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ABSTRACT 

It is remarked that if A, B ~ M,(C),  A = A t, and B= B t, B positive definite, there 
exists a nonsingular matrix U such that (1) UtBU = I and (2) UtAU is a diagonal 
matrix with nonnegative entries. Some related actions of the real orthogonal group and 
equations involving the unitary group are studied. 

I t  is a basic result that  two Hermit ian  (symmetr ic)  bi l inear  forms on a 
f inite-dimensional complex (real) vector  space can be  simultaneously diagonal- 
ized via a congruence transform, provided that  at  least one is posit ive definite. 
In  this note we remark that  the same is true for every pair  consist ing of a 
posit ive definite Hermi t ian  form and a symmetr ic  form on a finite dimen-  
sional complex vector  space. 

W e  did not  f ind this result in several current  textbooks of l inear a lgebra  
and  matrix theory. W e  were  originally mot iva ted  to s tudy this subject  because  
it is one of the main tools in adapt ing  the construct ion of [2] to the real 
orthogonal  case (for a rough explanation see the  final remark).  For  s implici ty 
we shall express our s tatements  in matrix language. 

Let  us fix the notation. Mnm(K), K = R , C ,  is the space of real or complex 
n × m matrices;  Mn(K ) = Mnn(K);  I = I n ~ Mn(K ) denotes  the identi ty;  and  
we identify M,x(K ) with K". 

For  every matrix A,  X is its conjugate and A t its transposte.  
Fo r  n>~m, we set U n m = ( p ~ M n m ( C ) : Q t p = I } ;  U , = U n n  is the  

uni ta ry  group, and  O n = U n ~ Mn(R ) is the real orthogonal  group. S n = ( A 
Mn(C):  A t = A } denotes  the complex symmetr ic  matrices.  
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If X is a subset of C % then X ~ = { z ~ C" : i t w  = 0 Vw E X }. We denote 
by Gnk the Grassmannian manifold of complex linear k-dimensional subspaces 
of C"  

Consider: 

(A) The action on G,, k of O. considered as a set of linear maps: 

0,,  × G,, k ~ ( P , V )  ~ P V  ~ G,, , .  

(B) The congruence action of U,, on S,,: 

U , × S , , ~ ( Q , A ) ~ Q % Q ~ S , , .  

(C) F o r A E S  .... the e q u a t i o n X t X = A ,  XEU,,,, , .  

First we shall classify the orbits of the action A by completely elementary 
tools. This turns out to be equivalent to the classification of the orbits of B, 
when the action is restricted to the matrices A for which the equation C has 
solutions. Finally we shall complete the classification of B by a slightly more 
subtle topological argument,  obtaining as a corollary a full discussion of the 
existence of solutions for C. 

Let us denote by G '  = G,~,k, s = 0 . . . . .  k, the subset of G,,, defined by 

G ~ =  { V : d i m c V C ~ V = s } .  

It is clear that G,a. consists of the union of the G '  and that each G '  is 
invariant under  the action of O,.  Moreover: 

(a) if V,  W ~ G ' ,  there exists Q ~ O, such that Q( V c~ v )  = w ~ W--'. 

(b) if Q( V (q v )  = w A w for some O e o,,, then Q( V (~ v ) ± = ( w (~ 

w ) ~ ;  
(c) Q V =  W i f f  Q V  • = w l 

The above remarks show that it is enough to classify the orbits of O2p in 
G 0 C G2p p. 

Fix a complex number  • = a + ib (a,  b E ~ ,  i a = - 1, b :~ 0), and define 
M p  to be the set of matrices A ~ Mzp(R ) such that: 

(1) D e t ( A -  t l ) =  ( t  - X ) u ( t  - X) v, 
(2) V A = K e r c ( A -  h I ) ~  G2p p (in fact ~ G°).  

The flmction M v ~ A- -*  V a E G ° is a natural bijection, and it is immediate 
that: 

Mr, ~ A = P t B P  f o r  s o m e  P E O2p i f f  P V  B = V . 
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Thus it is sufficient to classify the orbits of the conjugacy action of O2p on My. 
As before, let h = a + ib, b ~ O, be a fixed complex number. Let us define 

for every c ~ (0,1] 

A ( c )  A ( X , c ) (  a bc - 1 )  
= ~ ~ M 1 , 

- b c  a 

and for every c I <~ c a <~ • • • <~ c n ~ (0,1] define 

A ( c  1 . . . . .  cp)= [A(c,)  . . . . .  A(cv )  ] ~ Mp, 

that is, the block-diagonal matrix having the A(ci)  along the main diagonal. 
Our aim is to show that in fact the A(c  1 . . . . .  cv) are the "normal form 
representatives" for the conjugacy action of Our on M v. 

Let (e t . . . . .  e2v ) be the natural basis of C 2v. Set 

z j = e ~ _ l  +icte2j and wt=e~i+icie21_1,  1=1 . . . . .  p. 

Note that 

and that 

- 1 / 2  d e f  r~ z \ 

( e( c,)z,  .... ,e( c.)zp, e( c, ..... l.( c.)w. ) 

is a unitary basis of C an. Let F = F n be the unitary matrix representing this 
change of basis; by a short computation we have: 

LEMMA 1. 

where 

. . . . .  c p ) e - - a ( c ,  . . . . .  c . )  

(xIp bS(cl ..... c.)) 
A(c, ..... c . )= 0 XI. 
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S(c,  . . . . .  c o ) = [ S ( c , )  . . . . .  s ( c , ) ] ,  

S ( c i ) = ( 1 - c ~ ) c / l  

We can now state our first result. 

PROPOSITION 2. For every A ~ Mp there exist Q ~ 02p and a uniquely 
determined A(c 1 . . . . .  co) such that Q-1AQ = A(c 1 . . . . .  c o ). 

The proof splits into the following two lemmas. 

LEMMA 3. Proposition 2 still holds i f  one replaces Q ~ 02o with P ~ U2o. 

Proof. By the previous lemma, in order to prove the existence part it is 
enough to show that Z-1AZ  = A(c I . . . . .  cp) for some Z ~ U2o. After choosing 
any unitary basis of V A and of VA l respectively, we may assume that 

A 1 = W - l A W  = 
XIp D ) 

0 XI ° , W ~ U2o. 

Let D = TH be the polar decomposition of D (T ~ Up, H =  H t, H positive 
semidefinite and uniquely determined). Let N ~ Up be such that N - I H N  is 
equal to the diagonal matrix [tl . . . . .  tp], ti>~ tj+~ >~ 0. Setting R = [T- tN,  N], 
clearly R - l A I R  = ?~(c x . . . . .  c,), where t i = S(ci) (note that S(c) is a decreas- 
ing homeomorphism between (0,1] and [0, + ~ ) ) .  The uniqueness of 
(c I . . . . .  cp) follows from the uniqueness of the Hermitian part of the polar 
decomposition and from the fact that if D'  = BDC, B, C ~ Up, then D '  = T'H' 
and H'  = C-  IHC. • 

LEMMA 4. Let A, B ~ Mn(R); then the following facts are equivalent: 

(a) there exists U c Un such that U-1AU = B; 
(b) there exists P E GL(n ,R)  such that p - I A p  = B and e - ~ A ' e  = t¥ ,  

(c) there exists P ~ GL(n ,R)  such that e - ~ A o e  = B o and P-1A1P = B1, 
where Ao, A 1 ( B o, B1) are respectively the symmetric and the skew-symmetric 
parts o f  A (B); 

(d) there exists Q ~ 0 ,  such that QtAQ = B. 



SIMULTANEOUS DIAGONALIZATION 219 

Proof. That (d) implies (a) and that (b) is equivalent to (c) are trivial. 
(a) implies (b): let U = V + i W ,  V and W real. Since A and B are real 

matrices, we get immediately from 

the relations (0) 

UtAU = B, 

UWU--_ B t 

A ( V + i W ) = ( V + i W ) B  

A t ( V -  i W )  = ( V -  i W ) B  t 

and hence A V = VB and A W = W B ,  

and hence A t V  = VB t and A t W  = W B  t. 

On the other hand, there exists t ~ R such that P = V + t W  is nonsingular. 
Then it follows immediately from (0) that P - l A P  = B and P-1Atp  = B t. 

(c) implies (d): Let P = HR be the polar decomposition of P (H symmetric 
and positive definite). It is easy to prove in succession the equations 

RBo Rt = H-1Ao  H =  A o and RB1R t =  H - 1 A 1 H =  A x. 

Thus the proof of the lemma and also of Proposition 2 is complete. 

We can call each A(c  1 . . . . .  cp) the normal-form representative for the 
orbit. By translating everything into terms of the action on G O we can say also 
that the eigenspace V x of A ( c  1 . . . . .  cp)-- that  is, the subspace having as a 
unitary basis (P(c i )z 1 . . . . .  P(cp )z p) defined before Lemma 1--is the normal 
representative of the corresponding orbit. Notice that the restriction to V of 
the canonical symmetric bilinear form [(x, g ) =  xtg] is represented with 
respect to that basis by the diagonal matrix T = [t 1 . . . . .  tp], tj = P(cj)a(1 - c~) 

[0,1). Summarizing: 

PaOPOSITIOr~ 5. For each V ~ Gnk there exist a uni tary basis o f  V and a 
uniquely  determined diagonal matrix T = [t I . . . . .  tk] t, ~ [0,1], t j >1 t i+ 1, wh ich  
represents the canonical symmetr ic  bilinear form wi th  respect to that  basis. V 
a,,zl W admit  the same T i f f  there exists Q ~ 0 n such that  Q V  = W.  The f i rs t  
t 1 . . . . .  t s are equal to 1 i f f d i m  c V n V¢ = s. 

In this way we have obtained the claimed simultaneous diagonalization 
theorem only for those symmetric matrices A for which the equation in (C) 



220 R. BENEDETrI AND P. CRAGNOLINI 

above has a solution. We want now to generalize this result to any symmetric 
matrix, that is, we shall prove the 

PROPOSITION 6. Let  A = A t E Mn(C ). Then there exist U ~ U,, and 7" = 
[t~ . . . . .  t,,], t i e R ,  ti>~tj+l>~O, such that U t A U = T .  The tj are uniquely  
determined to be the eigenvalues o f  the Hermitian part H o f  the polar 
decomposition A = Z H  o f  A. 

An equivalent (perhaps more precise) statement is the following 

THEOREM 7. Let  A,  B ~ M,,(C) be such that B = ~t and is positive 
definite, and A = A t. Then there exists a basis (b 1 . . . . .  b , )  o f  C n such that: 

(a) ~ A b j  = ~ B b j  = 0 for every i 4: ]; 
(b) b~Bb i = 1 for  every i; 
(c) b[Ab i = t i, ti ~ R,  t~ >1 0 for  every i. 

Moreover the t~ are uniquely determined up to permutation. 

Proof. After choosing any orthonorrnal basis for B, we may assume that 
B = I. Furthermore note that it is enough to prove the theorem when A is 
nonsingular: in fact, let A be any symmetric matrix, and set V o = { v ~ C n; 
v tAw = 0 for each w ~ C n }. Of course A (as a bilinear form) is not degener- 
ate on Vo' .  Let (b l , . . . , b s )  be a basis of Vo ± satisfying the required proper- 
ties, and fix any unitary basis (bs+ 1 . . . . .  bn) of V o. Then the basis (b 1 . . . . .  b,~) 
of C"  works. Thus we may assume A to be nonsingular. We now use 
induction on n; that is, if p ( k )  is the statement that part  (a) of the theorem 
holds for all k × k matrices A o, B 0 satisfying the hypotheses, we shall prove: 

(i) p(2) [pO) is trivial]. 
(fi) p(2k)  implies p(2k  +2) ,  k >/1. 
(iii) p(2k)  implies p(Ek + 1), k >/1. 

Step 1: Proof o f  p(2). Let 

(a b) 
A =  b c " 

We want to find a nontrivial solution z, w ~ C 2 for the problem 

(a)  .~tw = 0,  

(b) z ' A w = O .  
(o) 
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Set a = w x / w  2, where  w t =  ( w l ,  w2), and consider a as an e lement  of P1C. 
I t  follows from (a) that  i f = - z 2 / z l ~ P x C ,  z t = ( z l ,  z2) , and  from 
( z l w 2 ) -  XztAw = 0 that  

a a + b  +----T" (oo) 

It  is enough to f ind a solution for (00). Sett ing a =  x + iy,  a = a 1 + ia 2, 

b = b 1 + ib 2, c = c 1 + ic 2, B = (b  l, bz)  t, we get from (00) 

(11~112 - 1 ) n  = MD, (000) 

where  

t ( a l - - c l  - - a 2 - - c 2 1  
D = ( x , y ) ,  M =  a z _ c  z a l + c  1 }. 

In the solution of (000) there are three possibilities: 

(1) det  M = 0; then there exists D ~ R 2 such that  M D  = 0 and IIDII = 1. D 
is a solution. 

(2) B = 0; then D = (1,0) t is a solution. 
(3) det  M ~: 0, B ~ 0. In this case there exists H ~ R 2 such that  M H  = B. 

W e  look for a solution of the form tH, t ~ R ,  t ~ O. It  is enough to solve the 
equation q ( t ) =  IIHIl2t 2 - t - 1 = 0, which is always possible. 

Step 2. Denote  by  f f ,  k the involution def ined on Gnk by  f " ' k ( V ) = V ,  
and by  L ~' k its Lefschetz number  (see for instance [3]). 

CLAIM. A s s u m e  L n+k'k  --/: O, p(k) ,  and  p ( n ) .  Then p ( n  + k ) / s  true. 

Proof  o f  the claim. For  every subset W of C n + k define 

W T =  ( v ~ C ~ + k : v t A w = O f o r e a c h w ~ W } .  

Define also f :  G n + k k ~ G ,  + k k by  f ( V )  = V ± r. Suppose that  f has a fixed 
point  V o. If ~ is a good basis of V o [in the sense that  it  satisfies p ( k )  for the 
restr ict ion to V 0 of the bi l inear  form v tAw]  and if ~ '  is such a basis for 
Vo ± =Vo r, then ~ U ~ '  is a good basis of C ~+k. On the other  hand,  denote  
by  u 1 . . . . .  u , +  k the roots of the polynomial  de t (uA - (1 - u ) I ) ,  and choose a 
continuous arc q : [0 ,1]  --* C - ( u 1 . . . .  ,Un+ k } such that  q(0) = 0, q(1) = 1. Set 
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A(s) = q(s)A + [1 - q(s)]I. For s ~ [0,1], A(s) is symmetr ic  nonsingular, and 
A(0) = I, A ( 1 ) =  A. 

As before, set W ~(~) = {v ~ Ca+k:  vtA(s)w = 0 Vw ~ W},  and define 
~ ( V )  = V ±v(,). Then  f~ gives a homotopy  be tween f l  = f and f0, where 
fo(V)=V±r(°)=f"+k'k(v) .  By hypothesis the Lefschetz number  of f is 
nonzero, and hence a fixed point V o actually exists. The  claim is proved. • 

Step3. Forn>~l, Le"+2.2=n+landhencep(2n)~p(2n+2) .  

Proof of  the assertion. Write G for G2n + 22 and let e t . . . . .  ee,, + 2 be a basis 
of C e"+2. Every W ~ G can be represented by  a matrix (v~i)~ Me,,~ e.e(C ) 
having rank 2. Let 

( t?b°l t)b°e t 
Phoh~ ( W ) = d e t  Vt~,l V~Le j '  l < ~ b o < b l 4 2 n + 2  

be the Pliickerian coordinates on G. Setting (bi ,  be)~ (al, a2) whenever  
l<,a l < a  n~<2n+2, l ~ < b  l < b  e ~ < 2 n + 2 , a n d b  t > a  t or b e > a n , l e t  

[a  t , a 2 ]  = { W ~ G: pb,,,~(W)= 0 for each (b t ,  be) ~ ( a l , a n )  }. 

It  is well known (see [4]) that: 

(1) [al ,  an] = { W  ~ G : W  (q A t ~;3 and W c A n}, where  A t (A2)  is the 
subspace of C e"+e generated by  e t . . . . .  e~ (e 1 . . . . .  eo~); 

(2) the interior of [a t, a2] is homeomorphic  to C a, d = a 1 + a n - 3; 
(3) the homology of G is given by  

Hej+I (G,  Z ) = 0, Hej(G,Z ) = ~ )  7/[(/1, a2]. 
a l  + ¢ l  2 - 3=j 

Since pb~ae(W) =Pb~bz(W), then f2~+2'2([ax, ae] ) = [ai ,  a2]. Moreover,  
via the identification of the interior of [a 1, az] with C a, we see that  fen+2.z 
actually acts as complex conjugation. Thus the map  preserves the orientation 
of the interior of [a 1, an] iff d is an even number.  It  follows that  the matrix 
represent ing 
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is equal to Iqtj) if j i s  even or to - Iqt~ if j is  odd, where q(j) is the number of 
cells of dimension 2j. 

It  is easy to verify that q(2j) = q (2 j+  1) if 0 ~< j~< n - 1 and q(2j -  1) = 
q(2j) if n + 1 ~< j~< 2n. So we get 

8n 
L2n+9'2= E ( - 1 ) ' t r ( f i 2 " + 2 ' 2 ) ,  = n + l .  

i = O  

Step4. LZn+Ll=l forn>_.l, andhencep(2n) impliesp(2n+l). 

In the same way as before, we get 

G2,+x x = P 2 . C ,  q ( j ) = l  for 0~<j~<2n,  

and finally L 9" + L 1 = 1. 

Thus we have shown that a basis certainly exists such that parts (a) and 
(b) of the statement of the theorem is satisfied. To achieve also part (c), it is 
now sufficient to multiply each element of such a basis, vj say, by a suitable 
exp(/si). The uniqueness of (t  t . . . . .  t , )  follows immediately from the same 
argument of the end of Lemma 3. • 

The following corollary is a consequence of Proposition 5 and the previous 
theorem: 

COROLL~a~Y 8. The equation UtU = A, U ~ U,m, A = A t, always has a 
solution, provided that the eigenvalues of the Hermitian part of  the polar 
decomposition of A belong to [0,1]. 

REMmaK 9. The stabilizers of the normal-form representatives for the 
above actions and hence the "number  of solutions" in the last corollary can 
be easily computed. Let T = [txlsl . . . . .  tkI J ,  as in Proposition 6. Clearly, 

s t (T)= ( U ~ U,:UtTU = T ) 

= ( [ Q I  . . . . .  Qk]:QiGOs, fft,--kO, Qk~Uskff f tk=O} • 

Set (with the notation of Lemma 1) 
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It  is almost immediate that: 

(a) St(A) = S t (A(q  . . . . .  cp)) = {Q_~ O2.: Q*AQ = A} = FStR(A)F ~, 

(b) Stn(A ) = {[Q1 . . . . .  Qk, Q1 . . . . .  Qk]: [O1 . . . . .  Ok] ~ St(T) and 

r =  . . . . .  1 .  

Finally, a less immediate but straightforward computation shows that for each 
R =  [Pl  . . . . .  Qk, Q1 , . . . ,Qk]~StR(A) ,  we have FRF l =  [ f (Q l )  . . . . .  f (Pk)] ,  
where if C = (cij)i,j= 1 ...... ~ M,(C), then f ( C ) =  B = (Bij)i,j= 1 ....... ~ M2s(R ) 
and 

Rec, j Imc~i] 

Bi J = - Im c~ j Rec~j ] ' c 0 = Re c~j + i Im c i i" 

FINAL REMARK. In [2] we developed the following program: 

(a) To construct an algorithm which yields: 

(1) a map J: M,(C) ~ M,(C) such that ](B)  = J(C)  iff B = P 1CP for some 
P ~ U, and ]o  J =  ]; 
(2) the stabilizer of each ](B). 

(b) To construct a second algorithm (in fact parallel to the first one) 
which yields a versal deformation o f  every ]( B ) wi th  the m i n i m u m  number  o f  
parameters (in the sense of [5]) of the form 

I ( B ) + L ( a  1 . . . . .  a~),  a i ~ N ,  L real linear. 

Moreover, by collecting in the same bundle all matrices B which reach ] (B)  
by the same formal steps of the algorithm, we obtain a "good" stratification of 
M~(C) in trivial fiber bundles, each admitting the restriction of J as a global 
"smooth" section. Versal deformations can be used to study the diagrams of 
bifurcation of this stratification. 

A similar program can be developed also in the real case by replacing U,, 
with O,c It is not the purpose of this note to give the details of this new 
construction; we limit ourself to the following remarks: 

(1) We obtain the starting step of the first algorithm by means of the 
above proposition 2. In fact it is easy to prove by induction that for every 
B ~ Mn(R ) there exists P ~ O n such that p t B p  = B 1 is a block upper triangu- 
lar matrix of a "distinguished type." This means that B 1 has along the main 
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diagonal either: 

a distribution rlk,  . . . . .  rlk,  for every real eigenvalue r, or 
• • • 1 1 s s a distribution A ( h , c  1 . . . . .  Ck, ) . . . . .  A ( X , c  1 . . . . .  ck. ) for every eigenvalue X = 

a + ib w i t h  b > O. 

Here kj>~k/+x>~l, and they are intrinsically determined (in fact by the 
similarity class of B); the c~ depend only on the congruence orbit of O. 
containing B. Note that this is, for instance, a generalization of the classical 
normal form of the real orthogonal matrices up to orthogonal change of basis. 

(2) The second step is obtained by acting on B I with Stl(B ) (the 
subgroup of O. which preserves the distinguished block-upper triangular type 
of B I) and performing a certain "elementary operation" among a well-defined 
finite list in order to obtain a more specialized form B 2. 

(3) The third step is given by operating on Bg. by St2(B ) [the subgroup of 
St I(B). . .] .  

(4) After a finite number of steps the process stabilizes I and we define 
I(B) = B=. 

(5) As it is evident from Remark 9, Stx(B ) [and a for t io r i  Stk(B)] can be a 
sort of "twisted" subgroup of O,. To avoid this, define BI = G - 1 B 1 G ,  where 
G is the unitary block-diagonal matrix having along the main diagonal a block 
Ik, k = k I + . . .  + k s, corresponding to every real eigenvalue and a block 
[Fk,, . . . .  Fk, ] (with the notation of Lemma 1) corresponding to every eigen- 

def  
value }t = a + ib, b > 0, of B x. It is clear that s t l ( B )  = G - I s t I ( B 1 ) G  is now 
a reasonably " tame"  subgroup of 13.. So it is convenient actually to perform 
the steps of the algorithm by acting with Stln(B), and so on. 

(6) It is now evident how certain auxiliary classifications (such as that of 
the orbits of the congruence action of U. on S n, which is the topic of this 
note) may arise naturally as a tool to list the elementary operations of the 
algorithm mentioned above. We end by noting that the fixed-point argument 
of Theorem 8 can be applied to get similar auxiliary classifications. For 
instance one can easily prove the following 

PROPOSITION. L e t  B ~ M.(C), B = - B t. Then there exists  U ~ 15. such  

tha t  U t B U  = [riSk, . . . . .  r~Sk, ], where  r i ~ R ,  r i >10, ( r  1 . . . . .  rs) is u n i q u e l y  
de te rmined  up  to permuta t ion ,  and  

l I n  fac t  w e  a re  a b l e  to  p r o v e  p o i n t  (4) for  m o s t  m a t r i c e s ,  a n d  s o m e  spec ia l  e a se s  r e m a i n  to  b e  

s t u d i e d .  
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