid tube, thus recovering a copy of the manifold Y . The cores of the
solid tubes make a parallel unframed copy A” of L. We define Z(B) as the result of
collapsing to one point each component of A”. In other words, we glue to each tunnel
component of Y the oriented topological cusp C=Bx [0, +00]/ (B x {oo}) with base
equal to either B =S! x[-1,1]or B=S! x ST,

Next we describe a procedure to convert Z(B) to a distinguished QHG-triangulated
pseudomanifold. We refer to the notions introduced in Section 2.4.

We say that a branched triangulation (7', b) of B as above is admissible if B N .Y
and the tangles A, A’ are covered by the 1-skeleton. We denote by (f”, 5) the branched
triangulation of C, where 7 is the cone over 7 from the nonmanifold point, say oo,
and b extends b so that oo is a pit for every branched tetrahedron of T . Assume we are
given an idealizable PB™ (2, C)—valued cocycle z on an admissible triangulation of B.
The idealization of z determines for each 2—simplex of B a face of an ideal hyperbolic
tetrahedron with further vertex at oo (see Figure 11, where opposite vertical triangles
are identified). Since the fundamental group of B is abelian, the resulting family
of oriented ideal hyperbolic tetrahedra actually makes an 7 —triangulation (JA“ , b , W),
which we call an Z—cusp. By conjugating if necessary, we see that the notion of
Z—cusp makes sense also when z takes values more generally in PSL(2,C). We get
flattenings similarly as in Lemma 2.13: at a corner of a 2—simplex formed by edges ¢;
and e, we put the difference of the logarithms of the vectors in C associated by the
idealization to e¢; and e, , respectively.

Definition 5.1 A D-triangulation of B = (?,Z F,p,04) consists of a 4—tuple
K = (K, H,b, z) where:

(a) (K,b) is a branched triangulation of Y extending that on 9+Y, and inducing an
admissible cusp base triangulation at each tunnel component of L .
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Figure 11: An Z—cusp

(b) The 1-dimensional subcomplex H = HU H’ of K is ambiently isotopic to the
tangle A = A UA’, and H contains all the vertices of K.

(¢) z is anidealizable PSL(2,C)—valued 1—cocycle on (K, b) such that:

(i) the conjugacy class of PSL(2,C)-representations of 7y (17) associated to z
coincides with p;

(i1) the (+)—exponential Z—parameters given by the restriction of z to d4 Y coincide
with that of the objects a— U a4 (see Definition 4.1).

(d) the restriction of z to each vertical tunnel component of L F takes values in the
Borel subgroup PB*(2,C) of PSL(2,C).

For any D-triangulation K = (K, H, b, z) of B we get a distinguished Z—triangulation
Kz = (K, H,b,w) of (Z(B),1) by gluing the idealization of K with the Z—cusp
given by the cocycle at each tunnel component. Note that H contains all the vertices
of Kj that are manifold points.

Definition 5.2 We say that 7(B) = (K7, f.¢) = (K, H,b,w, f,¢) is a distinguished
flat/charged T—triangulation of (Z(B),X) if it satisfies Definition 2.17, and at every
boundary edge of Z(B) the total (classical or quantum) log-branch of (Kz, f,c) of
(2-18) coincides with the (classical or quantum) Log—Z —parameter of the boundary
object o— U .

Recall the cohomological weights from Section 2.4. These notions still make sense for
distinguished flat/charged Z—triangulations, where the homology of 97} is replaced
with that of the tunnel components L . Since we have weights (s, ky) for log-
branches and (%, k;) for charges at the same time, we will denote them (%, k) =
((hp,he), (kg,ke)). We can also define, in the very same way, boundary weights
kre H ! (8)7 ; C), but these are completely encoded by o1 . We have:
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Theorem 5.3 For every B = (Y, Ly, p,a4x) and every (h,k) € HI(I?;Z/2Z)2 X
H'(LF:;C)? such that (h . ky) satisfies (2-26), there are distinguished flat/charged
T —triangulations T (B) of Z(B) with weight (h, k), and any two are QHG-isomorphic.

Proof The existence of distinguished Z—triangulations Xz of Z(B) follows from a
tedious but straightforward generalization of Theorem 4.13 in [3]. Global flattenings
and integral charges with arbitrary weight exist on the double DXz of [z by the
results recalled with Theorem 2.20.

Consider the (4 )-Log—Z—parameters {W ¥ (z)(e)}e at a+. They are in one-one
correspondence with the interior edges of the corresponding e—triangulations, which
is less than the cardinality of the families 7 and n used to define flattenings and
charges in Definition 4.1. Hence any family of determinations of the logarithms of the
W) (e) is a system of (4 )-Log—Z—parameters. Also, Lemma 2.13 implies that
any system of (4 )-Log—Z—parameters at o+ extends to a distinguished flat/charged
T —triangulation of the pseudomanifold obtained from the trivial cylinders over 01 Y
by collapsing to a point each annulus of 9(d4+ f) x[—1,1].

This means that any QHFT surface bounds a QHFT bordism, and that for the bordism B
there are flat/charges on DKz whose restriction to Xz induce the Log—7 —parameters
of o+ . Hence we get global flat/charges as in Definition 5.2. In fact the affine spaces
of flat/charges on DXz project onto that on 7z compatible with a4 (see the end
of Section 2). Then, the Mayer—Vietoris exact sequence in cohomology for the triad
(DK7,Kz,—K71) shows that (4, k) is induced by some weight on DKz. As we can
choose the latter arbitrarily, this concludes the proof of the first claim.

The second is harder, but follows strictly from the arguments in the proof of Theo-
rem 6.8 (2) in [4]. The only new ingredient is the presence of Z—cusps, which mimic
the ends of cusped manifolds treated in that paper. O

An alternative characterization of classical/quantum log-branches of distinguished
flat/charged Z—triangulations 7 (B3) follows from Remark 2.18.

5.2 Amplitudes

Fix an odd positive integer N. Write V = CV, with the canonical basis {¢;}, and
V=1 for the dual space. Both are endowed with the hermitian inner product with
orthonormal basis the vectors eg and (¢; +ey—;)/~2,i=1,...,N—1.

Recall the notation of Section 3. For each base surface F fix an e-triangulation (7', b),
an ordering of the set 7(® of 2—simplices, and let V(T,b) = ® reT@ Vo=t ®)  Given a
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QHFT bordism B = ()7, Ly, p, @) with a distinguished flat/charged Z —triangulation
T (B), the trace tensor in (2-22) is a morphism H (7 (B)) € Hom(V(x-), V(a4)),
where V(a4) is the tensor product of isomorphic copies of the spaces V(T b) over
the (ordered) components of o .

Theorem 5.4 The morphism Hy (B, h,k) = Hy (7 (B)) does not depend on the
choice of T (B) up to sign and multiplication by N —th roots of unity. We also have
Hy (B, h, k) =Hyx (B, k') if the reductions mod(NZ ) of h and h' (resp. k and
k') are the same, that is, if k —k' € H'(Lz;Z) and k —k' =0€ H (L;Z/NZ),
and similarly for h and h’. Moreover, by restricting to even-valued flattenings as in
Remark 2.14 there is no sign ambiguity and h = 0. We call Hx (B, h, k) the amplitude
of (B, h,k).

Proof The result is an immediate consequence of Proposition 2.7-Proposition 2.16
and the last claim in Theorem 5.3. For even-valued flattenings we have 4 = 0, because
any curve normal to the triangulation selects an even number of edges which are of
the type e, or the opposite in the (branched) tetrahedra traversed by the path (the
manifold is orientable, and the branching orientations of the faces adjacent to such
edges are reversed when we follow the curve). For the dependance with respect to the
mod(N Z) reductions of weights, we note that the associated systems of N —th roots of
moduli (see Remark 2.18) are connected by QHG isomorphisms. Indeed, the difference
k—k'e HY(Lr; NZ) coincides with (/) —y(f')/~/—1x and y(c)—y(c') /=17
forsome /', f” and ¢, ¢’, and similarly for 27—/’ and the y, maps. By first considering
(k —k")/N we can eventually take the collections of values of /' — " and ¢ — ¢’ in
NZ, and equal. Hence the conclusion follows from (2-11) and (2-12). O

Remark 5.5 Numerical computations with the example of Section 6.4 show that the
QHFT amplitudes should depend strongly on the choice of weight, even asymptotically.
In fact, it is natural to ask whether their growth rate is determined by this choice.

Remark 5.6 (Cheeger—Chern—Simons invariants and ;) By the results of [24],
there is an injective homomorphism from H3(PSL(2,C); Z) (discrete homology) to a
scissors congruence group 7/5(6). The dilogarithm (2-9), defined on 7’5(([3), restricts to
the universal Cheeger—Chern—Simons class Cs: H3(PSL(2,C);Z) — C/n*Z, which
is a constant times Vol+iCS'. Recently J Dupont and C Zickert produced dilogarithmic
formulas for the lift éz’Aof 6’2 to H3(SL(2, E); Z) [13]. In this setting H; appears
as an extension of exp(C, /i) to classes in P(C) representing QHFT bordisms, and
coincides with exp(@z/ /im) when using even flattenings. We are indebted to Dupont
and Zickert [13] for pointing out the existence of such flattenings.
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Recall Definition 4.3. Assume that B” = B’ % BB exists, and let 7 (B) and 7 (B’) be
given weights (i, k) and (4, k'), respectively. Then 7 (B’) * 7 (B) is a distinguished
flat/charged Z-triangulation 7 (B”), with some weight (2", k”). (It follows from the
Mayer—Vietoris exact sequence for (B”, B’, B) that even if 4 = 4’ = 0, it can happen
that 4”7 # 0. However, if the glued part of the boundary is connected, or is a boundary
in Bx B, then h =K' =0 implies A" =0.)

Proposition 5.7 (Functoriality) For any composition B’ = B’ * B of bordisms,
Hy (B”,h", k") coincides with Hn (B',h', k") o Hyn (B, h, k) up to sign and multipli-
cation by N —th roots of unity.

This is a direct consequence of Theorem 5.4. Also, we prove as in Proposition 4.29 of
[4] that the QHFT amplitudes behave well under complex conjugation:

Proposition 5.8 (Polarity) Write 3 for the QHFT bordism with opposite orientation
and complex conjugate holonomy p. Then Hy (B, h,—k) and Hy (B, h,k)*, the
adjoint for the hermitian structure of V(«y), coincide up to sign and multiplication by
N —th roots of unity.

In the proof of Theorem 5.3 we have seen that the space W+(T b) of (+)-Log-Z-
parameters over W+(T b) (the disjoint union of spaces W (T, b,C)) is isomorphic
to C3x(F)+2P wwhere C is the universal cover of C\{0}. Similarly, for any admissible
triangulation t of a topological cusp with n 2—simplices, we have the analytic subspace
Def(t) of C" made of the n—tuples of log-branches for the tetrahedra of Z—cusps with
base triangulation t, where C is defined in Section 2.1. Such log-branches satisfy the
compatibility relations L7 (e) = 0 at interior edges.

Definition 5.9 Let X = (Y, Lr,a+) be a marked topological bordism with e—
triangulated or admissibly triangulated boundary components. The phase space of X is
the (analytic) subset Def(X) in the product of the spaces W+(T, b) and Def(t) over
the components of dY and L, determined by the family of distinguished flat/charged
Z—triangulations of QHFT bordisms supported by (Y, Lz, a+).

Proposition 5.10 (Analyticity) Forevery N > 1, the amplitudes of QHFT bordisms
supported by X = (Y, L r, a1) vary analytically with the boundary structure in Def(X'),
up to sign and multiplication by N —th roots of unity.

This follows immediately from the holomorphicity of the matrix dilogarithms, together
with the fact that any path in Def(.X) lifts to a path of log-branches, via the relations
between total log-branches and Log—Z —parameters (see Definition 5.2).
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When Y is the mapping cylinder of a diffeomorphism ¢ of F, the amplitudes of QHFT
bordisms supported by Y define a morphism of the trivial vector bundle

(5-1) E(T,b)t: WH(T,b)x V(T,b) — WH(T, b).

Note that any two choices of e—triangulations (77, by) and (T3, by) of F yield iso-
morphic bundles E(T7,b,) and E (T3, b,), with birationally equivalent bases.

When Y has empty boundary, Def(X') is a generalization of the well known deformation
space of hyperbolic structures supported by ideal triangulations of Y \ L, introduced
by Thurston [30], and recently studied by Choi [12] and Champanerkar [11].

5.3 QHFT variants

By varying the bordism category we can vary the corresponding QFT.

QHFT? Consider the bordism category supported by triples (Y, L, p), where L is
an nonempty unframed tangle in Y and p is a PSL(2, C)—character on the whole of
Y (ie p is trivial at the meridians of L). In fact, we restrict to holonomies p such that
(Y, L, p) admits D—triangulations that extend a topological branched ideal triangulation
(T', b") of each boundary component, say (S, V'), and for which the link L is realized
as a Hamiltonian subcomplex (hence with no Z—cusp). In particular the objects of this
bordism category incorporate the idealization of (necessarily idealizable) cocycles on
(T’,b’), that represent the restriction of p to S'. The arguments of Theorem 5.4 can
be easily adapted to produce tensors Hy (B, h, k) associated to such a bordism 5, and
eventually the so called QHFT? variant of quantum hyperbolic field theory.

When N = 1 the QHFT? tensors do not depend on the tangle, since the latter, being
unframed, just serve to encode and guarantee the existence of global charges.

Fusion of QHFT and QHFT® We can consider triples (Y, Lr, L, p), where L =
L UL is a tangle with a framed part Lz and an unframed one L°. We also stipulate
that p is trivial at each meridian of L°. For every object support (S, V), we have a
partition V = VU ¥ and we use “mixed” triangulations that looks like an efficient
one at p € Vr and like an ideal one at p € V. A similar mixed behavior holds for the
adapted D—triangulations of such bordisms. We eventually get tensors still denoted
Hyn (B, h, k) giving variant functors, still denoted QHFT, that extend both the previous
one (L° = @), and QHFT? (L = o).

Algebraic € Geometric Topology, Volume 7 (2007)



Quantum hyperbolic geometry 891

QHFT® Let (Y, Ly, LO, p) be as above, and let us specialize to ps that, as usual,
are trivial at the meridians of L°, but are not trivial at the meridians of L. Now
we use mixed triangulations of each object support (S, Vz U V4) that look like an
economic triangulation (see Remark 3.13) at each p € Vr. Concerning the adapted
D—triangulations, each component of L+ contributes to the hamiltonian subcomplex
with just a copy of the parallel curve specifying the framing (recall that by using
ordinary efficient triangulations, it contributed with two parallel curves). We get tensors
now denoted H%; (B, h, k), and a variant denoted QHFT*.

Of course, there are no deep structural differences between these variants; nevertheless
each one has its own interest (see also Section 6).

5.4 Mapping class group representations

Fix F. Set Yp = F x [—1,1], L = JF x [—1, 1] with trivial vertical framing, and
let Mod(g,r) be the mapping class group of F, that is, the group of homotopy
classes of orientation-preserving diffeomorphisms of F fixing pointwise each boundary
component. Given y+: (£F,(T.b,L)) — F x {1}, put ¢y = w;lw_ and [y]
for the corresponding element in Mod(g,r). Denote by Wy the mapping torus
(F x[-1,1])/(x,—=1) ~ (¥ (x), 1) of ¥, with tunnel boundary ZW]. Let p be the
conjugacy class of PSL(2,C)—valued representations of 71 (F x[—1, 1]) (identified
with 1 (F))) associated to L. To simplify notation, in all statements of this section
we do not mention the weights (we understand they are fixed).

Lemma 5.11 Up to sign and multiplication by N —th roots of unity (denoted "=xn ")
we have :

(1) For any fixed (T, b, L) the amplitudes Hx(Y, Lg, p, (£F, (T, b, L)), [V+]) de-
pend only on [{r]. We denote them H  ([V/]).

(2) Hn([id)) is the identity map from Epn(x—) to En(a4+), and the composition
Hy ([h2]) o Hn([h1]) =~ Hn(h2hi]). In particular, for any [{] € Mod(g,r) the
QHFT tensor H ([]) is invertible, with inverse H ([ ~']), and for a homotopically
d —periodic [y] the QHFT tensor Hy ([{]) is of finite order less than or equal to d .

(3) If y(p) coincides with p, then Trace(Hy ([y])) =n HN(W[,/,], Z[W], 0).

Proof Point (1) follows from Theorem 5.4, because
HN(Y, LE, p. (£F, (T, b, £)),[y£) =~ HN (¥, Lr, p, (£F. (T b, £)), [id], [¥'])

(the homeomorphism ¥ ~! x id sends the first mapping cylinder to the second). By
Proposition 5.7 we have H%v ([id])) =n Ha ([id]), so Hn ([id]) is an idempotent. It is
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invertible because the matrix dilogarithms are. Both facts imply the first claim in (2).
The rest is a direct consequence of Proposition 5.7 and formula (2-22). O

The arguments in the proof of Lemma 5.11 imply also that, letting [/] =[id] and p fixed,
the amplitudes of any marking variation (T b, E) — (T1, by, L) are invertible. Hence
Hn([¥]) is conjugated to the tensor HN (Y, Lp, p, (£F,(T1,b1,Ly)),[¥+]). More-
over Hy(— Y,Lp, o0, (FF,(T,b, L)), [¥+]), the amplitude with reversed orientation,
clearly coincides with H ([¥/]~!). Using Proposition 5.8 we deduce:

Corollary 5.12 For any fixed p € R(g,r), the homomorphisms vV +— Hn ([¥])
induce a conjugacy class of linear representations of Mod(g, r), well-defined up to sign
and multiplication by N —th roots of unity. For SL(2,R)—valued characters p these
representations are unitary.

5.5 Tunneling the (4 )/(—) states

We use (+ )-Log—Z —parameters to define the QHFT because of the existence of strongly
idealizable cocycles on QHFT bordism triangulations, which makes functoriality easy
to check. Here we exhibit a family of tensors correlating the (4 )-Log—Z —parameters,
thus recovering, in particular, the direct and nice interpretation of boundary structures
having nontrivial holonomy at the punctures in terms of pleated hyperbolic surfaces
(see Section 3.3). These tensors are also used in Section 6.3.

For any base surface F with an e—triangulation (7,b), let Z(F) be the pseudo-
manifold obtained by collapsing to a point each boundary annulus of the cylinder
C(F) = F x[—1,1]. Recall the bundle E(T,b)" in (5-1), and consider similarly
E(T,b)~: W—(T,b)x V(T,b) — W(T,b). We have:

Proposition 5.13 There exists a canonical family F of flat/charged 7 —triangulations
covering a portion of Z(F), with invertible trace tensors Hy(F): E(T,b)* —
E(T,b)~.

Proof Orient C(F) so that = F is identified with F x {£1}. Let P(T,b) be the cell
decomposition of C(F) made by the prisms with base the 2—simplices of 7". Orient all
the “vertical” (ie parallel to [—1, 1]) edges of P(T, b) towards + F . For every abstract
prism P, every vertical boundary quadrilateral R has both the two horizontal and the
two vertical edges endowed with parallel orientations. So exactly one vertex of R is a
source (that belongs to —F'), and exactly one is a pit (that belongs to + F'). Triangulate
each R by the oriented diagonal going from the source to the pit. Finally extend the
resulting triangulation of dP to a triangulation of P made of 3 tetrahedra, by taking
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the cone from the bh—first vertex of the bottom base triangle of P (note that no further
vertices nor further edges have been introduced). Repeating this for every prism, we
get a branched distinguished triangulation (C(T, b), H) of C(F), where the vertical
edges make the Hamiltonian tangle H (see Figure 12). As in the proof of Theorem
5.3 there exists integral charges on (C(7,b), H).

Let F x[—1, 3] be triangulated by two adjacent copies of C (T, b), glued each to the
other at F x {+1}. For any z € Z;(T,b)™, consider the unique cocycle Cy(z) on the
composition C(T,b)*C (T, b) that extends zUW(z), given on (F x{—1})U(F x{3});
takes the value P of (3—1) on each vertical edge contained in F x[1, 2]; takes the value
1 on each vertical edge contained in F' x[—1, 1]. Perturb Cy(z) with a O—cochain s
that takes the value 1 on (F x {—1}) U (F x {3}); takes values in PB*(2,C) at each
vertical boundary annulus; restricts to an idealizable cocycle on F' x[—1,1] and to a
maximally idealizable cocycle on F x[1, 3] (see Definition 3.8). Finally, glue Z—cusps
to the idealization. Note that the only nonidealizable tetrahedra are those in the star of
a boundary edge of the triangulation of F' x {3}. Lemma 2.13 gives flattenings for the
idealizable tetrahedra.

Look at the ideal triangulation (7”,b") of S\ V corresponding to the copy of the
triangulation (7', b) for the boundary component F x {3}. For every cochain s as
above and every edge ¢ of T’ we have two complex numbers: the (—)—exponential
T —parameter W~ (z)(e), and, as in (2-18), the total product W(e) of the cross-ratio
moduli at the edges of T that enter the definition of W~ (z)(e). Recall that there are
two distinct such edges only when e contributes to make a marked corner. It is possible
to normalize s so that for every edge e of T’ we have W™ (z)(e) = W(e)™!.

Varying the cocycle z € Z; (T, b)*, this choice determines the family F in the statement.
By perturbing the initial cocycle z with O—cochains ¢ with values in PSL(2,C) \
PB™ (2, C), the same construction leads to families F; of flat/charged Z—triangulations
covering the whole of F x[—1, 3].

Note that for suitable flat/charges ( f; = 0 in (2-9) and ¢; = 0 in (2-12)) the matrix
dilogarithms have well-defined finite limits when the cross-ratio modulus wg — 0.
From the symmetry relations of the matrix dilogarithms [4, Corollary 5.6], this is
true more in general for any degenerating sequence of 7 —tetrahedra, that is when
wo goes to 0, 1 or oo. Now, we can choose in a continuous way the flat/charges
of F; so that they satisfy the above constraints on the tetrahedra of F; that become
nonidealizable in F, when ¢ — id. Then Hy (F) := lim; H(F;) exists. As in
Lemma 5.11 (2) we see that H  (F;) is invertible, with inverse H(—F;). Since
Hy(F)oHNn(—F) =1lim;(Hn (Fr)oHy (—F;)) =pn id (Proposition 5.10), we deduce
that H  (F) is invertible. O
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Figure 12: Pasting opposite vertical sides yields an instance of C (7, b) for
the once-punctured torus .S, based on an economic triangulation of S as in
Remark 3.13.

6 Partition functions

Assume that W is a closed oriented 3—manifold, and that L is a link in W with a
framed part L and an unframed one L°. Each variant of quantum hyperbolic field
theory (see Section 5.3) leads to partition functions.

If p is trivial at each meridian of L°, we have the QHFT partition functions
Hn(W, Ly, L% p,h, k)
that specialize to the QHFT® ones when L = L°:
Hy(W,L,p,h,k)=HnW,2,L° p,h, k).
If p is also assumed to be nontrivial at each meridian of Lz, we have also
W, Lz, L% p,h,k).

These partition functions are complex-valued, well-defined up to sign and multiplication
by N —th roots of unity. Typical examples of triples (W, Lz, p) are given by hyperbolic
cone manifolds W with framed cone locus L # and hyperbolic holonomy p on W\ L £.
The partition functions can be expressed in terms of manifolds Y with toric boundary
and containing an unframed link L° in the interior. By fixing an ordered basis (;, ;)
for the integral homology of each boundary torus, let W be obtained from Y by Dehn
filling along the m;, and Lr be the disjoint union of the cores of the filling solid
tori, framed by the /;. Then the partition functions of (W, Lz, L°, p, h, k) are in fact
invariants of (Y, {(m;, ;) }i, L, p.h k).
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When N =1 the QHFT? partition functions H{(W, L, p, h, k) do not depend on L,
and coincide with the simplicial formulas obtained in [24] for the Cheeger—Chern—
Simons invariants of pairs (W, p) (see [4], where the weights were normalized as
0).

In the rest of this section we concentrate on the case N > 1.

6.1 QHFT vs QHFT? partition functions

For B= (W, L,p), L = L°, with weights h =k =0, Hy(W, L, p,0,0) coincide
with the invariants Hy (W, L, p) constructed in [3; 4]. Let us consider more generally
(W,Lx, L% p,0,0). Fix also a framing Fy for L°. Then we can consider the
partition function Hy (W, LU LOO, @, p,0,0). Let us denote by A the unframed
link obtained by splitting each component of L° in the two corresponding parallel
boundary components of the ribbon link L(}O. We have:

Proposition 6.1

HN(W.LrUL% ,@.p.0,0) =y Hy(W.Lz. % p.0,0).
Proof For simplicity, assume that L = L°. Fix a D—triangulation of (W Ly, 0)
where each tunnel component B has a symmetric admissible triangulation as in

Figure 13 (opposite sides of the quadrilateral are identified). The tangle A cuts open
B into symmetric annuli, left and right to the central vertical line in Figure 13.

Figure 13: A special admissible triangulation of B

Because p has trivial holonomy at the meridians of Lz, we can assume that the
cocycle takes the same values on symmetric edges. Identifying the annuli we thus get
a D—triangulation for the QHFT? triple (W, X, p). Since Hy (W, X, p) is computed
from the idealization and symmetric tetrahedra in the cusps have opposite branching
orientation, the result will follow if we show the existence of symmetric flat/charges.
Then each cusp tensor will be the identity map.
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The existence of flattenings with this property can be shown by using Lemma 2.13,
but for charges we need to take another route. Recall from the end of Section 2 that
flat/charges form affine spaces over an integral lattice generated by vectors attached
to the edges. For an edge of B, such vectors can be represented as adding +1 at one
of the left adjacent corner and —1 at the other, and the inverse for the right adjacent
corners. Using these rules and (2-20) it is straightforward (though tedious) to check
that any given flat/charge can be turned into one with equal quantum log-branches on
symmetric tetrahedra. |

6.2 Invariants of cusped manifolds and surgery formulas

Let us recall the QHG pseudomanifold triangulations 7" used in [4, Definition 6.2 and
Definition 6.3] to define the quantum hyperbolic invariant trace tensors Hy (7") for
oriented cusped hyperbolic manifolds.

Let M be a cusped manifold. Denote by Z the pseudomanifold obtained by taking the
one point compactification of each cusp of M. M admits a triangulation by positively
embedded hyperbolic ideal tetrahedra, possibly including some degenerate ones of
null volume (ie having real cross-ratios). Such a triangulation can be obtained by
subdividing the canonical Epstein—Penner cell decomposition of M . This gives rise to
triangulation (7}, zg) of Z, where zq is the cross-ratio function of the abstract edges of
T, the imaginary part of every cross-ratio being > 0. We call it a quasi-geometric ideal
triangulation of Z. If some quasi-geometric triangulation admits a global branching,
we say that M is gentle. More generally, M is said weakly-gentle if there is an
Z-triangulation (7, b, w) of Z such that (7, z), z = w™*?, is obtained via a (possibly
empty) finite sequence (7, zg) — ... = (Tj,z;) — ... = (T, z) of positive 2 — 3
transits, where (7, zg) is a quasi-geometric triangulation of Z as above. Each transit
(Ti, zi) = (Ti+1, Zi+1) is defined by Wr,(e) = Wr,_ | (e), with all exponents *; = 1
(see (2-18)). Every such a (7, b, w) can be enhanced to flat/charged Z—triangulations
T=(T,b,w, f,c).

Remark 6.2 Canonical flattenings can be defined only if (7, b, w) is obtained from
the idealization procedure (see Definition 2.11). This should happen very rarely, since
ideal triangulations with few vertices carry few idealizable cocycles. For instance, there
is no such cocycle for the canonical triangulation of the figure eight knot complement.

Given (T, zg), it is certainly possible to get an Z—triangulation (7', b, w) by performing
also some bubble moves (hence introducing new interior vertices). The authors do
not know any example of nonweakly-gentle cusped manifold, that is, such that we are
forced to do it. Anyway, dealing with bubble moves is a technical difficulty which
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will appear also in the proof of Theorem 6.4 (1) below. We overcome it as follows.
We fix an edge a of the canonical Epstein—Penner cell decomposition of M , and take
A made by two copies of a that intersect at nonmanifold points of Z; the second
copy runs parallel to @ within an open cell of the decomposition. Hence, A is a circle
covered by two arcs. We need to enlarge the notions introduced in Definition 2.17. We
say that (T, H) is a distinguished triangulation of (Z,a) if H is a subcomplex of the
1—skeleton of T isotopic to A4, that contains all the regular vertices of 7', and such
that one arc of A4 is covered by an edge / of H. We say that ¢ is a global charge on
(T, H) if

4 ife=1
(6-1) Cre)=10 ifec H\!
2 ifecT\H.

If H = @ this reduces to the usual notion of global charge on a closed triangulated
pseudomanifold whose nonmanifold points have toric links. By using bubble moves
and the existence of such usual global charges, it is easily seen that (7', H) supports
global charges as in (6—1) (see the proof of Theorem 6.8 in [4] for the details).

We say that 7 = (T, H,b,w, f,c) is a flat/charged Z—triangulation of (Z,a) if
(T, H,b,c) is a branched, charged and distinguished triangulation of (Z,a), and
(T,z), z = w*?, is obtained from a quasi-geometric (79, zg) via a finite sequence
(Ty,z9) = ... — (T, z) of transits supported by positive 2 — 3 moves and bubble
moves. By setting a = @ and H = &, this definition incorporates that for the weakly-
gentle case.

In [4] it is shown that flat/charged Z—triangulations 7 of (Z, a) (with arbitrary weights)
do exist and that

Hy(M,a)=Hn(T)

is a well defined invariant of (M, a), providing the weights of flat/charges to be 0.
To simplify the exposition, below we continue with this normalization. When M is
weakly-gentle we get invariants Hy (M). In fact, as a by-product of the following
discussion, we will realize that Hy (M, a) does not depend on the choice of a, so that
Hpy (M) is always well defined (see Corollary 6.5).

Let us recall now a few facts related to hyperbolic Dehn filling [30; 7; 27]. A quasi-
geometric triangulation (7j, zg) as above corresponds to the complete structure of
M . Tt can be deformed in a complex variety of dimension equal to the number of
cusps. If z’ is close enough to zg, (T, z’) is a triangulation by (possibly negative
[27]) embedded hyperbolic ideal tetrahedra in a noncomplete hyperbolic structure, say
M, close to M . In some case the completion of M’ gives rise to a compact closed
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hyperbolic manifold W, topologically obtained by Dehn filling of the truncated cusps
of M . The core of each attached solid torus is a “short” simple closed geodesic L;
of W, so that we have the geodesic link L =[] ;j Lj. Moreover, there are sequences
(W™, L™) obtained in this way such that the length of L" goes to 0 when n — +o0.
Hence (W", L") converges to the cusped manifold M in a neat geometric sense. From
now on we will consider small deformations z’ leading to such closed completions.

As well as (T, zg) gives rise to a triangulation 7 = (T, H,b,w, f,c) of (Z,a), Z’
close to zg gives rise to another flat/charged Z—triangulation 7' = (T, H, b, w’, f’,¢),
where w’ is close to w and the log-branch associated to the global flattening f”
corresponds to a continuous deformation of the one for f. Recall that we have
normalized the flattening weights as 0.

Lemma 6.3 (See Neumann [24, p 469].) Let z’ be a small deformation of zq pro-
ducing (W, L), and mj be a meridian of each link component L ;. Then there exist
flattenings f" for the deformed triangulation (T, b, w’) such that the weights y,(f")
and y(f") of T" = (T, H,b,w’, f”,c) satisfy y2(f") =0 and y(f")(m;) =0 for
all j.

Note that the new weight y (/") is not completely determined, and that for any framing
curve /;j of L; (ie a longitude of a tubular neighborhood of L ) the deformed weight is
of the form y (f")(I;) = A(L;)+2k'm~/—1, k' € Z, where A(L;) is the complex length
of Lj, thatis, the logarithm of the dilation factor of its holonomy, which is a loxodromic
transformation of H3. Then we can take any value y(f")(l;) = A(L;) + 2k"w~/—1,
k"eZ.

Proof The logarithm of the derivative of the holonomy of m; is 0 at the complete
structure, but after deformation it represents a full 27 —rotation about L; [30; 7]. Hence
y(f")(mj) € Z~/—1m. The result then follows from the comments after Theorem 2.20.

O

An explicit construction of flattenings f” as in the lemma shall be recalled during
the proof of Theorem 6.4. Hence, we dispose of two flat/charged Z—triangulations
of (Z,a), T'=(T,H,b,w, f',¢c)and 7" = (T, H,b,w’, ", ¢), relative to a small
deformation z’ of the complete structure zo as above, leading to respective trace
tensors Hx (7”') and Hy (7). By the comments above, the boundary weight of the
triangulation 7" is not completely determined. However we have:

Theorem 6.4 (Cusped manifold surgery formula) Let (W, L) be obtained by com-
pletion of a small deformation z’ of zo, and T', T" be associated triangulations.
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Denote by p the hyperbolic holonomy of W. Then we have Hy (W, L, p) =N
Hn(T"). Moreover, associated to each cusp C; of M there is an explicitly known

map A\ (T"): {N —states of T} — C such that the following surgery formula holds:
HyW.L.p) =y Y [] Rv(a.b.w'. ' 0)s [T AR(T"))

s ACT J

where s runs over the N —states of T and Ry (A,b,w’, f’,¢)s is the matrix dilog-
arithm entry determined by s, for the tetrahedron with the continuously deformed
structure.

Corollary 6.5 If {(W,, L,, pn)} is a sequence of closed hyperbolic Dehn fillings
converging to the cusped manifold M , then for every arc a, lim, Hy(Wy, Ly, pn) =N
Hpy(M,a). Hence Hy(M) = Hy(M,a) is always a well defined invariant of M
(beyond the weakly-gentle case).

Proof Take the triangulations 7, associated as in Theorem 6.4 to (Wy, Ly, py) s0
that y(/,)((!j)n) = AM(L;j)n). Since this goes to 0 when 7 goes to infinity, the limit
triangulation of the sequence {7,’} has 0 flattening weights. Since the state sum
Hp (T) is an analytic function of the log-branches, the result follows. |

Remarks 6.6 (1) Theorem 6.4 is the analog for N > 1 of Theorems 14.7 and
Theorem 14.5 in [24], which describe surgery formulas for the volume, Vol(W'), and
Chern—Simons invariant, CS(W), of W

V=1(Vol(W) + V=1CS(W)) = > R(A.b.w', f') - ”*g__l Y ML)
J

ACT

where R is given by (2-9) and A(L;) is the complex length of L; (see the comments
after Lemma 6.3). The technical complications due to the bubble moves disappear for
N =1.

(2) If M is gentle and has a geometric branched ideal triangulation (7, b, w) without
degenerate tetrahedra, then for each 3—simplex the flattenings of 7" for a sufficiently
small deformation are just —x* times integral charges. It follows from the proof of
Theorem 6.4 that the scissors congruence class ¢z, (I/I{: L, p) of [4, Section 7] coincides
with Neumann’s deformed scissors congruence class (M) in [24, Theorem 14.7] (see
also Remark 6.12 and Conjecture 7.9 in [4], where the undeformed /§ (M) is denoted

cIfC (M))

(3) In general there are small deformations z of zy leading to complete manifolds
that are still cusped, that is only some cusps of M have supported a hyperbolic Dehn
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filling. There are also sequences of such cusped manifolds M", with (short) geodesic
links L", converging to M . Similarly to the fusion of QHFT with QHFT? (see
Section 5.3) we can define quantum hyperbolic invariants Hy (M", L") for which the
natural extensions of Theorem 6.4 and Corollary 6.5 hold.

(4) Theorem 6.4, as well as Theorem 6.7 below, shows a crucial distinction between
flattenings and charges in surgery, since we have to vary the former. This is explicated
in the example of Section 6.4.

Let us consider now (W, Lz, L°, p). Let L; be a component of L £, Xj =L;U L},
L} being the longitude of L; specifying the framing. Let U = U(L;) be a tubular
neighborhood of L; in W, and / C 9U be a nonseparating simple closed curve. Let
W (I) be obtained from W by the Dehn filling of W \ Int(U) along /. Denote by /*
the core of the attached solid torus.

Theorem 6.7 (Closed manifold surgery formula) Assume that p(/)=ide PSL(2,C)
and the weight k satisfies k([I]) = 0. Denote by p’ the natural extension of pjy\y to
W(l); Ly =Lz \Lj; k' the restriction of k to W(l). We have

(6-2)  HnN(W.Lx L% p,0,k) =5 Hn(W(),Lr, L°UI*UX;, 0, 0.k').
If moreover p is not trivial at the meridians of L and [ is a longitude of U , then
(6-3) GW. Lz, L% p.0.k) =N HY(W(). Ly, LOUI* UL}, p',0,K') .
Let us assume now that L° is made by r parallel copies of L j along the ribbon L #
that encodes the framing. So denote L° by A, ; with this notation, A = A,. Assume
furthermore that / = m is a meridian of L;, so that /* = L;. By applying inductively
both (6-2) and Proposition 6.1 to this situation we get the following:
Corollary 6.8 For every r > 2 we have

Hyn(W.Ar.p) =N HN(W.22.p) .
Remarks 6.9 (1) Though disjoint and complementary by hypothesis, formula (6-3)
is formally the same as that of Proposition 6.1, when replacing / by m.

(2) Assume (for simplicity) that L = L. When / is a longitude of L;, /* inherits a
natural framing in W (/). Hence we get a triple (W(/), L 7.0). It follovxs from the very
definition of the QHFT tensors that Hx (W, Lx, p,0,0) = Hx(W(l), L 2, p,0,0) and
the same with H; (when defined) replacing H .
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(3) We have seen that both H and H$, partitions functions display interesting
features of QHG. A main advantage of the H  ones is the possibility to set in a same
“holomorphic family” the QHG tensors associated to characters that are both trivial
and nontrivial at link meridians. Consider for example a hyperbolic knot L in S3,
endowed with the canonical framing J. Kashaev’s volume conjecture concerns the
asymptotic behavior of Hy (S3, L, pyiv) when N — +00. A reasonable variant of it
is in terms of the partition functions H (S3, L, puiv.0,0) =n Hy (S3, X, Ouiv). A
family as above could be useful in order to establish connections with the H  partition
functions of (S3, L, Phyp)» Where pnyp is the hyperbolic holonomy of the cusped
manifold M = S3\ L (see Remark 6.14).

The rest of the section is devoted to the proof of these results. This goes in several
steps.

A main tool is the simplicial blowing up/down procedure considered by Neumann in
[24, Section 11]. We use it just to get a simplicial version of (topological) Dehn filling.
Let Z be a pseudomanifold without boundary such that every nonmanifold point
has toric link. Let v be a nonmanifold point. Consider a closed cone neighborhood
N(v) of v, and a nonseparating simple closed curve C on the torus dN(v). The
topological Dehn filling of Z at v along C is the pseudomanifold Z’ obtained by
gluing a 2-handle to Z \ Int(N (v)) along C, and then collapsing to one point the
resulting boundary component.

Now, let T be a pseudomanifold triangulation of Z. Consider the abstract star
Star®(v) of v in 7. The boundary of Star® (v) is the abstract link Link(v) which is
homeomorphic to dN (v). Assume that the curve C is realized as a simplicial curve
on Link(v). Then the cone from v over C in Star®(v) is a triangulated disk D°. The
interior of Star®(v) embeds onto the interior of the actual star of v in T, Star(v),
which is made of the union of the 3—simplices having v as a vertex. In this way D°
maps onto a triangulated singular disk D in Z, that has embedded interior and singular
boundary immersed in the boundary of Star(v). Cut open T along Int(D) and glue
the double cone CD of D (this is a triangulated singular 3-ball Figure 14) so that
the top and the bottom get identified with the two copies of D resulting from slicing.
This gives a triangulation 7" of the pseudomanifold Z’ obtained by Dehn filling along
C'. It has the property that every (abstract) tetrahedron of 7" persists in 7". Referring
to the topological description, the interior of the cocore of the 2—handle attached to
Z \ Int(N (v)) is isotopic to the interior of the union H’ of two edges, each joining v
to the new vertex v’ at the “center” of CD. In fact H’ is the core of the solid torus
added by the Dehn filling.
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Remark 6.10 Note that in general there are very few simplicial curves on a given
Link(v). Hence to get such a simplicial description of an arbitrary Dehn filling, we will
usually have to modify a given triangulation. For the peculiar QHG pseudomanifold
triangulations considered in this section, retriangulating will be possible by using QHG
isomorphisms, hence without altering the trace tensors. In fact, any two triangulations
of dN(v) are connected by a finite sequence of 2—dimensional 1 <> 1 “flip” moves
(see Figure 6), and 1 <> 3 moves obtained by replacing a 2—simplex with the cone of
its boundary to a point. Since N (v) is homeomorphic to Link(v), any such a sequence
is the boundary trace of a sequence of 2 <> 3 moves and bubble moves in Star(v).
(Note, in particular, that H passes through the new interior vertices). By using the
arguments of Theorem 6.8 in [4], we will always be able to choose that sequence so
that it lifts to a sequence of QHG transits.

Figure 14: An instance of double cone on a disc

Let us consider now a distinguished triangulation (7', H) of (Z, a) as above, and let
Z', triangulated by T, be the result of a simplicial Dehn filling of Z along a curve
C. Denote H” the graph union of the knot H’ (the core of the solid torus) and the
image of H in T’. We define the notion of global charge on (7", H"”) by formally
replacing H by H” in (6-1).

Lemma 6.11 Let ¢ be a global charge on (T, H) such that the charge weight of the
curve C is 0. Then ¢ extends to a global charge ¢’ on (T', H').

Proof The complex CD is made of pairs of adjacent 3—simplices, respectively above
and below the disk D. For a 3—simplex of the top layer with charges ¢y and c; at the
edges in D (ordered by using an orientation of D, say), we will put the charges —cg
and 2 — ¢ at these edges for the symmetric 3—simplex in the bottom layer. Then the

Algebraic € Geometric Topology, Volume 7 (2007)



Quantum hyperbolic geometry 903

other charges are ¢, = 1 —c¢o — ¢y and —c;, respectively. We have the charge sum
Cr/(e) =2 at each interior edge of D, and C7/(e) = Cr(e) at the edges e of dD. For
the top edges e’ of CD we can also choose the charges so that C7/(e’) equals Cr(e),
where e is the copy of ¢’ in D C M . Indeed, there are n degrees of freedom in doing
this, where n is the number of 1-simplices in the curve C used for blowing down.
Then we check that C7/(e”) = 2 at the bottom edges. In particular, the subcomplex H
survives in 7",

Note that C7/(eg) = —C7(eq) at the edges eg and e; of H'. We have to check
that C7/(eg) = 0, so that (2-25) is satisfied on (77, H” \ /). In fact, C7/(eg) is
n minus the sum of the 2n charges at the bottom edges of CD, which is also the
sum of charges in 7'\ CD at these edges, minus 7. We can form 7 pairs of such
charges corresponding to the 3—simplices of the ideal triangulation 7" of M having a
2—simplex in D. Replacing for each of them the pair with 1 minus the last charge, we
get that Cr/(eq) is equal to y(a), with y defined in Section 2 and « is a normal path
in Link(v) that runs parallel to C on one side (see Figure 15). Because the weight of
C is zero, we deduce C7(eg) = 0.

If H # &, we have to show that it can be deleted from H”. As the two components /
and H \/ are isotopic and satisfy Cr/(/) =4 and Cy/(e) = 0 for each edge e € H\ /,
we can retriangulate the surgered pseudomanifold Z’ so as to delete them, by using
a sequence of charge transits starting from (7", H”) and terminating with a negative
bubble move [3, Proposition 4.27; 4, proof of Theorem 6.8]. Retriangulating Z’
backward, we eventually find a sequence of charge transits terminating at (77, H', ¢’).
The result follows. |

Figure 15: A normal path g in Link(v) running parallel to a blowing-up
curve C. Four 3—simplices of 77\ CD glued to three 2—simplices of D are
shown in the picture.
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Proof of Theorem 6.4 To simplify assume that M has only one cusp. Take 7" =
(T, H,b,w’, ", c). For the first claim we assume that the meridian m of L is a
simplicial path in Link(v), where the vertex v of T corresponds to the filled cusp.
This is possible due to Remark 6.10.

Lemma 6.11 implies that ¢’ extends to (7, H') after the Dehn filling along 7. Extend
the branching b by letting the new vertex v’ be a pit of the double cone CD we
splice in T'. By using Lemma 6.3, arguments similar to that of Lemma 6.11 show
that we can give the same log-branches on the 3—simplices of CD, in a pair above
and below the disk D [24, p 454]. Hence we get a distinguished flat/charged 7-
triangulation for (W, L, p). The weight h € H'(W;Z/2Z) is clearly 0 because of the
epimorphism Hy(M;Z/27) — H(W;Z/27) induced by inclusion. As in the first
claim of Lemma 5.11 (2) we see that the (unnormalized) trace tensor for CD is N
times the identity map from the linear space attached to the top copy of D to that for
the bottom one. Combining this with the normalization of trace tensors in (2-22) gives
Hy(W, L, p) =HN(T").

By Lemma 6.3 we have (y(f”) —y(f’))(m) = —2+/—17. Hence the collection of
values of f” — f” determines a path / normal to the cusp triangulation induced by
T, that intersects m once and whose homology class is Poincaré dual to (y (/") —

y(f"))/2+/—1x . Denote by
Alj) = (A, ..., AlAG]

the sequence of flat/charged Z—tetrahedra (possibly with repetitions) determined by
the 2—simplices met by /. Each time / goes through a 2—simplex it selects one of its
vertices, whence a cross-ratio modulus, say z;, of the tetrahedron A’ corresponding
to the 2—simplex. The values of /" on A’ are obtained from those of f” by adding
or subtracting 1 at the edges corresponding to the other two vertices, as indicated in
Figure 16. For any fixed tetrahedron A of T all three flattenings may be eventually
altered. They differ from those of f’ by adding or subtracting integers distinct from
—1, 0 or 1 exactly when A = A’ = A/ for some i # j. Now, recall from (2-22) that

Hy(M,a) =HN(T) =) [] Ru(A.b,w, f.0)s.
s ACT

Put ¢ = exp(2r+/—1/N). Forany x e C\ {¢/,j =1,..., N — 1} the function g
defined in (2-10) satisfies [4, Lemma 8.2]:

k (1 _XN)I/N
=1

st =e [ 15

j=
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Then, it is easily checked that for a flat/charged Z—tetrahedron (A, b, w’, f’, ¢) with
"= (fy. f{. /) and positive branching orientation, if /" = (fy +n, f{. f, —n) we
have
n 7\y—1
(6-4) Ry (A b,w', [ ¢c)s =Ry (A bW, [/, ¢)s 1_[ %
j=1

up to multiplication by N —th roots of unity, where i and k are as in (2—-12). For each
2—simplex met by / we can apply (6—4) to the corresponding tetrahedron, or the similar
formula (deduced from Corollary 5.6 of [4]) for any other branching. This defines the
function A n(7"), so that we get

HN(T") = Y5 [lacr RN(A D W', f7 ¢)s
= Y [lacr Rn(A bW, [/ 0)s AN(T).

The conclusion follows from the equality Hy (W, L, p) = Hn(T"). O

Figure 16: Flat/charge corrections for a Dehn filling

Proof of Theorem 6.7 Again for simplicity, assume that L is a knot (ie it has one
component). We apply the very same arguments as for the first claim of Theorem 6.4. In
particular, Lemma 6.11 applies verbatim. Since o(/) is trivial, for an arbitrary flattening
the weight along / (computed in the flattened Z—cusps) lies in Zx v/—1. Hence we can
again use Theorem 2.20 to deduce the existence of flattenings with zero weight along
/. Then we give the same log-branches on the 3—simplices of the singular 3-ball CD,
in a pair above and below the disk D [24, p 454]. Note that if we use D triangulations
leading to H partition functions, then both parallel components L, L’ that make
A survive in the Hamiltonian subcomplex. If we can deal with H{ —ones, only the
framing longitude L’ survives. Hence we eventually get a distinguished flat/charged
Z-triangulation for (W(I),1* UA, p), or (W(l),1* UL’ p) respectively. O
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6.3 Manifolds that fiber over S'!

Lemma 5.11 (3) gives a practical recipe to compute the QHFT partition functions
of mapping tori. A specific class of distinguished flat/charged Z-triangulations
of (W[W]’ Z[,/,], p) is obtained by composing one for the trivial mapping cylinder
F x[—1,1], say Zgiv, with the monodromy action on the e—triangulation (7', b) of
F x {1}, and then gluing the two boundary components. The monodromy action
can always be decomposed as a sequence of flip moves: a single flip on the ideal
triangulation 7" associated to 7 defines a flip on (7, b) if it is not adjacent to a
marked corner, and it lifts to sequences as in Figure 17 otherwise. We view these
sequences as the result of gluing tetrahedra. Hence the monodromy action determines a
branched triangulated pseudomanifold 7. This can be completed with global charges,
and, as for any p we are free to choose the cocycle in 7y, , we can also complete T
to a flattened Z -triangulation. Equivalently we can define a sequence

(6-5) s: (T,b,L)—...>Y(T,b,L)

of e—triangulations with (+ )-Log—Z—parameters compatible with p. Note that the
edges of the associated pattern 7 of flat/charged Z—tetrahedra are disjoint from the
Hamiltonian link H . Since Hy (Zyiv) =n id, we deduce that Hy (Wiy1, Liyg: 0) =n
HN (7).

Figure 17: Lifts to e—triangulations (economic ones — see Remark 3.13 —
at the first row) of flip moves on the corresponding ideal triangulations near
marked corners. The tetrahedron associated to the first flip (first and third
ones for the second row) degenerates for a sequence s with (—)-Log-Z—
parameters.

Using a similar construction we now prove the relationship with the quantum hyperbolic
invariants Hp of fibered cusped manifolds [4]. Recall that W \ L is homeomorphic
to Int(W[y1). Denote by / the number of components of L.

Proposition 6.12 If Int(V[N/W]) supports a (necessarily unique) complete hyperbolic
structure with holonomy p., then ’HN(W[W], Z[,/,], 0c,0,0) =5 N2 Hy(W\ L).
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Proof Let S\ V be the fiber of W\ L — S!, equipped with an ideal triangulation
T’. First we show the existence of sequences s: 7/ — ... — ¥(T") of flip moves
decomposing the monodromy action, such that the associated pseudomanifolds 7 are
topological ideal triangulations of W \ L, which moreover have maximal volume.

The first condition follows from the fact that the monodromy is homotopically aperiodic
(ie pseudo-Anosov), so that 7 is genuinely three-dimensional. When S\ V' is a once-
punctured torus, the second condition is a consequence of a result of Lackenby [22],
showing that the monodromy ideal triangulation of Floyd and Hatcher [15] is isotopic
to the canonical Epstein—Penner cellulation. More in general, since no edge of 7 is
homotopically trivial, the results of Francaviglia [16] imply that we can straighten the
tetrahedra to oriented geodesic ones, possibly with overlappings, so that the algebraic
sum of volumes is Vol(W \ L). This is known to be maximal [17].

As in Section 6.2 we can complete 7 to a flat/charged Z—triangulation 7’. Hence
the invariants Hy (W \ L) can be computed as trace tensors H (7). We note that
in the case when there are several fibrations of W \ L, or Ts’ is not canonical, the
invariance follows from Theorem 6.8 (2) in [4], which shows that any two flat/charged
T —triangulations of W \ L with maximal volume are QHG-isomorphic.

Let us denote 7 the result of cutting 7’ along the fiber. The two boundary copies are
marked pleated hyperbolic surfaces (77,b', L) — S\ V and (T',b', L) - Y (S\ V),
with shear-bend coordinates (ie (—)—Log—Z—parameters) £ that determine completely
the log-branches of 7;. Recall from Section 5.5 the families of flat/charged Z—
triangulations F; and F, and let C € F, C; € F; have boundary structures (7, b, L),
associated to (77,0, L), and (T, b, L;), respectively, at F x {1}. We have:

HN(T') = Tr(HN(ZY))
= N2 Tr(HN(r];/)®ld®2[)
= N2 Te(Hn(C) o (HN(T) ®id®*) o Hy (w(C)) ")
= N7 lim; i Tr(Hn (Cr) o (Hn (T},) ®1d®2) o Hy (¥ (C1)) ™)
= N2 limy i Tr(Hn (Cr # T % (= (Co)))).

Here we use the invertibility of H (C) (Proposition 5.13) and the equality Hy (C) =xn
Hay (Y (C)). We define ’Z;/ ; as the continuous deformation of 7, obtained from the
sequence

s¢: (T,b,Ly) — ... > Y(T,b, L)

similarly as in (6-5) (see also Figure 17). In the last equality, C; * 7/, * (—=y/(Cy)) is
for any fixed ¢ a distinguished flat/charged Z—triangulation of the mapping cylinder of
Y. Hence Hn (Cy ’Z;/, * (=¥ (Cy))) does not depend on ¢ up to conjugacy, and we
conclude with Lemma 5.11 (3). O
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By following the above computation backwards, we see more in general that for any
PSL(2,C)—character p that can be realized by (—)-Log—Z —parameters on some ideal
triangulation of the fiber S\ V', we have

(6-6) HN Wiy, Ly, 0,1, k) = N Tr(Hy (7))

where 7 is a pattern of flat/charged Z—tetrahedra associated to a sequence similar to
(6-5), but with e—triangulations equipped with (—)-Log—Z—parameters compatible
with p.

Remark 6.13 The formula Hy (W \ L) = Tr(Hn (7)) expresses the quantum hy-
perbolic invariants of fibered cusped manifolds as amplitudes between two markings of
the fiber, identified with a pleated hyperbolic surface. For a similar construction based
on representations of quantum Teichmiiller spaces, see Bonahon and Liu [9].

6.4 Example: the figure-eight knot complement

Here we compute the QHFT partition functions of (S3, K) for N > 1, where K is
the 0—framed figure-eight knot in S3. Recall that S3 \ K is fibered over S!, with
fiber the once-punctured torus X ;; the O—framing of K is induced by the fibra-
tion. For simplicity, below we consider only characters p of injective representations
71(S3\ K) — PSL(2,C). The restriction to >1,1 of such representations can be
realized by (—)—Log—Z—-parameters on any ideal triangulation of X ;, so that, by
(6-6), we can determine the corresponding subspace (still denoted Def(S?3, K)) of the
phase space of Definition 5.9 by using the monodromy ideal triangulation.

The monodromy ®: ¥ — X of S 3\ K is isotopic to the hyperbolic element

21 11\(10
(1 1):(0 1)(1 1) €SLQ2.2).

This description of [®] € Mod(X;,1) can be understood in terms of the Diagram of
PSL(2,7) (see eg Floyd and Hatcher [15]) via the action of ® on topological ideal
triangulations of X ;, which can be represented by two flip moves. See Figure 18,
where the left picture is a lift to R? \ Z? of such a triangulation.

The monodromy ideal triangulation 7" of S3 \ K is obtained by realizing each flip
move via the gluing of an ideal tetrahedron, first on a fixed triangulation of X ;, then
on the resulting one. The remaining four free faces are identified under ®. It is not
difficult to see that T is isotopic to the canonical geodesic ideal triangulation of S3\ K
with its complete hyperbolic structure. The gluing pattern of the tetrahedra in 7T is
shown in Figure 19.
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Figure 18: The composition of flip transformations for the monodromy of
S3\ K

Figure 19: The face and edge identifications for the canonical geodesic ideal
triangulation of S3\ K

It is well-known (see [30]) that the deformation space of smooth (not necessarily
complete) hyperbolic structures on S* \ K for which T is geodesic is isomorphic to
the algebraic set Defyyp (S 3\ K) C H? x H? of points (w5, Zy 1) such that

1
1t 1 1 1 2
wy eH2\ =+ =i |t >V15¢, zgl=< -4 .
2 \{2+2 L } o =3 T o
In fact we can realize w, as a cross-ratio modulus of the edge ¢, in the tetrahedron
A with positive branching orientation (back edge in the left tetrahedron of Figure 19),
and similarly for zy in A™. Note the exponent —1 in the formula for zy, which is due
t the negative branching orientation of A™. Hence Defyy, (S 3\ K) is a subspace of

(6-7) C = {(wz.20) € (C\{0.1)* | wywlzy =7 = 1,

the whole set of solutions of the edge compatibility relations for cross-ratio moduli (see
Definition 2.10). By an easy computation we find that the edge compatibility relations
for log-branches and charges are:

fr+2fy +2f+ /T
6-8) (S) = (arg(wy) + 2 arg(wo) + arg(zy) + 2 arg(zo))/mi
cy —|—2€6—2c5r—cl+ =0
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where the flattenings fl.Jr and f;~ correspond to the cross-ratio moduli w; and z;
of AT and A~ respectively. Hence, by (2-2) we see that the QHFT phase space
Def(S?, K) is the covering of C given by

Def(S?, K) = {((wa: f57 — ¢ foif —e). zos fy + o fi + ¢y ) eCxC
| (wy,zg) €C, (S) is satisfied }.

Fixing the dilation factors p(m) and w(/) of the standard meridian m and longitude /
of K, we get geometrically meaningful subspaces of Def(S?, K). Below we follow the
orientation conventions and some computations in [24, Section 15] which we reproduce
for clarity. First we have

pwim) =zwy . p(l) =wiwy >

Consider the complete hyperbolic structure of S3\ K. It is obtained by solving 1 (m) =
loru(/)=11in Defhyp(S3 \ K), the solution being z; = (w;)* = exp(mv/—1/3).
The possible weights k € H'(3(S3 \ U(K)); C) for this solution actually take values
in 7+/—1Z (see Neumann [24, Corollary 5.4]). Corresponding flattenings satisfy

[+ =k /aV=1 | 2ff 2" =k()/xv-1

which we rewrite as
(6-9) fo + /ol + /i + /T =—k(m)/xv=1 and 4ff+2fF42=k(l)/n=1
by using £+ fE + fiF = F1. Now (6-8) simplifies to
(6-10) fr+2fy 21+ =0
Together with (6-9) this gives

ko S =24+ 3 -
JT\/—_I

(6-11) fo = — ot

fr= s 2 K (),

Here the first equation comes directly from (6—10) and the first identity in (6-9). The
third follows from it and and

k(1)

+2fy =—(f]" +2 +)_——(
f] fO fl f() ﬂ
The second equation of (6-11) is a straightforward consequence of the others. Finally,
the weight 7 € H'(S3\ K;7/27) is 0 when and only when k(m) € 2+/—17Z. Also,
since T is quasi-geometric we have *p%,, = 1, so that integral charges are obtained
by letting ¢;” = — f;" on AT and ¢; =+ ;" on A™.

~2).
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Clearly (6-11) still holds true for points of Def(S?, K) sufficiently near the complete
solution, if now k(m)/m~/—1 and k(I)/7 ~/—1 are replaced with k(m) = (k(m) —
log(pu(m)))/~—1m and k() = (k(l) —log(u(/)))/~/—1m. Hence, in the vicinity of
the complete structure we have the strata
W22/ =k(). 2/, 202Gk (m) = 1),

4" —km) +2—k1)). i €23,
parametrized by the lifts k(m) and k(/) of w(m) and u(/).

Let us now consider points of C corresponding to hyperbolic structures whose metric
completion is obtained from S3\ K by (p, ¢) Dehn filling. We have

plog(uu(m)) + qlog(u(l)) = 2w/~ 1.

Here we have to distinguish between the weights of flattenings and charges, which
behave in a different way (see our notation before Theorem 5.3). Since for weights of
flattenings we must have pky(m) + gky (/) = 0 (the compatibility condition about the
edges making the core of the added solid torus), the flattenings f = f” of Lemma 6.3
satisfy

p(fs + D +aQrf 20 =—p(fy + 1T+ T+ D) +a@f+2 /T +2)=-2.

Let us fix r, s € Z such that ps —gr = 1. Solving simultaneously (6—10) and the last
equation gives:

Py + 1D +2q(0 =215 — f7) =2

1/ p— +
S:_E(f() +f0)

<:>{r:1_2f0__f1_
fo=—2s—f;F

(:}{f?_zl—r+§f0++4s

Finally, we get

fo ==25—f3

6-12 T=r—1-2fT,
( ) f1 r f() {f1_=1—r+2f0++4s.

The parity condition f0+ + f1+ + fo + J €2Z (for the class h € HY(S*\K:7/27)
to be 0) is automatically satisfied. Finally, we are free to choose any charge with 0
weight on the meridian curve C = m?[9 of the added solid torus. This is obtained
directly from the system (6-11) by replacing the fl'.lL with F ]’;.i and taking the charge
weight k = k., with the additional condition pk.(m) + gk.(l) = 0.
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Now we can compute the QHFT invariants of (S 3, Ky) as functions on Def(S 3K ).
Given an N —state s of 7', put a = s(2) B = s(O) y = s(3) and 6 = s(l) where i
denotes the face of A" opposite to the i —th vertex. By (6-6) we have:

N7*HN(S?, Ko, p)
N-—1
= > Ryt w ST +) RN(A™,b™,z, f7,c
aﬂy8=0
Z (wy =i /CO)N ! g(wO) g-yﬂ—i-(m—i-l)y

o,B,y,6=0 g()
x w(wy, wi e —y) 8(e+B—9)

Z/—cl /c0 )7 [Zo]g(l) é__ag (m+1)82 S(a+B—v)

0 g(zg) w(zh/¢, 271 —9)
[Z 0lg (w) :) c; w/lc;rzg—cl—zzlcg)T—l

g(zp)
N-Lo
x Y P wwh wiTH N = B) (/8.2 N —a) T
o,B=0
By the proof of Proposition 8.6 in [4] we have
[zo]g (wg) — g((z5)™)* g (wp)
g(z) lg(D]?

and w(z/8 2y N —a) ™ = o((zh)*, (271 *|a)*

where z* is the complex conjugate of z. Thus, setting

N-1 B / 1
S /’ Iy _ B2 ’ —1 =14+ B? s S
(. wh) = > P oy wiB) = Z; [1— o
B=0 B=1 k=1 0
we get
HNn(S?, Ko, p)
+ z *
= N2 e et 8 T) (i)ﬁ( 0 S, wh) ()" ()
For instance, by using (6-11) with k(m) =k(/) = f0+ = 0 and the global charge with
cijE =F fii, we see that for the complete hyperbolic structure pcomp on S 3\ K we
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have
(6-13) zo = (wp)* =exp(—in/3N) ., zj=(w))* =exp(5iw/3N).

Hence

PG

lg(D)?

Let us finally consider hyperbolic (p,q) Dehn filling of 3\ K. Denote S (K(p.q)
the surgered manifold, L the core of the surgery, and p(, 4) its hyperbolic holonomy.
Because of (6-11) and (6-12) the difference f”/ — f is given on the edges ¢q, ¢;
and e, of A" (resp. A7) by 0, r and —r (resp. —2s, —r + 4s and r — 2s). Put
N =2m + 1. From Theorem 6.4 we deduce

| ( iTL’/3N’e

—5i7‘[/3N)|2

HN(S3’ KO’ IOCOIIlp) = N € R>0.

Hn(S? (Kp.): L. P(p,g) =

N2 (w ’— ci"w/lc(‘)"zz) ey /c0 )7 g((z()) )* gz(wO)
|g(1)|
s —2s5
<Y g Tl = oG G
o,B=0

Remark 6.14 Denote by H?\, (p) the subsum in Hy(S3, Kg, p) made of the sum-
mands with no ¢ phase factor:

N1 g2((zg)")* g (wy)
lg(D)]?
Z/—l

Ng li[ (l—w g‘k)(l—;(’)é—k)'

At the complete structure we have positivity of the summands (w6 being, for example,
as in (6-13)):

/c+ /— Cl /CO

MO (p) = (wy T w0 2T =)

0 ~ |g( lgwp)? =
(6-14) HY (Peomp) = Z H

Te(12 11— k(2"

This can be compared to the Kashaev’s invariant (K)x of K (ie the Jones polynomial
Jn (K) associated to the N —th dimensional irreducible representation of s/(2, C),
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normalized as 1 on the unknot and evaluated at ¢). Indeed we have

oo (INEN S E e
( >N_<JN(0)>’¢_;”U1| — & ZH §k|z

,BOkl

where ]_[1_1 — ¢’y = N is used in the second equality. It is known that the ra-
tio (Jn(K)/Jn(0))|c essentially coincides with the quantum hyperbolic invariant
Hn(S3, K, py), where pg is the (necessary trivial) flat PSL(2, C)—character of S3
(see eg [3, Section 5]). What we see here has a different flavor: a relationship between
(K)n and the function Hy(S3, Ko, p) on Def(S3, K).

Remark 6.15 Recall the space C in (6-7). As already mentioned after Definition 2.10,
we have a holonomy map hol: C — X to the character variety X = X(;(S?\ K)).
(See Riley [28] or Gonzalez-Acufia and Montesinos-Amilibia [18] for a complete
description of the latter). The map hol is generically 2 :1 and the image contains the
geometric component of X [11]. We can express the above partition functions in terms
of standard generators of X by the following observation. Considering S3 \ K as the
mapping torus of the monodromy ®, the edges eq, ¢; of AT are identified with a
longitude / and meridian m of the punctured torus X; ;, and in A~ we have (66 is
opposite to eq):

eo = ®(l.m), ey =), ey=d(m).

As above, assume that p has nontrivial holonomy at »2, / and /.m. Take a flat/charged
T—triangulation of (S*, Ky, p) as in Section 6.3, with PSL(2, C)—valued cocycle z.
Denote z; the value at /, and so on. Note that Zg () = Az A7, where 4 = z(S1),
the cocycle value on the standard meridian of the knot K. Then the cross ratio moduli
of AT and A~ are given by

wo = [0:27(0) : 2;2m(0) : 2 (m) (0)]
20 =[0: za(1) 2o (m)(0) : o) Zd(m)Za1) (0) : Zmz1(0)].

We use the branching to remove the two-fold ambiguity of hol, as it allows to specify an
equivariant association of a fixed point for each peripheral subgroup of p(r;(S3\ K)).

Remark 6.16 Formulas for H; (S 3 Ko. p), the Cheeger—Chern—Simons invariants
of PSL(2,C)—characters of S3\ K with fixed weights, come exactly in the same way.
In the peculiar situation of the complete hyperbolic structure with the weight 0 and
its hyperbolic Dehn fillings, they coincide with those of [24, Section 15]. For more
general characters the formulas take the same form, but now the arguments live in the
space obtained from Def(S3, K) by forgetting the charges.
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