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0. Introduction and statement of the main results 

Working in real semialgebraic geometry one could easily have the feeling that the 
main facts can be realized by algorithms (e.g. path connecting points, triangul- 
ations, good strat if icat ions. . .  ) and the main trouble is to construct reasonably 
fast algorithms: in fact it is this (in principle) constructive nature of semialgebraic 
geometry and the existence of powerful computers which make it interesting in 
view of concrete applications. 

On the other hand, Nabutovsky's examples of non recursive functions associ- 
ated to natural semialgebraic constructions (see I-N]) tell us that there are some 
conceptual limitations to the above attitude. 

In this paper we consider some further examples of effectiveness-non effect- 
iveness results in semialgebraic and PL geometry: our starting point was the study 
of Shiota-Yokoi solution of the subanalytic (hence semialgebraic) Hauptvermutung 
([SY]) and the attempt to make it effective. 

Before starting we need to introduce some notations. 
We shall use systematically the notation: 

[A, . . . . .  A d  - ,  rB ,  . . . . .  s k i  

to mean that there exists an algorithm accepting the "objects" A I . . . .  , Ah as input 
and producing B 1 , . . .  , B k as output. 

With the same meaning we shall say also that "B 1 . . . . .  B k can be effectively 
constructed, starting from A t , . . . ,  Ah". 

Similarly we shall write: 

[ A1 . . . . .  Ah]+-~[B 1 . . . . .  Bk] 

to mean that " B t , . . . , B  k cannot be effectively constructed starting from 
A1 . . . . .  Ah", that is there doesn't exist any algorithm producing B~ . . . .  , Bk from 
A 1 , . . .  , Ah. 

* The authors are members of GNSAGA of CNR. This work is partially supported by MPI. 
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Some time we shall consider also systems: 

{ [A~ Ah] ~ [B~ Bk] 

[ c ,  . . . . .  c s ]  --, [ o , , .  , D , ]  

with the obvious meaning. 
A semialgebraic set is any subset X _ ~" (some n) with a presentation of the 

form: 
h k~ 

x = U (3 {f/j *,P} 
i=ij=l 

where e a c h f i j s R [ X l  . . . . .  X , ] ,  . u e {  = ,  > }. 
For  any such presentation set: 

r = ~ k i  d = sup{degree off/j} . 

By the nota t ion X e d ( n ,  p, q), n, p, q e N, we mean that X is a semialgebraic set 
in R" with a given presentation such that r < p, d < q. 

A semialgebraic map f: X --* Y between semialgebraic sets is a cont inuous map 
with semialgebraic graph Fs-. 

I f  K is a simplicial complex in R" (some n), P = I g I is the polyhedron in R" 
triangulated by K; # K denotes the number of  simplexes in K. A PL m-ball is any 
polyhedron B ~ Nn PL isomorphic to the standard m-simplex Am. By K~ we denote 
the standard triangulation of Am. 

Let us state now some of the results of the paper. 

Theorem 1 (strong effective semialgebraic Hauptvermutung  for d imension < 3; 
shortly: SEHm m < 3). Let K, L be finite simplicial complexes in ~". # K, # L < k. 
Let f :  I K I  ~ ILl be a semialgebraic homeomorphism with F S ~ d ( n  2, p, q ). Assume 
m = dim tKt = dim ILt < 3. Then 

[K ,  L , f ]  ~ [g: K '  --, L ' ]  

In, k, p, q] --* [O] 

where K '  is a simplicial subdivision of K, L' of  L, g is a simplicial isomorphism and 
# K', # L' < D ~ N (see Theorem 3.5). 

Theorem 2 (weak effective semialgebraic Hauptvermutung  for any dimension;  
shortly: WEH m Vm). With the same notation as in Theorem 1 but with arbitrary 
m = d imlKj  = dimlL[, one has 

[K, L , f ]  ~ [9: K '  -+ L']  

(see 3.3). 

In the PL setting we have the following effective trivialization of PL ball: 

Theorem 3. Let B = I KI be a triangulated PL m-ball, I KI ~ N m, # K < d, m < 3. 
Then 

[d] EO] 

where K' is a simplicial subdivision o f  K, L is a subdivision o f  the standard 
triangulation o f  A m, g is a simplicial isomorphism, D E N and # K' < D (see Problem 
2.2 and Proposition 2.23 and 2.24). 
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Remark. If m < 2 we are able to omit the hypothesis t KI ~ R m, that is we may 
assume [KI - ~n, n 4: m in general. 

Theorem 4. With the same notation as in Theorem 3, if  m is arbitrary and tK1 ~- ~", 
with m 4: n in general, then 

[ K ]  ~ [g: K'  ~ L]  

(see Problem 2.1 and Corollary 2.17). 

Remark. Theorems 3 and 4 are, in some sense, PL counterparts of Theorems 1 and 
2; in fact they shall be employed to prove the first ones. 

The SEH m for m ~ 4 is still open (to us). However the "PL counterpart" is false, 
that is we have the following non effectiveness result for trivialization of PL-balls of 
higher dimensions. 

Theorem 5. (a) For every m, n, d~ N there exists s = s(m, n, d)e ~ such that for 
every PL m-ball B = I KI ~- ~", triangulated by K with # K  < d, there exists a 
simplicial isomorphism g: K ' - -*L  where K '  is a subdivision of  K, L of  Kd, and 
#K '<=s .  

(b) For every m > 6 

Ira, d] ~ [D] 

such that D e t~ and s(m, d) = s(m, m, d) < D (i.e. s(m, d) cannot be bounded by any 
recursive function of  m, d) (see Corollary 2.18 and Remark 2.21). 

In the paper we are concerned with the opposition 'effectiveness-non effect- 
iveness"; we shall not consider the problem of the complexity of the algorithms 
(when they exist). 

We shall assume the existential solution of the (semialgebraic) Hauptvermu- 
tung by Shiota-Yokoi; however the eventual effectiveness (strong or weak) is not a 
consequence of their proof, not even in low dimensions: we shall discuss shortly the 
reason of it in (3.10). 

For basic facts about semialgebraic geometry we refer to [BCR] or to [BR] (in 
the second one some effectiveness questions are explicitly pointed out). 

For  basic facts about PL-geometry we refer to [RS] and [Hu]. 

1. Recall on a result of Novikov 

Integrating Smale's h-cobordism theorem (and its consequences) with the results of 
Adyan, Markov, on the "non-decidability of the triviality for finitely presented 
groups", Novikov (see [VKF])  proved the following result (in a formulation which 
is more convenient to our aim). 

Theorem (Novikov). For every m > 6 one can construct a sequence Jr = { M s = 
I Ksl}s ~ ~ o f  triangulated P L  submanifolds o f  R", dim M s = m, t3M s 4: ~ such that 

(i) [ I g s l e  Jr +-~ [ t ] 

where t e  { yes, no} and t is "yes" i f  M s is a P L  m-bali, t is "no" otherwise. 

(ii) [[K s [ ~ . / / ] - ~ [  t]  
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where t e { yes, no} and t is "yes" if dM s is a PL (m - 1)-sphere, i.e. PL isomorphic to 
~A,,), "no" otherwise. 

Novikov's theorem shall be one of the main tools in order to prove Theorem 5 
of the Introduction. 

The idea to use it (in fact a smooth analogous of it) in order to produce 
examples of non recursive functions in semialgebraic geometry is due to Nabutov- 
sky (see I-N]). 

2. On the effective trivialization of PL-balls 

We shall adopt the notation of [RS], in particular: we distinguish between m-cells 
and PL m-balls; if A, B are cells A < B means that A is a face of B; i fK  and L are 
(cell or simplicial) complexes, L <  K means that L is a subdivision of K; St(A, K) 
denotes the star of A in K. 

By definition a PL m-ball is PL isomorphic to the standard m-simplex Am. We 
denote by Kd the standard triangulation of A = Am. 

By a trivialization of B we mean a simplicial isomorphism g: K ~ L where 
B = Ig[ and L < K a .  

Problem 2.1 (WT,,: weak effective trivialization problem in dim m). It  asks for 

[ K ]  ~ [g: K ' ~  L]  

where B = I K] is any triangulated PL m-ball, K ' <  K, L <  K~, g is a simplicial 
isomorphism. 

Problem 2.2 (STm: strong effective trivialization problem in dim m). It asks for 

[ K ]  ~ l-g: K'  ~ L ]  
[d] --' [D] 

where B = IKI is any triangulated PL  m-ball, with # K < d, K' < K, L <  K~, g is a 
simplicial isomorphism D ~ I~ and # K' < D. 

We shall see, in particular, that WTm has solution for every m; on the contrary 
ST m has not solution for m > 5. In low dimension we have some stronger results. 

(A) Recall of  some simple facts of  PL-geometry 

We shall use systematically the following well-known facts which we state with 
emphasis on effectiveness. 

Lemma 2.3. For any cell-complex K with a number o f  cells # K < d one has 

EK] ---, I-H] 

l-d] ---, [D] 

where H is a simplicial complex such that H <  K, # H <__ D ~ I~, the O-skeleton H ~ and 
K ~ coincide. 

Proof See [RS], Proposition 2.9. [] 
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Lemma 2.4. I f  K, M are two simplicial complexes such that ]K] = I M[, # K ,  
# M <= d then one has: 

EK, M ]  ~ [ H I  
[d] -~ [D] 

where H is a simplicial complex such that H .r K, M, # H <= D ~ ~. 

Proof. Apply (2.3) to the cell complex K c~ M. [] 

Two cell-complexes K, L are said formally isomorphic if there exists a bijection 
q: K ~ L such that Va, z ~ K  a < z ~  q(a) <= q(z). 

Lemma 2.5. I f  K, L are cell-complexes, q: K ~ L is a formal isomorphism, # K, 
# L <-_ d then one has: 

[q :  K ~ L] ~ I f :  H ~ M ]  

Ed3 ~ EO3 

where H, M are simplicial complexes, H <3 K, M .~ L, f is a simplicial isomorphism, 
# H =  # M  < D ~ .  

Proof. The construct ion of H in Lemma 2.3 uses a suitable order on the cells of K. 
Induce the order on L via q. Construct  M as in 2.3 using this order. One  gets two 
formally isomorphic simplicial complexes, hence simplicially isomorphic. [] 

(B) Effective shelling and effective trivialization of PL balls 

Let B = [KI be a tr iangulated PL m-ball. 

Definition 2.6. A shelling of K is an ordering of the m-simplexes of K: 

O ' 1 ,  . . . , O "  h 

such that for every i = 1 . . . .  , h - 1 

Bi:= B\  U aj (B o= B) 
l < j < i  

is a PL m-ball (triangulated by the restriction of K). 

Remark 2.7. If m _-< 2 every t r iangulat ion K of a PL m-ball B carries some shelling 
(for m = 1 is trivial, for m = 2 see [Mo]).  

O n  the contrary, if m _-> 3 there are tr iangulations of PL m-balls (in fact of Am) 
without any shelling (see [R]). It is known (see [BM; S], and also [Ac]) that for any 
tr iangulat ion of any PL m-ball there exists a subdivision admit t ing some shelling. 

The proof (see [BM])  in the general case is not  effective and  uses the existence 
of a PL isomorphism with d,,. In fact we want  to prove that the effectiveness of 
shellings (up to subdivision) is equivalent to the effectiveness of trivializations. 

In analogy with the trivialization problems we can state: 

Problem 2.8 (WSm: weak effective shelling problem in dim m). It asks for 

[ K ]  ~ EK', ~ ]  

where B = I K] is any triangulated PL m-ball, K'.,~ K, and ~ is a shelling of K'. 
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Problem 2.9 (SS": strong effective shelling problem in dim m). It asks for 

[ K ]  --+ [K',  09 ~ 

[d] ~ [D] 

where B = I K [, K' < K, ,9: are as above, # K < d, D e [~ and # K' < D. 

We want to prove: 

Proposition 2.10. For every m, the strong (weak) trivialization problem for PL m- 
balls has solutions i[ and only !f the strong (weak) shelling problem has solutions. 
Shortly: WT," o W S ,  and S Tm ~ SS , .  

Proof  We shall prove ST,, r SS m. The proof works also in the weak case. 

(a) ST., ~ SS" 

It is enough to find solutions of SSm for any K < K , j  with # K  < d. This is a 
particular case of a more general statement. 

Lemma 2.11. I f  C = I KI is any triangulated m-cell in R m (i.e. C is a convex m-ball), 
# K <= d then one has 

{ EK] ~ [K',  5:3 

[d] ~ [D] 

where K' < K, # K ' < D ~ ~,  and ,~ is a shelling of  K '. 

We postpone the proof. 

(b) S T .  ~ SS" 

Assume, for the moment,  the following lemma: 

Lemma 2.12 (effective trivialization of collars of OA"). I l L <  Ka, # L < p then one 
has 

[ L ]  ---) [L', h: C - -  M]  
[p] --+ [q] 

where L' < L, # L' < q~t~,  IMI = aA,, • [0, 1], C is a subcomplex of L' triangu- 
lating a collar of  aA,, and h: C ~ M ,  is an effective trivialization such that 
h la j  - =  id x {0} .  

We shall prove Lemma 2.12 later. It is enough to find solutions of ST,. for any 
tr iangulat ion K of B = [K], with # K  < d and a given shelling a t, t r 2 , . . . ,  tr,, 
where r is the number  of the m-simplexes of K. We do it by induct ion on r. For  
r = 1 it is trivial. Assume that we have done for (r - 1) and try to do for r. Set 

]Kll  = K \ 0-1 : it is (by hypothesis) a PL m-ball tr iangulated by the restriction of K, 
say K 1 . 5  p restricts to a shelling 6:  x = ( 0  2 . . . . .  o ' r )  and  K1 has (r - 1) m-simplexes; 
# K  1 < d. 

By induct ion we have a solution of ST,. for K a, that is we construct effectively 
K'I < K1, La < Kn, 91: K'I ~ L1 a simplicial isomorphism, DI E ~ (depending on 
d) such that #K'x < D1. 

By pulling-back via gl a collar of aA,. in A,, given by Lemma 2.12 we may 
assume also that there exists a subcomplex T of K'~ such that [ TI is an effectively 
trivialized collar of 0[K'  1 [ in [K'I 1, by h: T -*  M where [M[ = 0 lg ' l  [ • [0, 1], hlo IK,I: 
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3IK'll--* 0[ K'I] x {0} is id x {0}. We want to construct a simplicial isomorphism 

f : / ~  ~ KI 

where / ( -~  K, K'~ <~ K'I and # / (  is effectively controlled by d. Thus we shall 
complete the proof by taking the simplicial map g = gl o f :  IK [ ~ Am . 

O" 1 intersect [KI[ along ~3[Klt and the un ion  of the ( m -  1)-faces of K~ in 
cr I c~ 0[K l[ is an (m - l)-ball B' = a~ c~ c~[K1]. Using the trivialized collar we have 
that B" = h-~(B ' x [0, 1]) is isomorphic to B' • [0, 1] with an effectively given 
simplicial isomorphism (for a suitable subdivision). To conclude it is enough to 

show that id: OB"\B' ~ OB"\B' extends to a PL isomorphism q:o~UB, B" ~ B" 
which becomes simplicial for suitable subdivisions effectively constructed with 
bounds  on the number  of simplexes. 

Set B'" = ~r~U~,B". First remark that the complement in OB'" of the interior of 
OB"\B' coincides with the complement in 0~1 of the interior of B' and also that 
OB" = B' ~g OB"\B'. 

Both B' and ~?crl\B' are cones over their intersection B' c~ ~ \ B ' ,  hence we can 
extend q to an isomorphism q': (?B'" ~ 0B". 

Finally, using again the effective trivialization of the collar, we can realize both 
B'" and B" as cones over their boundary;  hence we can extend to q": B'" ~ B". 
Remark that this is the proof of 3.25 of [RS], which becomes effective because of 
the effective trivialization of the collar. The proposit ion is proved (assuming 
Lemma 2.12). 

Remark 2.13. The same proof shows also that ST,. and SSm are equivalent to the 
following 

{ [ K ] ~ [ K ' , 5  ~] 

[d] -+ [D] 

where B = ]K[, is any triangulated PL m-ball, [K'[ = B and ,9 ~ is a shelling of K'; 
# K  < d, # K '  < D e N  (that is we do not  require that K ' -~  K). Similarly for the 
weak statements. 

Proof of  Lemma 2.11. With a slightly different statement the proof is contained in 
[Ac]. For  the sake of completeness we sketch the construct ion with emphasis on  
effectiveness. The proof is by induct ion on n. 

Let B be a convex triangulated n-polyhedron, B = [K]. We shall describe an 
explicit subdivision which is shellable. 

Consider a family E o , . . . ,  Es of parallel hyperplanes with the following 
properties: 

i) E o ~ K = {v~ v ~ is a vertex. 
ii) each vertex v of K is in some Ej. 

iii) In a suitable coordinate system 

E j = { x , = a j }  with % < ~ l < . - . < a s  

It is easy to see that one can do this effectively. 
E; c~ B is a convex (n - 1)-polyhedron (or possibly a single vertex). By Lemma 

2.4 and the induct ion hypothesis we can subdivide explicitly the cellularization 
induced by K on Ej c~ B in a shellable tr iangulat ion K~.. Let 

Fi=Btq{O~i_l<____xn~i} i = 1  . . . . .  S 
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Fi is a convex polyhedron with a cellularization induced by K, K'i_ 1 and K'~. We 
can find a t r iangulat ion of F~, i = 1 . . . . .  s without introducing new vertices. So we 
obta in  a linear simplicial subdivision K'  of K such that the vertices of K'  lie in 
Eo u .  . . u Es. Define: 

Vi,  k = { a e K ' l d i m a  = m,a  c Fi, d i m ( a ~  E l _ l )  = k - 1} . 

If a e  V~,k and a'  c Fi is such that a and a '  have a common (m - 1)-face, then 
a'  e V/, k- 1 W V/, k U 1I/, k + 1" SO we can define the worst type simplices in V/, k as the 
simplices which have no common (m - 1)-face with any simplex in V~. k+ 1" 

It is rather easy to prove, as in [Ac], that the following rules define a shelling 5e 
for K' .  

(1) decreasing i. 
(2) increasing k. 
(3) for fixed i and k, first the worst type simplices with more free faces. 

So the lemma is proved. [] 

Proof  of  Lemma 2.12. By means of Lemma 2.4 it is enough to construct  an 
effectively trivialized collar of 0A,, for some tr iangulat ion of Am. Consider A., as the 
cone over 0A,. with center in the barycenter a of A,,. 

Every yearn is uniquely expressed as v = ta +(1  - t ) v '  where t e [ 0 ,  l]  and 
v' 663A m. Set: 

A ( s ) = { v e A m l v = s a + ( 1 - s ) v '  for somev'sOAm} O < s <  1 

Note that A(0) = c~Am. Consider A(�89 c__ Am. Using the cone structure we find a 
natural  cell-decomposition of Am having as vertices the union of the vertices of A (0) 
and A (�89 and such that the induced cell-decomposition on  U 0__< s__< �89 A (s) is formally 
isomorphic to the s tandard cellular decomposit ion of dam • I (i.e. the product  
Kalaa  ~ • I). Thus we can conclude using Lemma 2.4 and  Lemma 2.5. [] 

Remarks 2.14. (i) The proof of 2.13 works for any m-cell in R". 
(ii) Consider K = Ka and let K ~'~ denote the rth-barycentric subdivision of K. One  
can explicitly construct  (it is elementary bu t  no t  completely trivial) a simplicial 
isomorphism between the subcomplex of K ~2~, St(0A,., K ~z~) with a suitable sub- 
division of OA,. • I, (obtaining in this way another  proof of 2.12): PL topology tells 
us (see [RS])  that if M = IKI is a tr iangulated manifold with boundary,  
St(OM, K ~2~) is a collar of c~M in M. The problem to us is to make the trivialization 
effective. We have not  been able to do it in general, not  even under  the hypothesis 
that M is a PL ball (but K is arbitrary); in fact there are some evidence that it 
should not  be possible in higher dimensions see (Remark 2.19 and Corollary 2.20). 

(C) Listin 9 bounded subdivisions and effective trivialization of  P L  balls 

The aim of this section is to prove the following: 

Proposition 2.15 (listing bounded  subdivisions). Let X = Igl  be any triangulated 
polyhedron in ~" with # K < d and f ix  a positive integer D >= d then we have 

IX = IK[]-* [{HI ..... H~}] 

[d, n, O] ~ [S] 

where S e [~ and s < S, for every i = 1 . . . . .  s, Hi <a K, CA Hi < D, and for every 
H <~ K such that CA H < D there exists i and a simplicial isomorphism ?p: H --* H i. 
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Before proving the proposition we deduce some corollaries. In particular we 
prove Theorem 4 and Theorem 5 of the Introduction. 

Lemma 2.16. Given X = IKI, Y = [HL triangulated polyhedra, we can effectively 
decide i f  there exists  a simplicial isomorphism f. K --* H. 

Proof. In the worse case (that is if there are not evident distinctions like 
dim X * dim Y or # K ,  # H) we have to look for formal isomorphism between 
K and H, thus we have to analyze a finite number of possibilities. [] 

Corollary 2.17 (solution of the weak trivialization and shelling problems). For every 
m WT m and W S  m have solution. 

Proof. Since WTmc~WSm (Proposition 2.10) it is enough to show that WT,, (for 
example) has solutions. Take a triangulated m-ball B = IKI. By hypothesis there 
exists some K"<~ K, # K ' =  Ro, L<~ K~ such that g: K ' ~ L  is a simplicial 
isomorphism. If r = # K, for every R > r we can list (Proposition 2.15) all the 
subdivisions of K with no more than R simplexes and all the analogous sub- 
divisions of K~. Using Lemma 2.16, for every R we can check if there are any such 
subdivisions which are isomorphic. By hypothesis there exists some R o such that 
the algorithm stops. [] 

Corollary 2.18 (non effectiveness for the strong trivialization and shelling prob- 
lems). For m _-> 5 ST m and S S  m do not have solution. More  precisely: i f  m > 6 they do 
not have solution even under the stronger hypothesis that the m-balls are embedded in 
N"; tfm = 5, ST 5 and SS 5 fa i l  even for  codimension one 5-balls in R 6. 

Proof. Assume first m > 6 and ST,. has a solution. Take any triangulated manifold 
M s = [Ks[ ~_ ~" given by Novikov theorem recalled in Sect. 1. If # K s < d and if 
M s should be a PL m-ball one could effectively determine D e N such that there 
exists a simplicial isomorphism g : K ' s - * L  s where K's '~  K s  and # K }  < D, 
L s <~ K 4. Using the listing of bounded subdivisions as in the previous proof one 
could decide if M s is isomorphic to A m (by actually finding isomorphic subdivisions 
with no more than D simplexes or concluding that they are not PL isomorphic 
otherwise). This contradicts Novikov's theorem. 

Let be m = 5 and suppose that ST s has a solution. Take again M s = [Ks1 ~_ R 6, 

take off a simplex cr from the boundary ~?M s and consider N s = ~Ms\ tr .  N s is a 
triangulated 5-manifold and by ST s and Lemma 2.16 we can decide whether N s is a 
5-ball or not. So we can decide whether 8 M  s is a 5-sphere or not and finally, by h- 
cobordism in dimension 5, we can decide whether M s  is a 6-ball or not, contradic- 
ting Novikov's theorem. [] 

Remark  2.19. As a consequence of Corollary 2.18 we cannot have a strongly 
effective proof of h-cobordism theorem: indeed, if so, taking off a simplex r from the 

interior of a triangulated m-ball B, one could explicitly triangulate B\ r  as the 
product aB x I; this would be enough to have ST,,. A rough analysis of the proof of 
h-cobordism theorem shows that there are two a priori non effective steps: the first 
is the trivialization of the handle decomposition, where trivialization of collars is an 
essential tool; the second is the choice of a disk bounded by the curve of "Whitney 
trick". 

Actually 2.18 has also a rather surprising corollary: collars cannot be strongly 
effectively trivialized. 

We thank A. Marin who remarked it. The argument is the following. 
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Recall that, if not specified otherwise, by PL m-balls we mean balls generally 
embedded in some R", n and m not necessarily equal. Given a PL m-ball B with 
boundary S, a trivialized collar of S in B is a PL homeomorphism between a regular 
neighbourhood N of S in B and S • [0, 1], identifying identically S and S x {0}. 
We have, with the obvious meaning, a stron9 effectiveness problem for construction 
of  such trivialized collars. In case of positive answer, we say shortly that collars can 
be trivialized. 

Corollary 2.20 (non effectiveness for the trivialization of the collars). There exists m, 
3 < m < 7, such that collars in m-balls cannot be trivialized. 

Proof Let mo the minimal number m such that ST,. (extended to all balls) has 
negative answer. By Corollary 2.18 mo exists and in fact 2 < mo < 6. Then one 
deduces that (too - D-spheres can be strongly effectively trivialized on the bound- 
ary of the (m o - 1)-simplex (otherwise we contradict the minimality of too). For  
every too-ball B consider the (too + 1)-ball B' obtained by coning over B. If collars 
of the boundary S' of B' can be strongly effectively trivialized, the above remark on 
the trivialization of the boundary of B together with the unicity of  links (which is a 
strongly effective result) imply that B can be strongly effectively trivialized. This is a 
contradiction. 

Remark 2.21, Since Novikov's manifolds Ms are of codimension 0 in R,., we have 
proved the point (b) of Theorem 5 stated in the Introduction. It remains to prove 
the point (a). It is a consequence of a more general fact: 

Lemma 2.22. For every n, de  ~ there exists D = h(n, d) such that for every couple of  
triangulated polyhedra X = I K [, Y = [HI ~_ •" with # K, # H < d, if  X,  Y are PL 
isomorphic then there exist subdivisions K' <a K, H' <a H with # K', # H' < D which 
are simplicially isomorphic. 

Proof It is a consequence of (the proof of) the theorem of local triviality of 
semialgebraic maps as stated and proved, for example, in [BCR] Theorem 9.3.l, 
following the proof of Hardt ( [Ha l )  (see also [BR], 2.8.3.). Note that in our case the 
situation is much simpler because we are working with PL objects. 

Every triangulated polyhedron in ~" with no more than d simplexes can be 
presented using no more than d (effectively computed by means of n and d) 
polynomial of degree 1, is such a way that it is given as the union of its simplexes. 

We canidentify the polynomial in n variables of degree 1 with ~"+ 1 and set for 
every h < d 

R : R h = ( R  n+l)h 
Set: 

S = S ,  = { > , = , <  }h 

Take g~" • R with the natural projections 

.~z:R" x R ~ R  q : ~ " x R - - * g ~ "  

For  every t = (tl . . . . .  th)~ S consider 

Vt = { (x ,P  1 . . . .  , Ph)6R" • R: P~(x)tiO } 

Finally set for every k: 

~(f ~-~]/'h,k~-{V[V= Vt, k.)...k-JVtk t ,~S  l <_ i<k}  
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is a finite set. It is easy to find an effective upper bound  B for k (in term of d) such 
that every triangulated polyhedron with no more than d simplexes is of the form 
X = q ( n - l ( v ~  V )  for some v ~  V e U ,  h, k < B. Apply the local triviality 
theorem to the maps ntv: V ~  R, V varying in "//. It turns out from the proof that 
nlv is trivialized over a finite number  of semialgebraic subsets of R giving a 
parti t ion of R (in fact in our case they are defined by polynomial  of degree 1). More 
over we note that: 

(1) For every V the number  of such subsets of R is effectively bounded in term of n 
and d (hence of d). 
(2) # 3v is effectively bounded. 
(3) Two fibers of the same trivialization are PL isomorphic by a simplicial 
isomorphism between subdivisions with bounded number  of simplexes (see [BR] 
where all this facts are explicitly noted). 

Eventually we may have fibers of different trivializations which are nevertheless PL 
isomorphic. Anyway there is a finite number  of possibilities hence the function 
D = h(n, d)  exists. 

P r o o f  o f  Propos i t ion  2.15. It is again an application of the proof of the local 
triviality for semialgebraic maps ([Ha; BCR; BR])  adapted (and simplified) in our 
setting. Given a subdivision K ' <  K, X = [KI, # K' < D then the polyhedron 
X = I K I ~- ~" is presented as un ion  of the simplexes of K' using no more tha.n D 
polynomials  of degree 1, and s is effectively computable using n, d and D. Let 
P1 . . . . .  Pr be such polynomials. They produce a cell-decomposition of X by cells 
of the form: 

a, = { x e a l P i ( x ) t i O }  

where a is a simplex of K, t = (t 1 . . . . .  t,) and ti is a value in { > ,  = ,  < } 
associated to Pi, i = 1 , . . . ,  r. 

It is clear that such a cell-decomposition subdivides K and has a number  of cells 
effectively bounded.  

On the other hand  every subdivision K'  < K with # K'  < D can be obtained by_ 
some cell decomposit ion of the previous type (that is defined by no more than D 
polynomials  of degree 1) by deleting some cells: since the number  of the cells is 
effectively bounded,  then there is only a finite number  of possibilities to delete cells 
in order to get (if any) a required subdivision of K. 

We work similarly to the proof of Lemma 2.22. 
Let A ___ 0~ "+ 1 be the subset of polynomials of degree 1 with zero set intersecting 

X. Set for h < D: 

R = R h = h h S = S h = { > , = ,  < }h 

n: R" • R ~ R q: ~" • R ~ ~" 

For  every t -- ( t l ,  . . . , th)GS set 

lit = {(x, e 1 . . . . .  e n ) e X  • R: Pi(x)t iO} 

~ V ' = U h . k =  { V I V =  Vt, w . . . w V t k  t i e S  1 < - i < k }  

k < B effectively bounded  

Apply the local trivialization theorem to rtlv: V-~ R, V varying in ~ .  For  every 
r e R 7tlv 1 (r) is a cell-subdivision of X of the type described above. 



152 F. Acquistapace et al 

It turns out from the proof of the triviality theorem that, in particular, two 
fibers in the same trivialization of 7r over some R~ of the partition of R are formally 
isomorphic; hence the subdivision of K obtained by deleting faces with the same 
name in both such fibers are simplicially isomorphic. Since the number of R~ is 
effectively bounded the proposition is proved. Note that in this way we may obtain 
several representatives of simplicial isomorphism class of subdivisions of K pre- 
sented by no more than / )  polynomials; what is important is that we get at least one 
representative for each class. [] 

(D) Strong effective trivialization of PL balls in low dimension 

In this section we shall prove, in particular, Theorem 3 of the Introduction. 

Proposition 2.23. SS m and ST m have solution for m < 2. 

Proof. Since SSm~=~STm (2.11) it is enough to show SS m (for example). Now as 
already noted in 2.8 every triangulation of a PL m-ball with m < 2 carries some 
shelling and at least one of these can be detected effectively. [] 

Proposition 2.24. SS 3 and ST 3 have solutions for PL 3-balls embedded in R 3. 

Proof. ST 3 is a consequence of an effective version of the proof of the PL Sh6nflies 
theorem in R3; we follow Moise's statement (see Theorem 17.12 in [Mo]), whose 
proof is very similar to the original one (see [A1]). Since what follows Lemma 1, p. 
122 of [Mo] is straightforwardly effective, it is enough to prove the effectiveness of 
the first part. Here are the steps. 

(1) The effective push property EPP 

Let C be a polyhedral 3-cell in ~3 and D1 c 0C 3 be a polyhedral 2-cell. Let J be the 

boundary of D 1 and define D 2 = t3C\D 1 . We say that C has the EPP at D 1 if for 
each closed neighborhood N of C\  J one has: 

[K, G, H]  ~ I f :  H'  --* L] 

[d] --, [D] 

where K, G, H are compatible linear triangulations of  C, D 1, N, # K, # G, # H <= d; 
H ' .~  H; L is a linear triangulation of N, # H', # L <= D and f is a simplicial 
isomorphism such that 

(i) fON = id 

(ii) f (D1) = D 2 

C has the EPP if this is true at any polyhedral 2-cell D ~ OC. 

(2) Any convex polyhedral 3-cell has the EPP 

This is true since proofs of Theorems 4-9 of Chap. 17 in [Mo] are (or can be easily 
reduced to) effective proofs. 

(3) Simply embedded spheres 

We say that a polyhedral sphere S is simply embedded if it bounds a polyhedral 3- 
cell B and ST 3 is true for B. 
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(4) Theorem 17.11 in [Mo] 

Theorem. Let S 1, S 2 be polyhedral 2-spheres in ~3 such that S 1 c~ S z is a plane 2-cell 
D. Let  

S -- (S1 u S2)\int D 

I f  S 1 and S 2 are  simply embedded, then so also is S. 

Proof. See Theorem 17.11 in [Mo], using EPP instead of the push-property, 

(5) The index of  a polyhedral 2-sphere 

Define the index of a polyhedral 2-sphere as in [Mo]: first choose a system ~ of 
orthogonal coordinates x, y, z in ~3 in such a way that each plane z = const, does 
not contain more than one vertex of S: this can be done effectively. For any 
horizontal plane E, E c~ S can be: a single point, a (disconnected) 1-manifold, the 
disjoint union of a 1-manifold and a single point, the union of k polygons, 2 or more 
through a point P. In the latter case we call P a singular point and define the index 
at P, Ind~P, to be k - 1. Then define InduS, as the sum of the numbers Ind~P for 
all the singular points P in S. 

(6) Lemma. I f  S is a polyhedral sphere and Ind.~S = n, then one can effectively find a 
coordinate system ~ '  and two polyhedral spheres $1, $2 such that S is simplicially 
isomorphic to their union (as in the step 4) and Ind , ,  S i < n - l i = l, 2. 

Proof. (see Lemma 17.1 of [Mo], p. 122). Let P be a singular point of the section 
E e l S ,  where E - - { z  = zE} in the system ~,  and let J _~ E c~ S be the inmost 
polygon. J bounds a 2-cell Dj in E. 

The only remark to be made is that the PL homeomorphism h: ~3__~ ~3 
constructed in the proof of [Mo], which preserves horizontal planes and makes Dj 
convex, is simplicial on an effectively computable triangulation of S and ~3: but 
this is clear because of SS 2 and Lemma 2.5. [] 

Remark 2.25. SS~ and ST~ for m = 4, are open (to us), even under the restriction to 
4-balls in R 4. 

The above facts suggest the following: 

Problem 2.26 (embedding problem (Era)). It asks for 

[K]  [g: K' ~ H ]  
[d] ~ [D] 

where B = [ K I is a triangulated P L  m-ball, # K <= d; K'  < K,  D ~ ~ and # K'  < D, 
g is a simplicial isomorphism, ]H[ is a P L  m-ball embedded in ~". 

3. On the effectiveness of the solutions of the real semialgebraic 
Hauptvermutung 

We recall some well-known facts in semialgebraic geometry (see [BCR] or [BR]). 
We use the notations introduced in Sect. O. 
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Theorem 3.1 (semialgebraic triangulation). Let X ~ ,~  (n, s, D) be a compact semi- 
algebraic set in ~". Let  Yie,~C(n, s, D) be a closed subset of X, i =  l . . . . .  h. Then 

[X, r,] ~ [ K , f ]  
[ n , s , D ] ~ [ r , p , q , R ]  

where I K I is a triangulated polyhedron of  N", f: I K I ~ X is a semialgebraic home- 
omorphism such that: f - l ( Y i )  = [Kif and K i is a subcomplex of K, i =  1 . . . . .  h; 
Fieo~(p,  q, R), # K < r. 

We say that anyf l  Igl  ~ X as above (without the limitation IKL ~- R") is a 
semialgebraic triangulation of  X relative to { Yi }. 

The following is an almost immediate corollary of 3.1. 

Corollary 3.2. Let fi: ]K d --* X l =  1, 2 be a semialgebraic triangulation of X 
(relative to { Yi}). Let # K s < d, Ff ~ e ~ (n, s, D ). Then 

{ [ f l , f2]  ~ ~ ,  hl, h2] 
[n , s ,d ,D]  [ r , m , q , R ]  

where for l = 1, 2 h~: IKI ~ [gtl is a semialgebraic triangulation of IKtl relative to 
the family of  all simplexes of K I, F~ e~4 (m, q, R), # K <= r. 

Thus we have a diagram 

and (] K I, h 1, h2) is called a simultaneous semialgebraic subdivision of the trian- 
gulations J], f2 of X. Clearly (IKl, ft,~ht) l = 1, 2 is a semialgebraic triangulation 
of X. 

(A) WEH,, 

3.3. Proof of  the WEHm Vm (Theorem 2 of the Introduction). Let f." rK[---, ]L[ be a 
semialgebraic homeomorphism between two polyhedra in R" as in the statement of 
the theorem. Using Corollary 3.2 we may assume that f satisfies the further 
hypothesis: for every simplex ~r of  K , f  (a) is triangulated by a subcomplex of  L. 

By Shiota-Yokoi existential solution of the Hauptvermutung we know that 
B = f ( g )  is a triangulated PL m-ball, m -- dimm 

By means of Theorem 4 of the Introduction (see 2.17) we can effectively 
construct a trivialization of B. Thus we conclude (as in [SY], p. 737) by induction 
on dim I K ], constructing effectively a PL isomorphism on the skeletons in increas- 
ing dimension and applying several times the "Alexander trick". [] 

Remark 3.4. The same proof as above (in the same way of [SY], p. 737) produces in 
fact a more precise result: that is we can construct effectively a semialgebraic isotopy 
H:[KI x [ 0 , 1 ] ~ ] L ]  such that H o = f  and H 1 =g ,  that is the simplicial iso- 
morphism of  the statement of WEH,,.  

Theorem 3.5 (Theorem 1 of the Introduction). SEHm is true for m < 3. 
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Proof For m < 2 we can work as in the Proof 3.3 using Proposition 2.23 instead of 
2.17. 

For m = 3 we want to reduce the Proposition 2.24, that is to work with 3-balls 
embedded in Ea. 

Consider a semialgebraic homeomorphism J~ [K[--*ILl such that for every 
simplex ere K, B =.f(a) is triangulated by a subcomplex L 1 of L (like in the proof 
3.3). 

Take a 3-simplex ~ of K, clearly we may consider ~ c ~3. 
g = f - l :  B = t L l ] ~  ~ is a semialgebraic triangulation of er. Apply the semi- 

algebraic triangulation theorem and its proof(see for instance [BCR] or [BR]) to ~r 
relatively to the family given by the images of the simplexes of L1. We obtain a 
straight triangulation of cr, say ~ = IH] such that every simplex of L1 goes by g' 
over the support of a subcomplex of H, where g': B ~ o- is a suitable semialgebraic 
homeomorphism of effectively bounded complexity. 

Thus we can effectively construct a PL isomorphism between I Lll and cr 
working like in the Proof 3.3 (induction, construction on skeletons of increasing 
dimension, Alexander trick) applying 2.25 to each g'(r) % ~, T varying among the 3- 
simplexes of L~. [] 

Remark 3.6. (in analogy with Remark 3.4.). For m < 3 we can construct the 
semialgebraic isotopy H, in such a way that Fue.~C(k,p,q) where k, p, q, are 
effectively bounded by the data of the situation. 

(B) SEHm and semialgebraic homeomorphism of bounded complexity. 

At the present we are not able to decide if SEH m holds for m > 4. 
In this section we show simply that SEHm and an other natural semialgebraic 

problem cannot be solved effectively at the same time. The spirit of the result is 
analogous to Nabutovsky's examples. 

Lemma 3.7. For every m, n, d ~ ~ there exist P, Q E ~ such that P, Q depend on n, m, d 
and fi~r every X, Y e , ~  (m, n, d) which are semialgebraically homeomorphic, there 
exists a semialgebraic homeomorphism h: X -* Y with Fh e ~4(m 2, P, Q). 

Proof. It is essentially the same of 2.22, using the local triviality theorem of 
semialgebraic maps. F2 

Problem 3.8. Can P, Q as above be bounded by a recursive function of n, m, d? 

Proposition 3.9. For m > 5, the statement: "SEH,, has solution ~ Problem 3.8 has 
negative answer" is true. 

Proofi Let M = [K ] be any compact polyhedron. If 3.8 has a positive solution we 
can effectively determine P, Q, depending only on m and # K, such that if M is 
homeomorphic with Am, then there exists a semialgebraic homeomorphism 
h: M ---, A,. with F h ~ ,c*r (m 2, P, Q). If also SEH,, has-solution we can deduce that one 
can effectively determine D depending only on # K and m such that if M is PL 
isomorphic with A,, then there exists a simplicial isomorphism g: K' ---, L where 
K' < K, L-~ Kn and # K' < D. This contradicts 2.18. [5 

Remark 3.10. The hard part in Shiota-Yokoi solution of subanalytic Hauptvermu- 
tung is in showing that if a polyhedron P = [K I is subanalytically homeomorphic 
to A,,, then it is PL isomorphic to A,, (see also the Proof of 3.3 of the present paper). 
Shiota-Yokoi proof doesn't get any essential simplification in the semialgebraic 
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setting and it is far from giving SEHm, not  even W E H  m. The main  reason of it is 
that Shiota-Yokoi use Cairns-Whithehead C~ and the (already 
known) solution of the Hauptvermutung  for this class of tr iangulations (see [Mu]).  
This produce at least two troubles of increasing difficulty: 

(a) It is no t  clear if a semialgebraic manifold M ~ ~r (n, r, p) could be triangulated in 
the C ~-sense, M = [ K[ say, in such a way that # K is effectively controlled by 
n, r, q. The usual way (secant approximation . . .  (see [Mu]) )  doesn' t  work: 
consider for example a sequence of manifolds Ms~C(n ,  r, q) converging to 
some cusps as in the figure. The semialgebraic t r iangulat ion algorithm (again 
for the cusp presence) doesn' t  produce C~-tr iangulat ions.  

(b) (More serious) Shiota-Yokoi apply the uniqueness of C| to the 
diffeomorphisms obtained by integratin 9 vector fields. Even if these vector fields 
are defined by semialgebraic functions of bounded complexity, how to Joound, 
or even how to define, the complexity of the resulting diffeomorphism is a hard 
problem. 
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