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Abstract

We consider the initial–boundary value problem for the 3D Navier–Stokes equations. The physical do-
main is a bounded open set with a smooth boundary on which we assume a condition of free-boundary type.
We show that if a suitable hypothesis on the vorticity direction is assumed, then weak solutions are regular.
The main tool we use in the proof is an explicit representation of the velocity in terms of the vorticity, by
means of Green’s matrices.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction and results

In this paper we consider the initial value problem for the 3D Navier–Stokes equations⎧⎨⎩
ut + (u · ∇)u − �u + ∇p = 0 in Ω × ]0, T ],
∇ · u = 0 in Ω × ]0, T ],
u(x,0) = u0(x) in Ω,

(1)

where the unknowns are the velocity u and the pressure p. In order to avoid inessential compli-
cations we assume that external force vanishes and that the kinematic viscosity is equal to 1. The
open and bounded set Ω ⊂ R3—the physical domain—has a smooth boundary ∂Ω , say of class
C3,α , for some α > 0.
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We supplement the initial value problem with the so-called “stress-free” boundary conditions{
u · n = 0 on ∂Ω × ]0, T ],
ω × n = 0 on ∂Ω × ]0, T ], (2)

where ω = ∇ × u = curlu is the vorticity field, while n denotes the exterior unit normal vector.
In the case of flat boundaries, the above conditions coincide with the classical Navier boundary
conditions, namely, u ·n = 0 and n ·∇u−(n ·∇u ·n)n = 0 (see the classical references Serrin [26]
and Solonnikov and Ščadilov [29]; see also [3] and [4]). The boundary conditions (2) can also be
used on a free-surface, see Temam [31].

The variational formulation and numerical implementation of the stationary Navier–Stokes
equations with the “non-standard” boundary conditions (2) (that correspond also to a jet dye in
applications to duct flows, see Conca et al. [14]), can be found in [1,13,14]. For questions of
existence and regularity for the stationary problem see also Girault [20]. The boundary condi-
tions (2) are also interesting because the treatment of the boundary layers is simpler than in the
usual no-slip case, see Temam and Ziane [33] and Conca [12]. See also Clopeau, Mikelić, and
Robert [11] for the 2D case. Similar conditions are also used in Lions [24] in order to study
vanishing viscosity limits for the 2D problem.

The initial value problem for the Navier–Stokes equations with the above boundary condi-
tions (2) poses the same problems as the usual one with vanishing Dirichlet boundary conditions:
one can only obtain global existence of weak solutions and local existence of strong solutions.
The proof can be done by adapting the usual one concerning Dirichlet boundary conditions, as
in Leray [22] and Hopf [21]. See Section 2 for further details.

In the present paper we address the problem of global existence of smooth solutions, under
additional hypotheses on the vorticity direction. In particular, we extend previous results for
the problem without boundaries or in the half-space. In the sequel θ(x, y, t) denotes the angle
between the vorticity ω at two distinct points x and y, at time t :

θ(x, y, t)
def= � (

ω̂(x, t), ω̂(y, t)
)
,

where, for each non-null vector v, we define v̂
def= v/|v|. Furthermore, c denotes an arbitrary

positive constant.
The study of conditions involving the direction of vorticity, and its physical-geometric inter-

pretation, started with Constantin and Fefferman [15], who first derived some exact formulas and
employed them in order to prove regularity in the whole of R3. In particular, in [15] the following
result is proved.

Theorem 1.1. Let be Ω = R3 and let u be a weak solution of (1) in (0, T ) with u0 ∈ H 1(R3)

and ∇ · u0 = 0. If

sin θ(x, y, t) � c |x − y|, a.e. x, y ∈ R3, a.e. t ∈ ]0, T [, (3)

then the solution u is strong in [0, T ] and, consequently, is regular.

Remark 1.2. Related results concerning vorticity direction and geometric constraints on poten-
tially singular solutions for the 3D Euler equations (i.e. the case of vanishing viscosity) have
been proved by Constantin, Fefferman, and Majda [16].
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The result of Theorem 1.1 has been later improved by the authors in Ref. [8], by replacing the
above Lipschitz condition by a 1/2-Hölder condition. More precisely, if

sin θ(x, y, t) � c |x − y|1/2, a.e. x, y ∈ R3, a.e. t ∈ ]0, T [, (4)

then the solution u is necessarily regular. Actually, in Ref. [8] the authors consider a family of
sufficient conditions that contains (4) as the most significant case. More precisely, in [8] the
following result is proved:

Theorem 1.3. Let be Ω = R3 and let u be a weak solution of (1) in (0, T ) with u0 ∈ H 1(R3)

and ∇ · u0 = 0. If there exist β ∈ [1/2,1] and g ∈ La(0, T ;Lb(R3)), where

2

a
+ 3

b
= β − 1

2
with a ∈

[
4

2β − 1
,∞

]
,

such that

sin θ(x, y, t) � g(t, x)|x − y|β, a.e. x, y ∈ R3, a.e. t ∈ ]0, T [, (5)

then the solution is necessarily regular.

More recently, one of the authors, see [5], extended the 1/2-Hölder condition in the whole
of R3 to solutions to the boundary value problem (2) in the half-space case. In [5] the following
result is proved. (Actually, in the above reference, the author considers the Navier’s slip boundary
condition. However, on flat boundaries, this condition coincides with (2).)

Theorem 1.4. Let Ω = R3+. Suppose that u0 ∈ H 1(Ω), ∇ · u0 = 0, and u is a weak solution to
(1)–(2) in [0, T ]. Suppose also that for some β ∈ ]0,1/2]

sin θ(x, y, t) � c|x − y|β, a.e. x, y ∈ Ω, a.e. t ∈ ]0, T [,

and that

ω ∈ L2(0, T ;Ls(Ω)
)

with s = 3

β + 1
.

Then, the solution u is a strong solution in [0, T ], hence it is smooth.

In Ref. [5] the above result is proved by appealing, separately, to the classical Dirichlet and
Neumann Green’s functions, in the half-space. This can be done since, for flat boundaries, con-
ditions (2) are equivalent to

ω1 = ω2 = 0,
∂ω3

∂x3
= 0.

Here, since the boundary is not flat, we have to localize the problem, a not trivial and quite
technical matter. In Ref. [28], the author constructs global Green’s matrices for a large class of
boundary value problems and systems of partial differential equations. Our problem falls within
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this class. The first (and may be main) step in [28] consists in constructing a local version of
Green’s matrices, in a neighborhood of each boundary point. With the help of these local kernels,
the author construct the global one. Unfortunately, it seems not possible to treat our problem by
applying directly to the global Green’s matrices. Hence we appeal here to the above “local”
Green’s matrices.

It is of interest to compare the above situation with the different one, faced in the presence
of a Dirichlet boundary condition. In spite of the arbitrary (smooth) boundary, in Ref. [6] the
fundamental estimate (51) is proved by appealing directly to the global Green’s function for the
Dirichlet problem, without the need of a localization argument. However, a new obstacle appears.
Integration in Ω of the scalar product −�ω · ω gives rise to the boundary integral∫

∂Ω

∂ω

∂n
· ωdS,

as follows from (13). Under the boundary condition (2) we are able to estimate this term in a
suitable way, see Lemma 2.2 below (if the boundary is flat, see [6], the above integral vanishes).
On the contrary, under the Dirichlet boundary condition, (14) does not hold. Hence a suitable
additional assumption on the above boundary integral seems necessary. See [6].

The aim of this paper is to extend the above regularity theorems to arbitrary, regular, open
sets Ω . One has the following result.

Theorem 1.5. Let Ω ⊂ R3 be an open, bounded set with a smooth boundary ∂Ω , say of class
C3,α , for some α > 0. Suppose that u0 ∈ H 1(Ω), ∇ · u0 = 0, and u is a weak solution to (1)–
(2) in [0, T ]. In addition, suppose either that there exist β ∈ [1/2,1] and g ∈ La(0, T ;Lb(Ω)),
where

2

a
+ 3

b
= β − 1

2
with a ∈

[
4

2β − 1
,∞

]
,

such that

sin θ(x, y, t) � g(t, x)|x − y|β, a.e. x, y ∈ Ω, a.e. t ∈ ]0, T [,
or that there exists β ∈ ]0,1/2]

sin θ(x, y, t) � c|x − y|β, a.e. x, y ∈ Ω, a.e. t ∈ ]0, T [,
and that

ω ∈ L2(0, T ;Ls(Ω)
)

with s = 3

β + 1
.

Then, the solution u is a strong solution in [0, T ], hence it is smooth.

Note that in Theorems 1.3, 1.4, and 1.5 the assumption (4) alone is a sufficient condition for
regularity since weak solutions satisfy ω ∈ L2(0, T ;L2(Ω)) (consider β = 1

2 , a = b = ∞ and
s = 2). In addition, scaling properties show the sharpness of Theorem 1.5, since the case β = 0
and s = 3, corresponds to a well-known regularity class, as proved in Refs. [2] and [9] for R3 and
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for a bounded domain, respectively. Moreover, by following [15], one shows that the conditions
on sin θ(x, y, t) need to be assumed only in the region where the vorticity at both points x and y

is larger than an arbitrary fixed positive constant K . For further details see Remark 3.9.
For simplicity, we present the complete proof of the above theorem only under the main as-

sumption (4) (which corresponds to the special case β = 1/2), since this is the most significant
case. In this way we avoid secondary points, that could hide the main ideas of an overall com-
plicated and technical result. Actually, once Proposition 3.2 is established, it is not difficult to
make the necessary alterations in the subsequent results, in order to prove Theorem 1.5 in all its
generality.

Hence, we shall prove with full details the following result, that is the main result of the paper
(this result was announced by one of the authors in the note [7]).

Theorem 1.6. Let Ω ⊂ R3 be an open, bounded set with a smooth boundary ∂Ω , say of class
C3,α , for some α > 0. Suppose that u0 ∈ H 1(Ω), ∇ · u0 = 0, and u is a weak solution to (1)–(2)
in [0, T ]. Suppose also that

sin θ(x, y, t) � c|x − y|1/2, a.e. x, y ∈ Ω, a.e. t ∈ ]0, T [,

is satisfied. Then, the solution u is a strong solution in [0, T ], hence it is smooth.

Each of the above theorems strongly appeals to ideas and techniques developed in the pre-
vious ones. In the proof of Theorem 1.6 the crucial new contribution is that one can use the
representation formulas for Green’s matrices derived in Solonnikov’s outstanding work [27,28]
in order to treat boundaries. With the aid of these explicit formulas we introduce original local
representation formulas for the velocity (in terms of the vorticity) and we are able to employ (4)
in order to prove suitable estimates for the vortex stretching terms.

Plan of the paper. In Section 2 we give a proper variational formulation of the problem and we
sketch the existence results for weak and strong solutions. In addition, integration by parts for-
mulas are derived with full details. In Section 3 we use Solonnikov’s theory of Green’s matrices
to give explicit representation of the vortex stretching term. By using hypothesis (4) we deduce
suitable estimates for the vorticity growth. Finally, in Section 4 we collect all previous results in
order to prove the regularity results of Theorem 1.6. In an appendix some secondary calculations
are reported for the sake of completeness.

Added in proof. In the forthcoming paper [10], one of the authors establishes new results
concerning the existence of global regular solutions under suitable hypothesis on the directions
of ω and curlω.

2. Variational formulation and energy-type estimates

In this section we present the variational formulation of the Navier–Stokes equations with the
boundary conditions (2). We start by recalling the laws of balance for some physically meaning-
ful quantities. We assume the functions to be smooth enough to make the calculations possible. In
particular, by assuming that the solutions are strong (see Proposition 2.9) all the formal calcula-
tions become rigorous. In the sequel, we denote by Lp := Lp(Ω), for 1 � p � ∞ and equipped
with norm ‖.‖p , the usual Lebesgue spaces, while Hs := Hs(Ω), for s � 0, are the classical
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Sobolev spaces. We shall use the same symbol for both scalar and vector function spaces. We
also use the space of divergence-free tangential vector fields of L2(Ω)

L2
σ

def= {
u ∈ L2(Ω): ∇ · u = 0, u · n = 0 on ∂Ω

}
.

We recall that the divergence is taken in the distributional sense, while the trace condition has to
be understood with respect to the space H−1/2(∂Ω). We also shall use the space of more regular
H 1(Ω) tangential and divergence-free vector fields:

H 1
σ

def= H 1(Ω) ∩ L2
σ .

In order to give the variational formulation of (1)–(2) we make some observations to explain

the integration by parts that are possible to perform within this setting. In the sequel, ∂i
def= ∂

∂xi
,

while εijk is the totally anti-symmetric Ricci tensor. Moreover, summation over repeated indices
is assumed.

2.1. Some integral identities

In this section we derive some integrations by parts formulas that will be used in the sequel.
We start with an identity involved in the energy budget.

Lemma 2.1. Let u and φ be two vector fields, tangential to the boundary. Then

−
∫
Ω

�uiφi dx =
∫
Ω

∇ui∇φi dx +
∫

∂Ω

(ω × n)iφi dS +
∫

∂Ω

φiuk∂ink dS, (6)

where ω = curlu.

Proof. We observe that, for i = 1,2,3,

[ω × n]i = εijkωjnk = εijk(εjlm∂lum)nk = (δklδim − δkmδil)nk∂lum on ∂Ω.

Hence

nk∂kui − nk∂iuk = (ω × n)i on ∂Ω. (7)

Since the vector field u is tangential to the boundary, it follows that ∂(u·n)
∂τ

|∂Ω ≡ 0, for each
vector field τ tangential to the boundary. By smoothly extending the normal unit vector field n

to a small neighborhood of ∂Ω (see for instance Nečas [25] for Lipschitz prolongation for C0,1-
boundaries), a straightforward argument (φ is tangential, as well) shows that φ ·∇(u ·n) vanishes
on ∂Ω , i.e.,

nkφi∂iuk = −ukφi∂ink on ∂Ω. (8)

Finally, by appealing in particular to (7) and (8) in the classic Gauss–Green formula, we deduce
formula (6). �

The second identity is concerned with the vorticity field.
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Lemma 2.2. Assume that u is divergence-free and that on ∂Ω condition (2) holds, i.e., u · n = 0
and ω × n = 0. Then

−∂ω

∂n
· ω = (ε1jkε1βγ + ε2jkε2βγ + ε3jkε3βγ )ωjωβ∂knγ . (9)

In particular,

−
∫
Ω

�ω · ωdx �
∫
Ω

|∇ω|2 dx + c

∫
∂Ω

|ω|2 dS. (10)

Proof. The vorticity ω is parallel to the normal unit vector on ∂Ω . Hence ∂(ω×n)
∂τ

|∂Ω ≡ 0 for
each vector field τ tangential to the boundary. Since on the boundary ω is orthogonal to tangent
vectors, it follows that ω × ∇[(ω × n)i] ≡ 0 for i = 1,2,3, on ∂Ω . In more explicit coordinates
we can write, for i, α = 1,2,3,

εijkεαβγ ωj∂k(ωβnγ ) = 0 on ∂Ω. (11)

Hence, by considering Eq. (11) for (i, α) equal to (1,1), (2,2), and (3,3) we get, respectively:⎧⎪⎨⎪⎩
n3ω2∂3ω2 + n2ω3∂2ω3 − n2ω2∂3ω3 − n3ω3∂2ω2 + ε1jkε1βγ ωjωβ∂knγ = 0,

n1ω3∂1ω3 + n3ω1∂3ω1 − n3ω3∂1ω1 − n1ω1∂3ω3 + ε2jkε2βγ ωjωβ∂knγ = 0,

n2ω1∂2ω1 + n1ω2∂1ω2 − n1ω1∂2ω2 − n2ω2∂1ω1 + ε3jkε3βγ ωjωβ∂knγ = 0.

(12)

Next, by adding term-by-term, Eqs. (12) together with

(n2ω2∂2ω2 − n2ω2∂2ω2) + (n3ω3∂3ω3 − n3ω3∂3ω3) + (n1ω1∂1ω1 − n1ω1∂1ω1) = 0,

we show that

niωk∂iωk − (ωini)(∂kωk) + (ε1jkε1βγ + ε2jkε2βγ + ε3jkε3βγ )ωjωβ∂knγ = 0 on ∂Ω.

Finally, since ∇ · ω = 0 we get (9). Eq. (10) follows by appealing to the well-known Green’s
formula

−
∫
Ω

�ω · ωdx =
∫
Ω

|∇ω|2 dx −
∫

∂Ω

∂ω

∂n
· ωdS, (13)

since (9) shows that

∃c = c(Ω) > 0:
∣∣∣∣∂ω(x)

∂n
· ω(x)

∣∣∣∣ � c
∣∣ω(x)

∣∣2
, ∀x ∈ ∂Ω. � (14)
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2.2. Weak/strong solutions and energy/enstrophy balance

With the results of the previous section we can now give the following definition.

Definition 2.3 (Weak solution (à la Leray–Hopf)). We say that u ∈ L∞(0, T ;L2
σ )∩L2(0, T ;H 1

σ )

is a weak solution to (1), with the boundary conditions (2), if the two following conditions hold:

T∫
0

∫
Ω

(−uφt + ∇u∇φ + (u · ∇)uφ
)
dx dt +

T∫
0

∫
∂Ω

φ∇nudS dt =
∫
Ω

u0(x)φ(x,0) dx,

for each φ ∈ C∞([0, T ] × Ω) satisfying ∇ · φ = 0 in Ω × [0, T ], φ(T ) = 0 in Ω , and φ · n = 0
on ∂Ω × [0, T ].

There exists c = c(Ω) � 0 such that the energy estimate

∥∥u(t)
∥∥2

2 +
t∫

0

∥∥∇u(s)
∥∥2

2 ds � ‖u0‖2
2e

2ct

is satisfied for all t ∈ [0, T ].

Observe that the condition ω × n = 0 on ∂Ω can be recovered by integration by parts.
Before going into existence of weak solutions, let us see one inequality that holds for smooth

solutions.

Lemma 2.4. Let u be a smooth solution of (1)–(2) in [0, T ]. Then, there exists a positive constant
c = c(Ω) such that

1

2

d

dt

∫
Ω

|u|2 dx +
∫
Ω

|∇u|2 dx − c

∫
∂Ω

|u|2 dS � 0. (15)

Proof. The proof follows immediately by taking the scalar product of (1) with u, by integrating
over Ω , and by using results of Lemma 2.1. Note that the first order derivatives of the (extended)
normal unit vector n are uniformly bounded, since the domain is smooth. �

Next we give the definition of strong solution.

Definition 2.5 (Strong solution). We say that a weak solution u is strong in [0, T ] if

∇u ∈ L∞(
0, T ;L2(Ω)

) ∩ L2(0, T ;H 1(Ω)
)
.

We say that a weak solution u is strong in [0, T1[ if u is strong in [0, T ] for each T < T1.

Standard trace theorems imply that for strong solutions the condition ω × n = 0 takes place
in H−1/2(∂Ω). In addition, standard tools (following the same lines of the proof in [17]) show
uniqueness of strong solutions in the much wider class of weak solutions.
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In order to show existence of strong solutions, one can consider the balance equation for the
vorticity: By applying the curl operator to (1) we get

{
ωt + (u · ∇)ω − �ω = (ω · ∇)u in Ω × ]0, T ],
∇ · ω = 0 in Ω × ]0, T ], (16)

and the system is supplemented with the boundary condition (ω × n)|∂Ω = 0.
In order to deduce enstrophy balance, we take the scalar product of (16)1 with ω, and we

integrate over Ω . By appealing to (10) we show the following result.

Lemma 2.6. Let u be a strong solution of (1)–(2) in [0, T ]. Then, there exists a positive constant
c = c(Ω) such that

1

2

d

dt

∫
Ω

|ω|2 dx +
∫
Ω

|∇ω|2 dx − c

∫
∂Ω

|ω|2 dS �
∣∣∣∣∫
Ω

(ω · ∇)u · ωdx

∣∣∣∣. (17)

Inequality (17) allows us to bound (at least for small times/small data) the vorticity in natural
function spaces. As is well known, the presence in the right-hand side of the vortex stretching
term (that, at least at first glance, behaves like the integral of |ω|3) is the main obstacle to proving
global existence results for strong solutions, even for the Cauchy problem in R3.

To employ inequality (17) we must observe that it concerns the L2-norm of the vorticity and
its first order derivatives, while the definition of strong solutions involves the full first and second
order derivatives of u. In order to deduce suitable estimates we shall show that it is possible to
bound the gradient of velocity, by the curl (at least in the L2-setting). More precisely, we have
the following result.

Lemma 2.7. Let u ∈ H 1
σ be a function satisfying (2). Then, there exists a positive constant

c = c(Ω) such that

1

2

∫
Ω

|∇u|2 � c(Ω)

∫
Ω

|u|2 dx +
∫
Ω

|ω|2 dx. (18)

In addition, if ω ∈ H 1(Ω), then u ∈ H 2 and its H 2-norm can be bounded by ‖ω‖H 1 .

Proof. Since ∇ · u = 0 in Ω , one has

−�u = curl curlu = curlω.

In particular,

⎧⎨⎩
−�u = curlω in Ω,

u · n = 0 on ∂Ω,

ω × n = 0 on ∂Ω.

(19)
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Next, we multiply both sides of the first equation (19) by u, and integrate over Ω . By appealing
to Lemma 2.1 it follows that∫

Ω

|∇u|2 dx +
∫

∂Ω

uiuk∂ink dS =
∫
Ω

curlω · udx.

This last equation can be written in the equivalent form∫
Ω

|∇u|2 dx +
∫

∂Ω

uiuk∂ink dS =
∫

∂Ω

(ω × n) · udS +
∫
Ω

|ω|2 dx. (20)

The boundary integral on the right-hand side of (20) vanishes. On the other hand, smoothness
of ∂Ω implies that the second integral on the left-hand side of (20) is bounded by a multiple of∫
∂Ω

|u|2 dS. Hence, the standard trace inequality implies (18).
The L2-regularity of second order derivatives follows by standard arguments. �

Remark 2.8. In order to use inequality (18), we need a bound for the L2-norm of u to ensure
the H 1-a priori estimate for the solution. Since we are considering the time-evolution problem,
the above bound follows from the energy estimate (23)1, in the next section. However, if Ω

is convex, then this last device is superfluous since the integrand that appears in the surface
integral in the left-hand side of (20) is (almost) everywhere non-negative. With this assumption
it is also possible to prove existence (and regularity) of solutions to the stationary Stokes and
Navier–Stokes equations with non-standard boundary conditions (2), see [20] for an approach
with vector-valued potentials. In addition, with a different variational formulation, existence and
uniqueness of weak solutions to the stationary Navier–Stokes equations with the “non-standard”
boundary conditions (2) can be given in simply connected domains. For related question of non-
uniqueness, see Foiaş and Temam [19] with the characterization of curl/div-free vector fields in
non-simply connected domains.

In the following, a main point is that the system (19), more precisely, the system⎧⎨⎩
−�u = f in Ω,

u · n = 0 on ∂Ω,

ω × n = 0 on ∂Ω

(21)

is of Petrovsky type (see [28]). In Petrovsky’s systems—roughly speaking—different equations
and unknowns have the same “differentiability order,” see p. 126 in [27]. This fact allows us
to use in the sequel the “simplified” representation formula (25), in which just a single Green’s
matrix is present. We also recall that Petrovsky’s systems are an important subclass of Agmon–
Douglis–Nirenberg (ADN) elliptic systems, having the same good properties of self-adjoint ADN
systems. In addition, for these systems the H 2-regularity can be used to prove the full regularity
of solutions, provided that the data are smooth. In particular, this implies (by employing a boot-
strap argument) that if ∂Ω is smooth, then strong solutions of (1) are smooth, say C∞.

For the reader’s convenience we give here some remarks on the above subject. In Ref. [28,
see p. 126], in connection with the particular system of equations and boundary value problem
under study, the author considers a set of integer “weights” ti , si , σj . The system is called of
Petrovsky type if si = 0 and σj < 0, for all i and j . Let us consider the system (21), in the case
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of a flat boundary and assume that the x3 direction is normal to the boundary. In this case the
above weights are given by t1 = t2 = t3 = 2, s1 = s2 = s3 = 0, and σ1 = σ2 = −1, σ3 = −2.
Hence the system (21) is of Petrovsky type. On the contrary, if we consider the Stokes problem

⎧⎪⎪⎨⎪⎪⎩
−�u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u · n = 0 on ∂Ω,

ω × n = 0 on ∂Ω,

(22)

then one has two additional weights, s4 = −1 and t4 = 1. Hence the system is not of Petrovsky
type.

For an introduction to the above subject we recommend the reader to look up in the proof
of Proposition 2.2 in [32], where the Stokes system is considered under the Dirichlet boundary
condition. Under this boundary condition the ti and the si , i = 1, . . . ,4, are as above, moreover
σ1 = σ2 = σ3 = −1. Hence the system is still not of Petrovsky type (the weights σk are denoted
in [32] by rk).

2.3. Existence of solutions

We conclude this section by giving a sketch of the proof of the existence results for weak and
strong solutions.

By using standard techniques, the two differential inequalities (15) and (17) can be used to
prove the existence of weak and strong solutions. In fact, by taking into account the trace in-
equality, we prove the following differential inequalities:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2

d

dt

∫
Ω

|u|2 dx + 1

2

∫
Ω

|∇u|2 dx � c(Ω)

∫
Ω

|u|2 dx,

1

2

d

dt

∫
Ω

|ω|2 dx + 1

2

∫
Ω

|∇ω|2 dx � c(Ω)

∫
Ω

|ω|2 dx +
∣∣∣∣∫
Ω

(ω · ∇)u · ωdx

∣∣∣∣. (23)

By using a Faedo–Galerkin approximation method, with the techniques introduced by Hopf [21]
(see e.g. Temam [32] or Constantin and Foiaş [17]) one can easily show the following result.

Proposition 2.9. Let u0 ∈ L2
σ be given. Then, for each T > 0 there exists at least one weak

solution of the 3D Navier–Stokes equations (1) with the boundary conditions (2). In addition, if
u0 ∈ H 1

σ then there is T ∗ = T ∗(‖∇u0‖2) > 0 such that a unique strong solution in [0, T ∗[ exists.

From Lemma 2.7 it follows that if we are able to bound the L2-norm of the curl of a weak
solution u, we are also able to bound the full gradient of this solution. This is the reason why we
can use the vorticity equation. A standard continuation argument, that will be used in the proof
of Theorem 1.6, reduces our task to showing that if a weak solution satisfies hypothesis (4) in
(0, T ), then ω(x, t) belongs to L∞(0, T ;L2(Ω)).
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3. Solonnikov’s theory on the Green’s matrices: A sharp estimate of the vortex stretching

The results in this section are the core of our proof. In fact, by appealing to the integral bounds
shown below, the proof of Theorem 1.6 will follow by a standard continuation argument (see the
next section).

In order to give upper bounds for the vortex stretching we prove a suitable estimate for the
integral that appears in the right-hand side of the vorticity balance equation (17). The estimate
on the vortex stretching term will be derived by using an explicit representation of the solution to
the boundary value problem (19), which generalizes that introduced in Ref. [5] in the half-space
case, and by using identities similar to those introduced in [15].

3.1. Preliminaries on Green’s functions

Since ∂Ω is smooth and compact, we may fix a positive, real δ such that for each point of
x ∈ Ωδ , where

Ωδ
def= {

x ∈ Ω such that d(x, ∂Ω) � δ
}
,

there exists a unique point (the orthogonal projection) Px ∈ ∂Ω such that

d(x,Px) = min
y∈∂Ω

d(x, y),

where d(.,.) is the Euclidean distance in R3.
Given x0 ∈ Ω and we distinguish between two cases: (1) x0 ∈ Ωκ ; (2) x0 ∈ Ω \ Ωκ , for some

positive 0 < κ � δ that we shall fix later.
We aim at proving (see Proposition 3.2) a bound for∣∣(ω(x0) · ∇)

u(x0) · ω(x0)
∣∣, (24)

independent of x0, recall (17). To this end we express the velocity u in terms of the vorticity ω,
by appealing to the boundary value problem (19). Since this system is of Petrovsky type, there
exists a single Green’s matrix G(x, y) (see [28]) such that

u(x) =
∫
Ω

G(x, y) curlω(y)dy. (25)

The matrix G(x, y) can be written as

G(x, y) = G(x, y) + g(x, y),

where the first term on the right-hand side, which contains the “leading order terms,” satisfies the
estimates

∃c > 0: ∣∣Dα
x Dβ

y G(x, y)
∣∣ � c

|x − y||α|+|β|+1
, ∀x, y ∈ Ω, x �= y, (26)

while the second term g(x, y) consists of lower order terms, as |x − y| → 0; see again Solon-
nikov [27,28]. In order to prove our results, we need more explicit representation formulas for
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G(x, y). So, let us be precise about some details, proved in Ref. [28], to which we constantly
refer.

First, we localize our problem by appealing to the construction of the Green’s matrices made
in [27]. More precisely (for a proof and further details see p. 150 in [27]), it is possible to find a
finite covering {ωa}a=1,...,N , N ∈ N, of Ω such that:

(a) ωa ⊆ Ω .
(b) The regions ωa—which do not intersect the boundary ∂Ω—are cubes defined (for i =

1,2,3) by |xi − xa
i | � d1, with xa ∈ Ω , and d(ωa, ∂Ω) � d1. The set of indices of these

interior regions is denoted by I .
The remaining ωa are given, in local coordinates {za} with centers at points xa ∈ ∂Ω , by
inequalities

∣∣za
i

∣∣ � d2, i = 1,2, 0 � z3 − Fa

(
za

1, za
2

)
� 2d2,

where Fa ∈ C3,α define ∂Ω as a Cartesian surface (graph) near the points xa by equations
za

3 = Fa(za
1, za

2) defined in square domains |za
i | � d2, with i = 1,2. The set of indices of

these boundary regions is denoted by B.
(c) There is a partition of the unity consisting of smooth functions {χa(y)}a associated to the

covering {ωa}a , with
∑

a χa(y) ≡ 1, ∀y ∈ Ω such that supp[χa(y)] ⊂ ωa and
⋃

a ωa ⊃ Ω .
The coordinates {za} are connected to x by an orthogonal transformation za = Ua(x − xa)

in order that the za
3-axis is directed along the normal interior direction at the point xa ∈ ∂Ω .

The transformation ξa = Fa(za) is defined by

⎧⎪⎨⎪⎩
ξa

1 = za
1,

ξa
2 = za

2,

ξa
3 = za

3 − Fa
(
za

1, za
2

)
,

(27)

and maps ωa into the cube |ξa
i | � d2, for i = 1,2 and 0 � ξ2

3 � 2d2. It also maps ωa ∩ ∂Ω

onto ξa
3 ≡ 0. Finally, the transformation

T a = Fa ◦ Ua,

which connects x and ξa , has Jacobian identically equal to 1.

The fact that the domain Ω is smooth and bounded implies that we may choose the two strictly
positive numbers d1 and d2 (small enough) such that

1

2
|x − y| � ∣∣T ax − T ay

∣∣ � 2|x − y|, ∀x, y ∈ ωa, ∀a ∈ B. (28)

By means of this change of coordinates the Green’s matrix G(x, y) can be expressed in terms of
the explicit Green’s matrices Za(.,.) and Ga(.,.) that are known respectively for the whole space
or for the half-space, leading to the following representation formula:
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u(x) =
∫
Ω

∑
a∈I

χa(y)Za(x, y)
[
curlω(y)

]
ζ

( |x − y|
d3

)
dy

+
∫
Ω

∑
a∈B

χa(y)Ga
(
T ax,T ay

)[
curlω(y)

]
ζ

( |T ax − T ay|
d3

)
dy

+
∫
Ω

g(x, y)
[
curlω(y)

]
dy (29)

with

d3 = (1/4)min{d1, d2}.

Here Za(.,.) is the Green’s matrix related to the Poisson problem in the whole space:

Za
ij (ξ, η) = δij

4π

1

|ξ − η| , i, j = 1, . . . ,3,

and δij denotes the Kronecker’s delta such that δij = 1, if i = j , and 0 otherwise. The function
Ga(.,.) is the Green’s matrix associated to the Poisson problem in the half-space with suitable
(Navier) boundary conditions:

Ga
ij (ξ, η) = δij

4π

(
1

|ξ − η| − εj

1

|ξ − η|
)

with ε1 = ε2 = 1 and ε3 = −1. The “bar” denotes the “reflected point”

[η]j def= εjηj , j = 1,2,3.

We recall that the introduction of “reflected point” derives from the use of virtual charges to treat
problems with boundaries, classical in the potential theory for electrostatic problems; see, e.g.,
Courant and Hilbert [18].

The function ζ ∈ C∞(R) is a monotonic non-increasing cut-off function such that

0 � ζ(r) � 1 and ζ(r) =
{

1 if r � 1
4 ,

0 if r � 3
4 .

Finally, as recalled above, the matrix g(ξ, η) consists of lower order terms (i.e. terms that are not
of the leading order as those in Z(ξ,η) and G(ξ,η)), say

∃c, γ > 0: ∣∣Dα
ξ Dβ

η g(ξ, η)
∣∣ � c

|ξ − η||α|+|β|+1−γ
, ∀x, y ∈ Ω, x �= y, (30)

where γ > 0 depends on the Hölder regularity of the solutions to (19), see [28]. Consequently
γ depends just on the regularity of the boundary ∂Ω , since the differential operator and the
boundary operators in (19) have constant coefficients. Recall that, as already remarked at the end
of Section 2.3, we may assume that the right-hand side curlω is regular in (0, T ).
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Remark 3.1. In order to understand the explicit formulas for Z(x, y) and G(x,y), we recall
that we are dealing with boundary conditions involving the vorticity which, on flat boundaries,
become the usual Navier slip boundary condition. For system (19) this boundary condition—in
local coordinates—become a Neumann boundary condition for the first two components of u (or,
equivalently, for the normal derivative of the velocity in the tangential directions) and a Dirichlet
boundary condition for the velocity in the normal direction (the third component in our reference
frame). Hence, in the flat-boundary case (see [5]), problem (19) reduces to⎧⎪⎪⎨⎪⎪⎩

−�u = curlω in R3+,

u3 = 0 on ξ3 = 0,

∂uj

∂ξ3
= 0, j = 1,2, on ξ3 = 0.

This basic problem leads to the construction of the principal part G(ξ,η) of the Green’s matrix.
For a classical treatment of the Green’s function in these particular cases see also Lévy [23] and
Courant and Hilbert [18].

3.2. Some explicit formulas for the vortex stretching

In this section we appeal to the explicit representation formula (29) to estimate the vortex
stretching term. We start from the integrals involving the leading order terms and—for the sake
of completeness—we shall treat in an appendix all the lower order terms.

A crucial point of this paper is the following proposition.

Proposition 3.2. There exists a non-negative constant C, uniformly bounded for x ∈ Ω , such
that ∣∣(ω(x) · ∇)

u(x) · ω(x)
∣∣

� C
∣∣ω(x)

∣∣2
[
‖ω‖2 +

∫
Ω

[∣∣Det
(
ω̂(x), ω̂(y), ̂T x − Ty

)∣∣
+ ∣∣Det

(
ω̂(x), ω̂(y), σ (y′)

)∣∣] |ω(y)|dy

|T x − Ty|3

+
∫
Ω

[∣∣Det
(
ω̂(x), ω̂(y),

̂
T x0 − Ty

)∣∣ + ∣∣Det
(
ω̂(x), ω̂(y), σ (y′)

)∣∣] |ω(y)|dy

|T x − Ty|3
]
. (31)

This proposition will be proved separately for points “near the boundary” and for points “far
from the boundary,” see (32) and (47). New ideas concern the treatment of points near the bound-
ary. Estimates for points far from the boundary can be derived easily from the results in the whole
of the space, or by a substantial simplification of the argument used to treat points near to the
boundary. Nevertheless, just for completeness, we shall also give the guidelines for proving (31)
for points x far from the boundary.

In order to properly define “near” and “far” set

d
def= min{δ, d1, d2},

were δ, d1, d2, and d3 are defined in the previous section.
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3.2.1. Proof of Proposition 3.2 for points “near the boundary”
We now suppose that x0 is an arbitrary (but fixed) point, near the boundary. More precisely,

we assume that

x0 ∈ Ω2d/3. (32)

As previously claimed, by means of a rigid rotation (recall that the Navier–Stokes equations are
invariant by means of rigid transformations) we can use a reference frame with origin at P(x0)

and such that e3 = x0 − Px0. The e1- and e2-directions—tangential to ∂Ω—are chosen in order
to have a right-handed triple of unit vectors. In this system of coordinates the boundary point Px0
becomes the origin (0,0,0). The change of coordinates is made by flattening the domain near x0

in the direction of the normal unit vector passing through x0 and having this line as vertical axis
for the corresponding square in e3-variables. With this choice of coordinates the transformation
is simply given by

T x =
⎧⎨⎩

x1,

x2,

x3 − F(x1, x2),

(33)

where, for notation convenience, from now on we denote z by x (observe that (33) is a special
case of (27)). Note that here there are no rotation U , see formula (27) (more precisely, U is the
identity).

It is worthwhile observing that the transformation T depends on the point x0 ∈ Ω , even if we
do not write it explicitly. In particular, contrary to the tools used to prove existence of Green’s
matrices, in the sequel we appeal to a different transformation T for each point x0 ∈ Ω . Note that
(see [27,28]), for a given regular domain Ω , the parameters that characterize the transformation
T can be chosen independently of the particular point x0. In fact, these parameters depend only
on the diameter of the local subset ωa and on the local regularity of the boundary ∂Ω , which
however is characterized by global parameters (for instance the curvature is globally bounded).

In addition, we shall make use of just one chart in connection to each single point x0, in order
to bound (24) uniformly with respect to the point x0. This is justified by taking into account
the above independence of the main parameters, with respect to the particular point x0. More
precisely, we make use of two sets ω1 and ω2 such that:

1. x0 ∈ ω1, where ω1 is defined by

ω1 = {|xi | � 2d/3, i = 1,2; 0 � x3 − F(x1, x2) � 4d/3
}
,

where x3 = F(x1, x2) denotes the analytical expression of the boundary ∂Ω near Px0 (recall
the third equation (33)).

2. x0 /∈ ω2, where ω2 is defined by

ω2 = {
x ∈ Ω: d/3 � |xi |, i = 1,2; or if |xi | < d/3, then x3 > F(x1, x2) + d

}
.

Remark 3.3. The definition of these two sets implies that d(x0,ω
2) � d/3 > 0.
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Fig. 1. An example for the sets ω1 (thicker boundary) and ω2 (shaded), in flat coordinates. Actually, a non-significant
part of ω2 is outside the picture but still inside Ω . Essentially ω2 is most of what lies above the line x3 = 0.

Moreover, the local change of coordinates is given by “flattening” the boundary by means of
the smooth function F . In particular, F ∈ C3,α satisfies F(0,0) = Fx1(0,0) = Fx2(0,0) = 0 and
the transformation T is bounded from below and from above in a Lipschitz way by (28). Hence
couples of points that are “near,” are (uniformly) mapped into couples of points that are “near,”
and reciprocally. We finally observe that under the transformation T one has

T x0 = x0.

Actually, T acts as the identity on the vertical line passing through x0 and Px0.

By using these tools for x near to x0—say for d(x, x0) < d/16—formula (29) becomes

u(x) =
∫
ω1

χ1(y)G(T x,T y)
[
curlω(y)

]
ζ

( |T x − Ty|
d4

)
dy

+
∫
ω2

χ2(y)G2(x, y)
[
curlω(y)

]
dy +

∫
Ω

g(x, y) curlω(y)dy

= J1(x) + J2(x) + J3(x), (34)

where d4 is defined by

d4 = (1/4)min{d, d2}. (35)

Recall that supp[χ2(y)] ⊂ ω2 and note that G2(x, y) collects terms of leading order (multiplied
possibly by a cut-off function) which satisfy—at worse—the estimate in (26). The matrix g(x, y)

(which contains lower order terms), J2(x), and J3(x) will be treated in the appendix. Note that,
since we are working “near to the boundary,” the Z(x, y)-terms are not present.

Let us focus on the first integral in the right-hand side (rhs in the sequel) of Eq. (34). We first
integrate by parts, obtaining
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J1(x)
def=

∫
ω1

χ1(y)G(T x,T y)
[
curlω(y)

]
ζ

( |T x − Ty|
d4

)
dy

=
∫
ω1

ω(y) curl

[
χ1(y)G(T x,T y)ζ

( |T x − Ty|
d4

)]
dy

+
∫

∂ω1

[
ω(y) × n

]
χ1(y)G(T x,T y)ω(y)ζ

( |T x − Ty|
d4

)
dS.

Observe that the presence of the cut-off function χ1(y) implies that the boundary integral needs
not to be evaluated on the whole ∂ω1 but just on ∂Ω ∩ ∂ω1. Due to the boundary conditions
ω × n|∂Ω = 0 this surface integral vanishes identically. Hence, we are left with the following
identity1

J1(x) =
∫
ω1

ω(y) curlG(T x,T y)

[
χ1(y)ζ

( |T x − Ty|
d4

)]
dy

+
∫
ω1

ω(y)G(T x,T y) × ∇
[
χ1(y)ζ

( |T x − Ty|
d4

)]
dy

def= J 1
1 (x) + J 2

1 (x). (36)

For the moment let us consider the leading term J 1
1 (x). The term J 2

1 (x) will be treated in Ap-
pendix A. To deal with J 1

1 (x), we use the index notation, with the Einstein’s convention of
summation over repeated indices. Recall that [v × w]j = εjklvkwl for vectors v,w ∈ R3 and
[curlu]j = [∇ × u(x)]j = εjkl

∂ul(x)
∂xk

. A detailed expression is then

[
J 1

1 (x)
]
j

= − 1

4π

∫
ω1

ωl(y)εjkl

[
Tmx − Tmy

|Tmx − Tmy|3
∂Tmy

∂yk

− εj

Tmx − Tmy

|Tmx − Tmy|3
∂Tmy

∂yk

]

× χ1(y)ζ

( |T x − Ty|
d4

)
dy

= − 1

4π

∫
ω1

ωl(y)εjkl

[
Tmx − Tmy

|T x − Ty|3 − εj εm

Tmx − Tmy

|Tmx − Tmy|3
]
∂Tmy

∂yk

χ1(y)ζ

( |T x − Ty|
d4

)
dy.

Since J 1
1 (x) is one of the terms that enters in the representation formula (34), we need to dif-

ferentiate it with respect to the xi -variables, and to multiply by ωi(x)ωj (x), in order to be able

1 The differential operators “nabla” and “curl” act on the y-variables.
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to estimate its contribution to the term (ω(x0) · ∇)u(x0)ω(x0). To this end, and to simplify the
manipulations, we separate the terms with and without “reflected quantities.” Consequently

∂[J 1
1 (x)]j
∂xi

ωi(x)ωj (x) = ∂aj (x)

∂xi

ωi(x)ωj (x) + ∂bj (x)

∂xi

ωi(x)ωj (x), (37)

where (see [5, Eq. (43)])⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aj (x)

def= − 1

4π
εjkl

∫
ω1

ωl(y)
Tmx − Tmy

|Tmx − Tmy|3
∂Tmy

∂yk

χ1(y)ζ

( |T x − Ty|
d4

)
dy,

bj (x)
def= 1

4π
εjklεj εm

∫
ω1

ωl(y)
Tmx − Tmy

|Tmx − Tmy|3
∂Tmy

∂yk

χ1(y)ζ

( |T x − Ty|
d4

)
dy.

(38)

We start by dealing with the term involving aj (x) and we have the following result.

Lemma 3.4. Assume that x0 satisfies (32), and define the functions aj (x), for j = 1,2,3, as
above. Then, there exists a positive constant c, independent of x0, such that∣∣∣∣∂aj (x0)

∂xi

ωj (x0)ωj (x0)

∣∣∣∣ � c
∣∣ω(x0)

∣∣2
(

‖ω‖2 +
∫
ω1

[∣∣Det
(
ω̂(x0), ω̂(y), ̂T x0 − Ty

)∣∣
+ ∣∣Det

(
ω̂(x0), ω̂(y), σ (y′)

)∣∣] |ω(y)|dy

|T x − Ty|3
)

. (39)

Proof. Taking the derivative of aj (x) with respect to xi we get

∂aj (x)

∂xi

= − 1

4π
εjkl

∫
ω1

ωl(y)
δpm

|T x − Ty|3
∂Tmy

∂yk

∂Tpx

∂xi

χ1(y)ζ

( |T x − Ty|
d4

)
dy

− 1

4π
εjkl

∫
ω1

ωl(y)
(Tpx − Tpy)(Tmx − Tmy)

|T x − Ty|5
∂Tmy

∂yk

∂Tpx

∂xi

χ1(y)ζ

( |T x − Ty|
d4

)
dy

− 1

4π
εjkl

∫
ω1

ωl(y)
Tmx − Tmy

|T x − Ty|3
∂Tmy

∂yk

χ1(y)ζ ′
( |T x − Ty|

d4

)
Tpx

d4|T x − Ty|
∂Tpx

∂xi

dy

def= A1
ij (x) + A2

ij (x) + A3
ij (x). (40)

These three terms should be multiplied by ωi(x)ωj (x). We start by considering the first one, i.e.,

A1
ij (x)ωi(x)ωj (x).

Observe that, due to the formula that defines the function T (recall (33))

∂Try

∂ys

= δrs + σs(y)δ3r , r, s = 1,2,3,
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where σs(y) = σs(y1, y2) = − ∂F (y1,y2)
∂ys

is independent of y3. Hence, we write σ(y′), where y′ =
(y1, y2). Note that σ3(y1, y2) = 0 and also that σ(y′) = o(|y′|). Hence, by choosing a possibly
smaller d > 0, we may suppose that |σ(y)| � 1. In addition, note that

σi(x0) = σi

(
x′

0

) = σi(0,0) = 0, i = 1,2,3. (41)

In order to make the calculations clearer, we distinguish between terms coming from the diag-
onal of the matrix ∂Try

∂ys
(we call them “non-σ -terms”), which are independent of σ , from those

deriving from the off-diagonal part (we call them “σ -terms”), which depend on σ(y). Neglecting
the σ -terms and due to the properties of the Ricci tensor εjkl (for convenience, in this case, we
write � instead of =) we have

A1
ij (x)ωi(x)ωj (x) � − 1

4π
εjklδikωi(x)ωj (x)

∫
ω1

ωl(y)

|T x − Ty|3 χ1(y)ζ

( |T x − Ty|
d4

)
dy ≡ 0.

The σ -terms will be treated later on, after having considered the A2
ij (x)ωi(x)ωj (x)-terms.

As above, we start again with the non-σ -terms (the treatment is now similar to the correspond-
ing terms in the whole space case and this is the reason for the order in which we consider the
various terms). The non-σ -term of A2

ij (x)-type is given by

A2
ij (x)ωi(x)ωj (x)

� − 3

4π

∫
ω1

εjklωi(x)ωj (x)ωk(y)
(Tix − Tiy)(Tkx − Tky)

|T x − Ty|5 χ1(y)ζ

( |T x − Ty|
d4

)
dy.

By appealing to the properties of the Ricci tensor, we can rewrite the latter term as follows

A2
ij (x)ωi(x)ωj (x)

� − 3

4π

∫
ω1

(
̂T x − Ty · ω(x)

)
Det

(
̂T x − Ty,ω(y),ω(x)

)
χ1(y)ζ

( |T x − Ty|
d4

)
dy

|T x − Ty|3 .

(42)

This shows, when x = x0, that the absolute value of rhs in (42) is bounded by the first integral in
the rhs of (39). To this end, recall (28), observe that | ̂T x − Ty| = 1, and also that the non-negative
quantities χ1(.) and ζ(.) are bounded by 1.

We now come back to the σ -terms of A1
ij (x)ωi(x)ωj (x). These σ -terms involve, in principle,

three type of terms which come from the product ∂Try
∂ys

∂Tpx

∂xi
. However, since all quantities must

be evaluated at x = x0, and also by recalling (41), we are left simply with the single term

σs(y1, y2)δ3r δpi .
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In coordinate notation, the σ -term of A1
ij (x0)ωi(x0)ωj (x0) is given by

− 1

4π
ωi(x0)ωj (x0)

∫
ω1

εjklωl(y)
δpmδ3mδpi

|T x0 − Ty|3 σk(y
′)χ1(y)ζ

( |T x0 − Ty|
d4

)
dy.

Hence p = m = i = 3. It follows that the above σ -term is given by

1

4π
ω3(x0)

∫
ω1

εjklωj (x0)σk(y
′)ωl(y)χ1(y)ζ

( |T x0 − Ty|
d4

)
dy

|T x0 − Ty|3

= 1

4π
ω3(x0)

∫
ω1

Det
(
ω(x0),ω(y), σ (y′)

)
χ1(y)ζ

( |T x0 − Ty|
d4

)
dy

|T x0 − Ty|3 .

Consequently, we can bound the last term by the second integral in the rhs of (39).
Next we consider the σ -terms that appear in the expression of A2

ij (x0)ωi(x0)ωj (x0). We note
that, due to the fact that σ(x0) = 0, we are left only with the following term

− 1

4π
ωi(x0)ωj (x0)εjkl

∫
ω1

ωl(y)
(Tpx0 − Tpy)(Tmx0 − Tmy)

|T x0 − Ty|5 δ3mδpiσk(y
′)χ1(y)ζ

×
( |T x0 − Ty|

d4

)
dy.

Since p = i and m = 3, the above expression becomes

= − 1

4π

∫
ω1

(
( ̂T x0 − Ty) · ω(x0)

)
εjklωj (x0)σk(y

′)ωl(y)
T3x0 − T3y

|T x0 − Ty|4 χ1(y)ζ

( |T x0 − Ty|
d4

)
dy,

which, in turn, is equal to

= − 1

4π

∫
ω1

(
( ̂T x0 − Ty) · ω(x0)

)
Det

(
ω(x0),ω(y), σ (y′)

)
χ1(y)ζ

( |T x0 − Ty|
d4

)

× (T3x0 − T3y)dy

|T x0 − Ty|4 . (43)

Hence this term is still bounded by the second term in Eq. (39).
Finally we consider the A3

ij (x) term. The contribution of this term is easier to handle, since
the function ζ ′(s) is identically zero if its argument s is, in absolute value, smaller than 1/4. This
implies that in the integral that defines A3

ij (x) the potentially singular contribution coming from

points y such that |T x0 − Ty| vanishes, is cut-off. This shows that |A3
ij (x)| can be bounded in

terms of d4 for all x. (Recall also that the derivatives ∂Tp

∂xi
are uniformly bounded, see (28).) Then,

we have the following estimate:
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∣∣A3
ij (x0)ωi(x0)ωj (x0)

∣∣ � C(d4)
∣∣ωi(x0)

∣∣∣∣ωj (x0)
∣∣ ∫
ω1

∣∣ω(y)
∣∣dy

� C(d4)
∣∣ω(x0)

∣∣2
∫
Ω

∣∣ω(y)
∣∣dy � C‖ω‖2

∣∣ω(x0)
∣∣2

, (44)

where C(d4) is a bounded function, depending only on the bounded domain Ω . Note also that
d4 > 0 is a fixed number, see (35).

The proof of Lemma 3.4 is now accomplished. �
We treat now the bj (x)-terms, that involve the “reflected” quantities.

Lemma 3.5. Assume that x0 satisfies (32), and recall the definition (38) for the functions bj (x),
for j = 1,2,3. Then, there exists a positive constant c, independent of x0, such that∣∣∣∣∂bj (x0)

∂xi

ωj (x0)ωj (x0)

∣∣∣∣ � c
∣∣ω(x0)

∣∣2
(

‖ω‖2 +
∫
ω1

[∣∣Det
(
ω̂(x0), ω̂(y),

̂
T x0 − Ty

)∣∣
+ ∣∣Det

(
ω̂(x0), ω̂(y), σ (y′)

)∣∣] |ω(y)|dy

|T x0 − Ty|3
)

. (45)

Proof. By following the notation of the previous lemma we write

∂bj (x)

∂xi

def= B1
ij (x) + B2

ij (x) + B3
ij (x),

where each term is obtained from the corresponding term of Ak
ij (x), see (40), by changing its

sign and by replacing T x − Ty everywhere by T x − Ty (except in the argument of the cut-off
function ζ and in ζ ′). Hence, the non-σ -terms of Bij (x)-type satisfy

B1
ij (x)ωi(x)ωj (x) � εjklεj εkωj (x)ωk(x)

∫
ω1

ωl(y)
1

|T x − Ty|3 χ1(y)ζ

( |T x − Ty|
d4

)
dy ≡ 0,

as follows from the properties of the Ricci tensor, together with that of εj .
On the other hand, at x = x0, the σ -term B1

ij (x) is given by

1

4π
ωi(x0)ωj (x0)

∫
ω1

εjklεj εmωl(y)
δpmδ3mδpi

|T x0 − Ty|3 σk(y
′)χ1(y)ζ

( |T x0 − Ty|
d4

)
dy

= − 1

4π
ω3(x0)

∫
ω1

Det
(
ω(x0),ω(y), σ (y′)

)
χ1(y)ζ

( |T x0 − Ty|
d4

)
dy

|T x0 − Ty|3 .

This term will be estimated below.
The B2

ij (x)-term is treated by adapting the previous calculations made to estimate the A2
ij (x)-

term. In particular, we must take into account the action of the εm-term. One has
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B2
ij (x0)ωi(x0)ωj (x0)

= 3

4π

∫
ω1

(
( ̂T x0 − Ty) · ω(x0)

)
Det

( ̂
T x0 − Ty,ω(y),ω(x0)

)

× χ1(y)ζ

( |T x0 − Ty|
d4

)
dy

|T x0 − Ty|3

− 1

4π

∫
ω1

(
( ̂T x0 − Ty) · ω(x0)

)
Det

(
ω(x0),ω(y), σk(y

′)
)

× χ1(y)ζ

( |T x0 − Ty|
d4

)
(T3x0 − T3y)dy

|T x0 − Ty|4 ,

where the second term on the rhs corresponds to the σ -terms: see Eqs. (42) and (43). By appeal-
ing to the inequality

|T x0 − Ty| � |T x0 − Ty|, (46)

we prove that both |B1
ij (x0)ωi(x0)ωj (x0)| and |B2

ij (x0)ωi(x0)ωj (x0)| are bounded by the rhs
of (45). Note that |ω(x0)| = |ω(x0)|.

Finally, by using again (46), and by recalling the remarks already made for the A3
ij -terms, one

easily shows that

∣∣B3
ij (x0)ωi(x0)ωj (x0)

∣∣ � C‖ω‖2
∣∣ω(x0)

∣∣2
.

The proof of Proposition 3.2, for points near the boundary, is accomplished by appealing to the
estimates proved in this section. �
Remark 3.6. For the reader’s convenience, we summarize the main steps done until now. By
appealing to (34) we have shown that

(
ω(x) · ∇)

u(x)ω(x) = ωi(x)

(
∂J1(x)

∂xi

+ ∂J2(x)

∂xi

+ ∂J3(x)

∂xi

)
ωj (x).

The J1(x)-term (see (36) and (37)), which is the main term, gives rise to the following equality

(
ω(x) · ∇)

u(x)ω(x) =
(

∂aj (x)

∂xi

+ ∂bj (x)

∂xi

+ “lower order terms”

)
ωi(x)ωj (x).

By using Lemmas 3.4–3.5 we ended the proof of Proposition 3.2. As shown above (with the aid
of (29)) the terms J2(x) and J3(x) give rise to “lower order terms” and, for convenience, they
are treated in Appendix B.
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3.2.2. Proof of Proposition 3.2 for points “far from the boundary”
In the case of points x0 that are not “near the boundary,”

x0 /∈ Ω2d/3, (47)

we do not need to appeal to the change of coordinates T . We define sets

ω1 def=
{
x ∈ Ω: d(x, x0) <

4d

9

}
and

ω2 def=
{
x ∈ Ω: d(x, x0) � 2d

9

}
.

Note that d(x0,ω
2) � 2d/9 > 0. Further, we define functions aj (x), j = 1,2,3, as done in

Eq. (38), where now ∂Tmy
∂yk

is replaced by δmk . Note that for points far from the boundary there
are no bj -terms.

Lemma 3.7. Assume that x0 satisfies (47). Then, there exists a positive constant c, independent
of x0, such that∣∣∣∣∂aj (x0)

∂xi

ωj (x0)ωj (x0)

∣∣∣∣ � c
∣∣ω(x0)

∣∣2
(

‖ω‖2 +
∫
Ω

∣∣Det
(
ω̂(x0), ω̂(y), x̂0 − y

)∣∣ |ω(y)|dy

|x − y|3
)

.

Proof. The proof is a simplification of that of Lemma 3.4 and we just present a sketch of it.
Now the leading order term of the Green’s matrix is that occurring in the whole space case

and the calculations are very similar to those in [15]. The representation formula for the solution
of system (19) is now (for x near x0)

u(x) =
∫
ω1

χ1(y)Z(x, y)
[
curlω(y)

]
ζ

( |x − y|
d4

)
dy

+
∫
ω2

χ2(y)G2(x, y)
[
curlω(y)

]
dy +

∫
Ω

g(x, y)
[
curlω(y)

]
dy. (48)

Remark 3.8. The functions G2(x, y) and g(x, y) are not those in Eq. (34). However, we use the
same symbols since they have the same main properties of the corresponding functions in (34).

We come back to Eq. (36) and we make the same calculations starting with (48). As usual
taking the derivative with respect to xj and multiplying by ωi(x)ωj (x) we define terms that
correspond to the aj (x) in (38). Essentially we have only the terms “without reflections,” the
main difference is that in this (simpler) case we have not σ -terms, since no rectifications in
required at interior points. Hence the estimates are proved in the same way. �
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Remark 3.9. In all the expressions appearing in the statement (and in the derivation) of Proposi-
tion 3.2 we need to have the vorticity direction ω̂ well-defined. In all computations of Section 3
we are implicitly assuming that ω is always non-vanishing. To be rigorous one has to fix a posi-
tive constant K , and to decompose the vorticity as ω = ω1 + ω2, where

ω1(x) =
{

ω(x), if |ω(x)| � K,

0, if |ω(x)| > K,

while ω2(x) = ω(x) − ω1(x). Then, the vortex stretching term can be split into the sum of eight
terms ([ω1 + ω2] · ∇)[u1 + u2] · [ω1 + ω2]
with obvious notation. Most of the resulting terms are not difficult to handle since they involve
the bounded part ω1 of the vorticity. Only the (2,2,2) term needs the use of hypothesis (4) in
order to be estimated as in Proposition 3.2. For this term the quantity ω̂ is well defined, and all
calculations are completely justified. Full details how to implement this essential technical part
can be found in [15] and in Section 4 of [8]. It is straightforward to apply the same ideas to the
present context.

3.3. Using the hypothesis on the vorticity direction

We now use the hypothesis (4), in order to control the various terms that derive from our
representation of the vortex stretching term. We prove the following result.

Proposition 3.10. There exists a non-negative function S :Ω → R belonging to L3(Ω) such that,
for each x0 ∈ Ω , ∣∣∣∣∂aj (x0)

∂xi

ωi(x0)ωj (x0)

∣∣∣∣ � C
∣∣ω(x0)

∣∣2(‖ω‖2 + S(x0)
)
,∣∣∣∣∂bj (x0)

∂xi

ωi(x0)ωj (x0)

∣∣∣∣ � C
∣∣ω(x0)

∣∣2(‖ω‖2 + S(x0)
)
. (49)

Moreover,

‖S‖3 � C‖ω‖2.

The above constants C = C(Ω) are independent of x0.

Proof. Let us consider the rhs of Eq. (39). By using (4) we obtain∣∣Det
(
ω̂(x), ω̂(y), ̂T x − Ty

)∣∣ � sin θ(x, y, t) � C|x − y|1/2, ∀x, y ∈ Ω,

almost everywhere for t ∈ [0, T ]. Hence, by recalling (28), we show that

∣∣ω(x0)
∣∣2

∫
ω1

∣∣Det
(
ω̂(x0), ω̂(y), ̂T x0 − Ty

)∣∣dy � c
∣∣ω(x0)

∣∣2
∫
ω1

|ω(y)|
|x0 − y|5/2

dy.
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Set

S(x)
def=

∫
Ω

|ω(y)|
|x − y|5/2

dy.

Note that by Hardy–Littlewood–Sobolev inequality, see e.g. [30], it follows that S ∈ L3(Ω) since
ω ∈ L2(Ω) for almost every t ∈ (0, T ).

The last term in the rhs of Eq. (39) is treated in a similar way, by recalling that σ is bounded.
The first equation (49) is proved.

We pass now to the reflected bi(x) terms. We want to estimate the rhs of Eq. (45). The relevant
point is to prove that∫

ω1

∣∣Det
(
ω̂(x0), ω̂(y),

̂
T x0 − Ty

)∣∣ |ω(y)|
|T x0 − Ty|3 dy � C

∫
ω1

|ω(y)|
|x0 − y|5/2

dy (50)

with C independent of x0. The second term in the rhs of Eq. (45) can be treated as the above one.
In order to prove this inequality, the obstacle arises from the fact that we have to compare the

direction of the vorticity at the point y with that at the point x0, after reflection.
We use now the fact that the exterior unit normal vector at Px0 satisfies n(Px0) = −e3 and

also that

ω̂(Px0) = e3 or ω̂(Px0) = −e3,

since Px0 belongs to the vertical line passing through x0. First we observe that
sin � (ω̂(x0),±e3) = sin � (ω̂(x0),±e3), due to the fact that reflection on the boundary (as in the
half-space case) changes the sign of the third component (that in e3-direction). Consequently, the
sinus of the angle between the reflected vector and the direction e3 is that of the angle identified
by the vorticity without reflection.

Next, by using the hypothesis (4) it follows that

sin � (
ω̂(x0),±e3

)
� c

∣∣x0 − (Px0)
∣∣1/2 = c

([x0]3
)1/2

,

where [x0]3 denotes the third component of x0.
Now we identify the angle between unit vectors with the length of a geodesic connecting them

on a spherical unit surface. In this way we see that

� (
ω̂(x0), ω̂(y)

)
� � (

ω̂(x0), e3
) + � (

e3, n(Πy)
) + � (

n(Πy), ω̂(y)
)
,

where Πy ∈ ∂Ω is the point of the boundary obtained by projecting y on ∂Ω , along the direction
of x0 − Px0 = e3, see Fig. 2.

First, note that (roughly speaking) the angle between the direction of the normal unit vec-
tors n(Px0) and n(Πy) is small, if |x0 − y| is small. In fact, the magnitude of the angle is
determined by the curvature of the boundary, which is uniformly bounded. Hence, the angle
� (n(Px0), n(Πy)) is (at least) bounded by c|Px0 − Πy|. Then, since Px0 is the origin, and since
the first two components of x0 vanish, it follows that
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Fig. 2.

|Px0 − Πy|2 =
3∑

i=1

([Px0]i − [Πy]i
)2 =

3∑
i=1

([Πy]i
)2

� y2
1 + y2

2 + c(d)
(
y2

1 + y2
2

)
� y2

1 + y2
2 + c(d)

(
y2

1 + y2
2

) + ([x0]3 − y3
)2

� c1(d)

3∑
i=1

([x0]i − [y]i
)2 = c1(d)|x0 − y|2.

Recall (again by the regularity of the boundary) that |[Πy]3| � c(d)

√
y2

1 + y2
2 . Finally

sin � (
n(Px0), n(Πy)

)
� c|x0 − y|.

Then, hypothesis (4), together with the above remarks on the distance between y and Πy, imply
that

sin � (
ω̂(x0), ω̂(y)

)
� c

([x0]1/2
3 + |x0 − y| + ∣∣2y2

3 + c(d)
(
y2

1 + y2
2

)∣∣1/4)
.

By using the calculus inequalities (1 + a2)1/4 � 1 + √|a| and |a + |b|| � |a + b| + |a − b|, we
can increase the rhs of the last expression as follows:

([x0]1/2
3 + |x0 − y| + ∣∣2y2

3 + c(d)
(
y2

1 + y2
2

)∣∣1/4)
� c

([x0]1/2
3 + |y3|1/2 + |x0 − y| + ∣∣(y2

1 + y2
2

)∣∣1/4)
� c

(|x0 − y|1/2 + |x0 − y|1/2 + |x0 − y|).
Now we observe that

|x0 − y| � 2|T x0 − T y| � 2|T x0 − Ty| + 2|Ty − T y|.
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In addition, by using the explicit expression (33) for the transformation T , we get

|Ty − T y| � 2
∣∣F(y′)

∣∣ = 2
∣∣F(y′) − F(x0)

∣∣ � c(d)|x0 − y|.

Then, since x0 and y belong to ω1, their distance is bounded by the “small” number d > 0.
Hence, the term |x0 − y| can be absorbed into |x0 − y|1/2, by increasing the constants c.

Finally, by collecting all the previous inequalities, we get, for x0, y ∈ ω1:

sin � (
ω̂(x0), ω̂(y)

)
� c

(|x0 − y|1/2 + |x0 − y|1/2) � c
(|T x0 − T y|1/2 + |x0 − y|1/2).

By using (46) and (28) it readily follows that

|T x0 − Ty|1/2 + |x0 − y|1/2

|T x0 − Ty|3 � |T x0 − Ty|1/2

|T x0 − Ty|3 + |x0 − y|1/2

|T x0 − Ty|3 � c

|x0 − y|3−1/2
.

We have finally proved that

∣∣B2
ij (x0)ωi(x0)ωj (x0)

∣∣ � c
∣∣ω(x0)

∣∣2
∫
ω1

|ω(y)|
|x0 − y|3−1/2

dy,

and this ends the proof of Proposition 3.10. �
4. Proof of the main result

We have now at disposal all the results needed to give the proof of Theorem 1.6. By using the
results of the previous section, we deduce the following result.

Proposition 4.1. Let us assume that hypothesis (4) holds and that u is a strong solution in [0, T [.
Then, to each ε > 0 there corresponds a positive Cε > 0 such that the following inequality holds:∣∣∣∣∫

Ω

(
ω(x) · ∇u(x)

) · ω(x)dx

∣∣∣∣ � ε‖∇ω‖2
2 + Cε

(‖ω‖4
2 + ‖ω‖3

2

)
, a.e. t ∈ [0, T [. (51)

Proof. The above inequality follows easily from the uniform bounds previously proved, together
with Hölder’s inequality. Actually, one shows that∣∣∣∣∫

Ω

(
ω(x0) · ∇u(x0)

) · ω(x0) dx0

∣∣∣∣ � C

∫
Ω

∣∣ω(x0)
∣∣2[1 + S(x0) + ‖ω‖2

]
dx0

� C
∥∥|ω|2∥∥3/2

∥∥1 + ‖ω‖2 + S
∥∥

3

� C‖ω‖2
3‖ω‖2

� C‖ω‖2
2

(‖ω‖2 + ‖∇ω‖2
)
,

where the last inequality is obtained by using convex interpolation and the Sobolev inequality
‖f ‖6 � C(‖f ‖2 + ‖∇f ‖2). Finally, an application of Young’s inequality ends the proof. �
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The proof of the main result is now a simple consequence of Proposition 4.1.

Proof of Theorem 1.6. Let us suppose—per absurdum—that the weak solution u is strong in
[0, T1[, for some T1 < T and that u cannot be continued as a smooth solution beyond T1. By
scalar multiplication of both sides of (16) followed by integration in Ω (recall also (23)2), and
by appealing to Proposition 4.1, the following differential inequality holds:

d

dt

∥∥ω(t)
∥∥2

2 + ‖∇ω‖2
2 � C

(
1 + ∥∥ω(t)

∥∥
2 + ∥∥ω(t)

∥∥2
2

)∥∥ω(t)
∥∥2

2, a.e. t ∈ [0, T1[.

Consequently, Gronwall’s lemma implies that

lim sup
t→T −

1

∥∥ω(t)
∥∥

2 < +∞.

Hence, by Lemma 2.7, ‖∇u(t)‖2 is uniformly bounded in [0, T1], i.e., u is a strong solution in
[0, T1]. By standard arguments one proves that the solution u is regular in [0, T1 + ε[, for some
positive ε, contradicting the maximality of T1. �
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Appendices

As announced in Section 3 we report here the (simple) calculations that lead to the estimates
of some of the “secondary terms.”

Appendix A

We start by considering the term J 2
1 (x), defined in Eq. (36), whose explicit expression is

− 1

4π
εjkl

∫
ω1

ωl(y)G(T x,T y)

[
∂kχ1(y)ζ

( |T x − Ty|
d4

)

+ χ1(y)ζ ′
( |T x − Ty|

d4

)
Tpy

d4|T x − Ty|
∂Tpy

∂yk

]
dy.

Next we differentiate with respect to xj and multiply by ωi(x)ωj (x). For convenience we split
∂jJ

2
1 (x) as follows:∫

ω1

εjklωl(y)∂xj
G(T x,T y)

[
∂kχ1(y)ζ

( |T x − Ty|
d4

)

+ χ1(y)ζ ′
( |T x − Ty|

d4

)
Tpy

d4|T x − Ty|
∂Tpy

∂yk

]
dy
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+
∫
ω1

εjklωl(y)G(T x,T y)

[
∂kχ1(y)∂xj

ζ

( |T x − Ty|
d4

)

+ χ1(y)∂xj

[
ζ ′

( |T x − Ty|
d4

)]
Tpy

d4|T x − Ty|
∂Tpy

∂yk

]
dy.

Note that the first and the second derivatives of the cut-off function ζ vanish if the argument is
small enough (recall “for instance” the estimate (44) of A3

ij (x0)). Hence, we have to consider just
the term

1

4π

∫
ω1

εjklωl(y)∂xj
G(T x,T y)∂kχ1(y)ζ

( |T x − Ty|
d4

)
dy

= 1

4π

∫
ω1

εjklωl(y)

[
Tmx − Tmy

|T x − Ty|3 − εj εm

Tmx − Tmy

|T x − Ty|3
]
∂Tmx

∂xj

∂kχ1(y)ζ

( |T x − Ty|
d4

)
dy,

which is bounded by

C

∫
ω1

|ω(y)|
|T x − Ty|2 dy.

Appendix B

Now we consider the terms present in formulas (34), (48), which are not treated in the pre-
vious sections. The function g(x, y) includes only terms that are not of leading order, and it
satisfies (30). In particular, the contribution of the lower order term ∇xJ3(x) (where J3(x) is
defined in Eq. (34)) can be bounded as follows:∣∣∣∣∇x

∫
Ω

g(x, y) curlω(y)dy

∣∣∣∣ � c

∫
Ω

1

|x − y|2−γ

∣∣∇ × ω(y)
∣∣dy

� c

(∫
Ω

dy

|x − y|4−2γ

)1/2

‖∇ × ω‖L2(Ω).

The last integral defines a function of x that is uniformly bounded (due to the fact that Ω is a
bounded domain with compact closure), provided that γ > 1/2. Consequently,∣∣∣∣∫

Ω

(
ω(x) · ∇x

)[∫
Ω

g(x, y) curlω(y)dy

]
ω(x)dx

∣∣∣∣ � c‖∇ω‖L2(Ω)‖ω‖2
L2(Ω)

� ε‖∇ω‖2
L2(Ω)

+ Cε‖ω‖4
L2(Ω)

with ε > 0 arbitrarily small.
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To end up, we now consider the term∫
ω2

χ2(y)G2(x0, y)
[
curlω(y)

]
dy.

We observe that this term appears in both (34), (48). In both these equations the function G2(x, y)

satisfies

∃C = C(d) > 0: ∣∣G2(x, y)|x=x0

∣∣, ∣∣∇xG2(x, y)|x=x0

∣∣ � C, ∀y ∈ ω2,

since x0 and ω2 are far “enough” from each other (recall Fig. 1). Finally, just in the way used to
prove the above results, we show that there exists C > 0, independent of x0, such that∣∣∣∣(ω(x0) · ∇

∫
ω2

χ2(y)G2(x, y) curlω(y)dy

)
· ω(x0)

∣∣∣∣ � C
∣∣ω(x0)

∣∣2
∫
Ω

∣∣curlω(y)
∣∣dy, ∀x0 ∈ Ω.
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