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In Chapter 13 of his notes [4], W. Thurston states a general result, Theorem
(see also Corollary 13.6.2), regarding the existence and uniqueness of circle pack
prescribed combinatorial type on closed surfaces. This theorem treats the cases ol
g =1 and g > 2; it is pointed out that the case g = 0, which is not proved i1
notes, is a result of E.M. Andreev [1,2].

It is implicit in Thurston’s notes that the continuity method used there to
Theorem 13.7.1 in the cases of genus ¢ = 1 and g > 2 could be modified to give i
of the g = 0 case. Such a proof would be very different form Andreev's. The pur]
the present paper is to present such a proof. We separate the statement of the
case into two parts: Theorem A below, which deals with standard circle packing
Theorem B, which allows the circles to intersect at prescribed angles. These the
have applications to conformal mapping [3].

1. A circle packing on the Riemann sphere or in the plane is a collection of closer
or the Riemann sphere on in the Euclidean plane with the property that the in
of the disks are disjoint. The nerve of such a circle packing is the graph which
vertex for each disk and an edge connects two vertices if and only if the corresp¢
closed disks intersect.

Thurston’s theorem, in the case of circle packings, is the following;
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Theorem A. Let T be a triangulation of the Riemann sphere P, There exists a circle
packing of P whose nerve is isomorphic to the one dimensional skeleton of T; any two
such circle packings are images of each other under some linear fractional transformation
or its complex conjugate.

2. We begin the proof with some formulas for the Euler characteristic. Let V, E,
and F' denote the number of vertices, edges, and faces in the triangulation 7. Then

(1) VoE+F=2
Since 3F = 2E, we can eliminate E in (1) and obtain
(2) 2V = F +4.
It will be convenient to label the vertices of the triangulation T by vy, vs,...,vy.
Let r = (ry,rz2,...,rv) be a vector of V positive numbers. Then r determines a

polygonal structure on the topological 2-sphere |T| as follows. Associate to each face
of T, with vertices (v;,v;,vi) say, the Euclidean triangle determined by the centers of
three mutually (externally) tangent circles of radii r;, r; and ri. Transfer the Euclidean
metric on this Euclidean triangle to the associated face of 7. Note that the metric is
well defined on an edge which is common to two different faces. In this way |7| becomes
n locally Euclidean space with cone type singularities at the vertices; we denote this
space by 7.

The curvature of T, at the vertez v;, denoted by &, (v;), is defined as follows. Consider
all faces of 7, which have v; as one of their vertices. Let o(v;) be the sum of each angle
at v; in each of these triangles. Then

(3) K (v;) = 27 — o(v;).
Let us note that
v
(4) > k(i) = 4m.
i=1

Indeed, the left hand side reduces to 2rV — ¥ 6, where T~ 6 denotes the sum of all
angles of all triangles of 7;. This sum is equal to 7F. An application of Equation (2)
now establishes (4).

3. If A > 0 then 7; and 7,, are similar in the sense that corresponding angles are
equal. Therefore k,(v;) = K. (v;). It turns out to be advantageous to normalize the map

r— f(r) = (k. (v1), £ (v2), . .., K (VV))
by restricting its domain to the simplex
(8) A= {(ri,rz...,rv) ERY i >0,r2>0,...rv >0&ry +ro+...+ry =1},
It follows form (4) that the range of f can be taken as the hyperplane
(6) Y= {(nwnyw) €ER iyn+ g+ ...+ yv = dr).

4. For convenience of notation, assume that vy, vy, vy are the vertices of a single fi
7o of T. We now prove that the existence assertion of Theorem A will follow once it
shown that the point
po = (4r/3,4r/3,47/3,0,...,0),

for example, lies in the image of the map
f:A-Y.

To see this, suppose f(ro) = po. If we remove that face 7o from 7;, then the remaini
triangles can be placed isometrically in the plane, one by one, in an orientation p
serving manner, keeping identified edges coincident. Since the curvature is zero at ea
interior vertex of this complex it can be shown that we obtain in this way an isomet
embedding of T;, less 7o onto a triangle in the plane. {To prove that this is so, one ¢
first show that the process of placing adjacent faces in the plane yields a well defin
isometry once the image of an initial face is fixed. For suppose a sequence of adjace
faces are placed in the plane in this way and suppose the first face in the sequence
the same as the last. Then the placement of the first and of the last face will agree-t]
is clearly true if the sequence of faces surrounds only one interior vertex of 7, less
and can be shown to be true in general by induction on the number of such vertic
The second step in the proof is to use the fact that this placement process provides
locally isometric embedding of T;, less 7o into the plane and is an actual embedding
the boundary of 7, less 7. It is easy to see that a local embedding of a topologit
disk into the plane which is an actual embedding on the boundary must by a glot
embedding. One concludes that this placement process is a global isometric embeddi
of T;, less 7 onto a triangle in the plane}.

We have constructed an isometric embedding, call it ¢, of T;, less o onto a triang
ABC in the plane. It follows from the definition of 7;, that if we center a circle of radi
ri at the point ¢(v;) we obtain a circle packing in the plane whose nerve is isomorpl
to the one dimensional skeleton of 7. Stereographic projection transforms this packi
to a packing of the Riemann sphere with the same property.

It will be useful when we discuss uniqueness to observe that triangle ABC' is nec
sarily equilateral. To verify this, weld another copy of triangle ABC to this one alo
corresponding edges. One then obtains an isometric image of all of 7;,. We can calculs
the curvature at the vertex ¢(v;) which, we may assume, corresponds to the point
directly from the definition (3) using this isometric image. We see that the curvture
A is 27 less the sum o(A) of all angles in this isometric image with this vertex A. Tl
sum o(A) is clearly twice the angular measure m(4) of angle A in triangle ABC. (
the other hand, we know by the definition of py that the curvature must turn out to |
4m/3. Thus 47 /3 = 21 — 2m(A). Hence m(A4) = = /3. Similarly, m(B) = m(C) = =
and so ABC is equilateral.

5. We now show that f : A — V is one to one, Let v = (r},rh...,r}) m
r = (r{,r4,...,r{) be distinct points in A. Let Vy be the set of vertices v, of 7 {
which r} < r{". Note that the definition (5) of A implies that ¥y is n nonempty prop
subset of the set of all vertices of 7.



Consider a vertex v € Wy together with all the faces of 7! which have v as vertex.
In each such face there is an angle at v, and we classify this angle as type a if it is the
only angle in this face which has its vertex in Vo, of type f if two vertices in this face
are in Vy, and of type v if all three vertices of this face are in V. Now

(7) > se(v) = ¥ 21 — 0(v))

vEV vEV,

= 2n[Vo| — Y (Zs of type a) — 3 (£s of type 8) — S(4s of type 7).

Consider three mutually tangent circles in the plane and their triangle of centers. If
one of the circles shrinks and the other two either expand or stay the same size, and
if the three circles always remain mutually tangent, then the angle in the triangle of
centers with vertex at the center of the shrinking circle will (strictly) increase. If two
of the circles shrink and the other either expands or stays the same size, then in the
triangle of centers the sum of the two angles which have their vertices at the centers of
the shrinking circles will increase. These observations show that if 7 is replaced by 7’
in equations (7) then

(8) M Ken(v;) > MU Krr(0;).

vEVy vEVp
Indeed, in passing from r” to ' the radii at v € V, shrink and so the first two quantities
in

3 (£s of type @), 3 (<s of type B), Y (Zs of type )

will each increase, and the third will remain constant. Since V; is a nonempty proper
subset of vertices, not all angles are of type 7. It follows that the inequality in (8) is
strict and that f: A — ¥ must be one-to-one.

6. We now examine the behaviour of f(r) as r tends to a boundary point s =
(81,82,...,8,) of A. It will turn out-and this seems very remarkable-that f cannot be
extended continously to the boundary of A, yet the set of accumulation points of f(r)
as r tends to the boundary of A form the boundary of a polyhedron. Let V, be the set
of vertices v; in 7T for which s; = 0; V) is a nonempty proper subset of V. We classify
the angles of 7; into types «, 8, v as above. Then as r — s we have

Y(4s of type a) — m|al,
9 X(Zs of type ) — =|B|/2,

Y(4s of type v) — =|v|/3,

where |z| denotes the number of angles of type z. Therefore equation (7) yields

(10) lim 3" &,(v) = 27|Vq| — 7|a| — % i
«lu:mco 2 3

= 2r|Vy| — 7 - (no. of faces with a vertex in Vy).

From (8) and (10) we see that the image f(A) of f : A — T lies in the boun
convex polyhedron Yj formed by intersecting ¥ with the half spaces

(11) > yi > 2r|I| — 7 - (no. of faces with a vertex in Vr = {v; :i € I})

i€l
as I varies over all nonempty proper subsets of {1,2,...,V}. We have also seen t
the accumulation points of f(r) as r — 9A lie on the hyperplanes

(12) 3 yi=2n|I| - - (no. of faces with a vertex in V; = {v; : i € I}).
i€l

which form the boundary of ¥5.

7. We know that f : A — Y; is a continuous 1-1 mapping. Hence, by Invaria
of the Domain, f is a homeomorphism. We also know that f(r) — 8Y; as r — 04
follows by elementary topology that f : A — Yj is surjective. Indeed, merely pass to
one point compactifications and apply the simple fact that if X, ¥ are Hausdorff spn
with X compact and connected and Y connected, and if ¢ : X — Y is continuous
open, then ¢ is surjective.

8. We complete the proof of the existence part of Theorem A by showing t!
po = (47/3,47/3,47/3,0,...,0) is in the image Y5 of f : A — Y (see Section
According to (11), this can be done by showing that for every nonempty proper sub
Vi e, ol fa I R v

(13) Muﬁ.. > 27|I| — 7 - (no. of faces with a vertex in Vi = {v; : i € I}),
el
where po = (p1,p2,...,pv) = (4r/3,47/3,47/3,0,...,0).
If [I| = V — 1 then every face has a vertex in V; = {v; : ¢ € I'}. Therefore the rj
hand side of (13) is, by (2),

(14) 2a(V —1)—w- F = 2.
For subsets I of this cardinality the left hand side of (13) becomes

(15) > pi =8n/3 or 127/3.
el
Thus pg satisfies (13) when |I| = V — 1.

If |I| = V — 2 similar reasoning shows that the right hand side of (13) is zero wl
the left hand side is at least 47 /3. Thus p, satisfies (13) in this case also.

We shall show that pg satisfies (13) when 1 < |I| € V — 3 by proving that the ri
hand side of (13) will be negative in these cases. First we rewrite the right hand side i
more invariant form. Let Fy, Fy, Fy denote, respectively, the number of faces of T wh
have exactly 1,2,3 vertices in V. Then the vight side of (13) is 7(2|1| = Fy — Fy— Fy). ]



Figure 1. The angle of intersection of two disks

7, denote the number of edges of T which have both of their boundary vertices in V.
Phen the simplicial complex 77 spanned by the vertices of Vi has Euler characteristic
(o = |I| = Ez + Fs. Since 3F; + F = 2E;, we can eliminate E; from the expression for
(o and obtain 2xo = 2|I| — Fs — Fy. Therefore the condition (13) that (p1,pa,... ,pv)
ies in the image of f can be rewritten as

17) >opi>7(2x0 — F1)
i€l
or every nonempty proper subset I of {1,2,...,V}.

We wish to show that the right hand side of (17) is negative for 1 < [I| £ V - 3.
for that purpose we may assume that 77 is connected. The Euler characteristic of a
:onnected simplicial 2-complex can be interpreted as 2 — 29 — n where g is the genus
ind n = 1,2,... is the connectivity. In our case g =0and yo=2—-n.lfn >3 there is
1o0thing to prove. If n = 1 or 2, one of the components of the complement of 77 contains
1t least two vertices in V — V;. Therefore we can find an edge (¢',y") where the vertices
¢’ and y’ are in V — V;. We can even choose z/ and y’ so that there is an edge (v',a")
with ¢ in V}. If we examine the star of ¥’ we can find a triangle face (z,y,a) of T with
1€Viand r,ye V-V

Now look at the union of the star of z and the star of y. If all the vertices adjacent
io v and y belong to V; the {z,y} is a component of the complement of 7;. Since there
are at least three vertices in V — V; we must be in the case n = 2. Therefore the right
fand side of (17) is negative in this case since (z,y,a) is an F} type triangle. In the
temaining case the set of vertices adjacent to z and to y contains a € V; and some
vertex z (# @,y) € V — Vr. It follows that there are three F; type triangles in the union
of the stars of x and y.

9. The proof of the existence part of Theorem A is now complete. We have seen
that a given triangulation T of the Riemann sphere P can be realized as the nerve of a
vircle packing of P. By means of a linear fractional transformation of P we can always
nrrange the realization so that any three preassigned mutually tangent circles will have

ly

Figure 2. Prescribed intersection angles

equal radii; oo will be an interior point of the face whose vertices are their centers. 1
nerve of this packing on the finite complex plane forms a triangulation of an equilate
triangle by straight line segments.

Let the circles which correspond to the vertices vy, vz,. .., vy have radii 71,72, 000,
respectively. We may assume that ri+ra+...+71v = 1. For ro = (r1,72,...,7Tv) We
caleulate the curvatures f(ro) of T,, by means of this triangulated equilateral trian
as was done in the last paragraph of Section 4. If vy, vq, vs correspond to the vertice:
the equilateral triangle we find that

F(ro) = (47/3,47/3,47/3,0,...,0).

By the injectivity of f, ro is uniquely determined. Therefore the radii of the cir
in this normalized circle packing are uniquely determined. It is clear that two ci
packings with the same abstract nerve and with corresponding radii equal are (pro
of improper) rigid motions of each other. This proves that all circle packings wk
realize the same triangulation of a 2-sphere are linear fractional transformations of e
other followed possibly by a reflection. This completes the proof of Theorem A.

10. We now consider a generalization of Theorem A in the spirit of Theorem 13
in Thurston’s notes (loc. cit) for the case g = 0. Let 7 be a triangulation of the 2-sph
let £ be the set of edges in T, and let @ : £ — [0,7/2] be any function. A family (
closed disks on the Riemann sphere P or in the plane will be said to realize the d
T, @ provided the following conditions are satisfied: (a) the nerve of C is isomorphi
T, and (b) two disks C; and Cj in C intersect if and only if their angle of intersection
radian measure ©(e;;), where e;; is the edge of 7 which spans the vertices correspon¢
to C; and C;. (The angle of intersection of two disks is the one in the exterior of
two disks; see Figure 1.) We shall prove the following result.

Theorem B. Let T be a triangulation of the 2-sphere. Let @ : € — R be a func
defined on the edges of T with the property that 0 < ©(e) < w/2 for all e € £. Ass)
that © has the following two properties: (i) If ¢ 4 e, + €3 is a cycle of edges in T {
O(e1) +O(ez) + Ofes) < m, and (ii) if ey + ey + €3 + €4 is a cycle of distinct edges i



Figure 3

hen @(ey)+6O(es) +O(es) +O(es) < 2. Then there exists a family C of round disks on
hie Riemann sphere which realizes the data T, 0. This family C is uniquely determined
p to a linear fractional transformation or its conjugate.

11. The proof proceeds as before except for several additional complications. The
st complication arises in constructing 7;. The metric on a face with vertices v;, v, vx
hould be the Euclidean metric of the triangle of centers of three disks which inters-
ct pairwise at the nonobtuse angles @(e;;), @(ejx), and @(ex) and which have the
adii prescribed by r. The following lemma from [4] guarantees the existence of such a
onfiguration.

Lemma 2. For any three nonobtuse angles 6;,8,, 65 and any three positive numbers
1, P2, Pa, there is a unique configuration in the plane consisting of three disks having
hese radii and intersecting in these angles.

The proof of Lemma 2 refers to Figure 2. Determine the sides lj, I3, I3 of the desired
tiangle of centers as follows. Side /y is the length of the third side of a triangle which
as sides p; and p; and included angle = — 6;. Sides I; and [; are determined similarly.
‘o see that ly, [, I satisfy the triangle inequality note that property (i) of Theorem B
nplies I} < py+p3 < ly+13, and similarly for [; and I3, because the angles of intersection
re nonobtuse, Thus the configuration shown in Figure 2 can always be constructed and
i uniquely determined.

12. Having constructed 7, we proceed as before to define the curvatures at the
ertices vy, vy, ..., vy and thereby obtain the map

._.mv T =t .%T,v = n%ﬂﬁdavﬁawﬁﬁnvi... .Rwﬁc_\vv A — 2

‘he previous proof (Section 5) that f is one to one can be imitated with the help of the
sllowing lemma from [4].

P

",

p1(0A1/0p1)

Figure 4

Lemma 3. Consider three circles in the plane which intersect pairwise in nonobtu
angles. If one radius decreases and the other two remain the same, and if the circh
continue to intersect each other at the original angles then, in the triangle of center
the angle at the vertex of the shrinking circle will increase and the other two angles wi
decrease.

Let the radii be py, p2, p3 and let the triangle of centers have sides of lengths Iy, Iz,
and vertices at Ay, Ay, As. If we fix A as the origin, so ||A; || = I3, then we can differe;
tiate A; = lu, where u is a unit vector, to obtain

04, 0l A
19 e + 3B,
) 8o~ opflll '
where B is orthogonal to A,. Note that (Figure 3) I3 = p; cosy1 + pa cosy; and so
Qmw s s Y2 .
M e == dabia. — —_— A
(20) 3 [ o siny; .S.w} sin7y, + cos 11
Since pgsinye = pysiny; = h, (20) becomes
0ls Amﬁ m‘ﬁv
21 — =—h | ==+t =]+ cosm.
( v dp apy  Om i
The term in parentheses is zero since v; m.ﬁ 42 is a constant equal to the fixed ang
of intersection of circles 1 and 2. Therefore % = cos~;. Thus
1
al.
(22) .E.wﬂun. = 1 €o8 1,



Figure 5

ich is the distance form A; to the point of intersection of the radical axis of circles 1

1 2 (that is, the line through their points of intersection) with the line joining their

ters. It follows that E% is the vector with its tail at A, and its tip on the radical
5 of circles 1 and 2. By mﬂuﬁnﬁﬁ_ its tip is also on the radical axis of circles 1 and 3.
e py %w is the vector from the common point of intersection of the three radical
s to grn\uwowa A, (Figures 4 and 6; in the context of Theorem B the configuration
figure 6 will not occur because condition (ii) in that theorem insures that the three
s have empty intersection).

Therefore, if py decreases and p; and p; remain unchanged, the vertex A; will move
rard the intersection point @ of the radical axes. If we show that @ lies in the triangle
senters it will follow that the angle at A; decreases and the proof of Lemma 3 will
complete.

If @ did not lie in the triangle of centers then one of the sides of that triangle would
arate @ from the vertex not on that side. Suppose side A; A3 separates @ from A,
in Figure 6. First note that the circle centered at A4; does not intersect side A;A;
ause if it did then the distance A; A3 would be greater than the sum of lengths of the
gents from Az and Aj to circle 1 and the lengths of these tangents are upper bounds
ry and ry since circles 2 and 3 must intersect circle 1 in nonobtuse angles (see Figure
Thus in Figure 7 the circle centered at A4; in the upper half plane determined by
i3 cannot enter the lower plane. It follows that the radical axis of circles 1 and 2
not enter the shaded region of Figure 7. This contradicts the fact that @ lies on that
ical axis. Therefore @ must lie in the triangle of centers.

13. We now consider the modifications to Section 6 that are needed for the present
case. Consider three circles which intersect pairwise in nonobtuse angles. Let the radius

Lb. for p; + ps

u.b. for py

Figure 6

of circle 1 shrink to zero while the intersection angles and the other two radii remain
constant. Then in the triangle of centers the angle at the center of circle 1 will increase
to the limiting value = — (6(e)), where e is the opposite edge. If the radii of two circles
shrink to zero then in the triangle of centers the sum of the two angles at the centers of
these two circles will tend to the limiting value 7. When all three radii shrink to zero
we use the fact that the sum of the three angles is constantly equal to «. Thus the three
equations (9) are to be replaced by

L(£s of type @) — T — O(e()),
(23) T(Zs of type §) — m|f]/2,

Y(4s of type v) — |v|/3.
Equation (10) is replaced by
n
(24) lim 3 we(v) = 2n|Vo| = D (7 — O(e(e)) — % - %
veVy
= 27[Vo| — 7 - (no. of faces with a vertex in Vo) + 3 _ O(e(a)).

We conclude that the image ¥ of f : A — Y is the hyperplane formed by intersecting
Y with the half spaces

ﬁwmv MSVma_M_Ia.?o,o:womméxwmégmeSV+ MU Q?\AQE
1€l o

for each nonempty proper subset I of {1,2,...,V}.

14. As in Section 8, the existence assertion of Theorem B will follow from showing
that py = (47 /3,47 /3,47/3,0,...,0) is in the image ¥j of f : A — Y. According to (25)
this is equivalent to showing that for each nonempty proper subset I of {1,2,3,...,V},

ﬁmmv M.u_,vmq_:lsf?o.o:pnami:r:§3§5<;+M®??E
€l o



Figure 7

there po = (p1,p2,...,pv) = (47/3,47/3,47/3,0,...,0) and where the summation
enotes the sum over angles of type a of the value of @ at the edge opposite the angle
[ type a.

If |I| = V — 1, (26) holds. Indeed, there are no angles of type a in this case, so the
urlier calculation (Equations (14) and (15)) applies.

If [T| = V' — 2 the left hand side of (26) is at least 47 /3. The first two terms on the
ght hand side cancel by (2) and the summation term is at most 7 since there can be
 most two terms in the sum. Thus (26) holds in this case as well.

For the cases 1 < |I| < V — 3, rewrite (26) in the form

1) 3> 7(2x0 = R) + X 0(e(a)) = 20 — Y - O(e))

€] o e
 the same way that (13) was rewritten as (17); here the sum of F; terms (each term
itisfies 7/2 < m — O(e) < ) is taken over the edges in the F} type triangles opposite
ie angles of type ev. These edges form a 1-cycle in the mod 2 homology of T.

As before, we have to show that the right hand side of (27) is negative and we may
sume that the complex spanned by V; is connected (yo < 1). The negativity is clear
Xo = 0. The reasoning in Section 8 following (17) showed that if yo = 0 then F >1,
id if xo = 1 then Fy > 3. Therefore the right hand side is negative if xo = 0; it will
8o be negative if yo = 1 and F; > 5. The remaining cases xo = 1 and F; = 3 or 4
¢ covered by properties (i) and (ii) of Theorem B. In case F; = 4 one can eliminate
@ case that the four edges are not distinct because in that case V — V; will consist of
¢ vertices on these edges. Since they do not span a triangle face, one of the vertices
U, vy is in V;. Therefore the left hand side of (27) is at least 47/3 and the desired
equality (27) holds, even though the right hand side may be zero.
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