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Abstract

Poiseuille flows in infinite cylindrical pipes, in spite of their enormous simplic-
ity, have a main role in many theoretical and applied problems. As is well known,
the Poiseuille flow is a stationary solution of the Stokes and the Navier-Stokes
equations with a given constant flux. Time-periodic flows in channels and pipes
have a comparable importance. However, the problem of the existence of time-
periodic flows in correspondence to any given time-periodic total flux, is still an
open problem. A solution is known only in some very particular cases, for instance,
the Womersley flows. Our aim is to solve this problem in the general case.

The above existence result opens the way to further investigations. As an exam-
ple of this possibility we consider the extension of the classical Leray’s problem
for Poiseuille flows to arbitrary time-periodic flows.

1. Introduction

We start by discussing the motivation that led us to consider the problem below.
Let� be a bounded, regular, connected open set in R

n, n � 1, and consider a cylin-
drical (n + 1)-dimensional pipe �+ = � × R+, where R+ denotes the positive
real line. We denote by � the boundary of�. We set x = (x1, ..., xn) and denote by
z the longitudinal coordinate along the axis of the pipe, say z = xn+1. We denote
by χ the component of the velocity v in the axial direction z. Note that the physical
dimension is N = n+ 1. By assumption, the fluid adheres to the lateral boundary
of the cylinder.

Assume that a viscous incompressible fluid is pumped into the pipe �+ with a
given inflow velocity v0(x, t) = v(x, z, t)|z=0. The pointwise values of the inflow
velocity are unknown, and not necessarily time periodic, but the total flux g(t) is
a time-periodic function, i.e.,

∫
�
χ0(x, t) dx = g(t) , where χ0 = χ|z=0. Note

that the inflow velocity can be pointwisely quite “chaotic”, but the total amount
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of pumped fluid by unit of time is not. Note that this is a very natural situation in
many physical problems (the blood pumped by the heart, for instance). Clearly, the
incompressibility of the fluid implies that

∫

�

χ(x, z, t) dx = g(t) , (1)

z � 0, for each cross section �(z) = {(x, z) : x ∈ �} and at any time t � 0. We
call the flux g(t), in the cross sections of the pipe, the total flux. It may be possible
that after a long time, in a very long pipe, the outflow velocity “forgets” the partic-
ular point wise distribution of the inflow velocity v0, and merely “remembers” the
total flux g(t). If we assume that a unique limit solution exists, in correspondence
to a given g, than the solution must be independent of z. In spite of the recognized,
theoretical and applied, significance of this very basic problem, a positive answer
is known only in a very few cases: for instance, the classical Poiseuille steady flow,
when the flux is constant; and the Womersley flow, which corresponds to a quite
particular but important class of periodic sinusoidal fluxes in circular pipes, see [26].
The central position occupied by periodic flows in pipes leads us to consider the
possibility of replacing Poiseuille and Womersley flows by flows with an arbitrary
time-periodic total flux g(t). Now, the basic open problem is to prove the existence
of a time-periodic flow with a given time-periodic flux g(t). As we will see, this
leads to a non-standard variational problem. Contrary to the stationary case, the
main open problem is now whether there exists, in an infinite pipe � = �× R, a
periodic flow with a given time-periodic flux g(t).

As in the Womersley paper, we also have in mind flows in large arteries. Here,
the heart beat gives rise to a periodic variation, the pulsatility, and hence to a time
periodic total flux g(t). However, this flux is far from being of sinusoidal type. Nev-
ertheless, in many blood flow simulations, the Womersley model is used; this may
be due to the lack of information on more general periodic solutions. Concerning
blood flow problems see, for instance, [22].

Another motivation for our study is the extension of the famous Leray prob-
lem to periodic flows. In the classical formulation, two cylindrical semi-infinite
pipes, �1 and �2, are connected by a reservoir �0. We consider the problem of
the existence of a viscous, incompressible fluid flow, subjected to convergence to
Poiseuille flows, in both pipes, as the distance goes to infinity. A constant flux g is
assigned. A fundamental contribution to Leray’s problem is that given by Amick in
[1], dedicated to Leray himself, and in [2], to which we refer the interested reader.
Leray’s problem seems to have been proposed, see [1], by Leray himself to La-

dyzhenskaya, who in [13] attempted an existence proof under no restrictions on
the viscosity. As referenced in [1], this problem is also mentioned by Finn in the
review paper [7]. For the Leray’s and related problems we refer, in particular, to
[9], Vol.I, Chap. VI, Sections 1 and 2, and Vol. II, Chap. XI, Sections 1, 2, 3 and 4.
Other main references are [3, 6, 8, 11, 12, 14–16, 18–20, 24]. For the Leray prob-
lem concerning non-Newtonian fluids we refer the reader to [21] and the references
therein.

Note that, due to the arbitrariness of the connection reservoir �0, the “inflow”
velocity v0(x, t) at the second pipe is essentially arbitrary, except for the given
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constant total flux. Consequently, an intimately related problem, in semi-infinite
pipes, is that of the convergence, as the distance goes to infinity, to a Poiseuille
flow when a constant (total) inflow flux is given.

In this paper we shall prove that each periodic g(t) corresponds to one and
only one periodic flow, parallel to the axis, with a given periodic flux. Once the
existence of these basic periodic flows is proved, further developments can be done
by adapting to the periodic case the known proofs done for the stationary case
(see, for instance, [1] and [9]). For this reason, and also to avoid more technical
proofs, we will merely take into account the above application to Leray’s problem,
and leave to the reader further developments, in particular more stringent results
on the asymptotic behavior of the solutions at infinity distance. Other interesting
extensions concern problems with more than two exits to infinity and applications
to more general fluids.
Summarizing: The main problem is the following: Consider an infinite pipe � =
�×R with boundary� = �×R. Let a T-periodic function g(t) be given. We look
for T-periodic solutions v(x, z, t) in �× R of the Navier-Stokes equations which
are parallel to the z-axis, independent of z, vanish on the boundary� and satisfy the
flux constraint (1). We give a positive answer to this question in Theorem 1 below.

After this first result, we consider the Stokes equations (54) and prove the exis-
tence and uniqueness of the solution of Leray’s problem for an arbitrary given
time-periodic flow g(t), see Theorem 4. Finally we assume that n � 4 and prove
the existence of the solution of Leray’s problem for the Navier-Stokes equations if
the viscosity ν is sufficiently large, see Theorem 5.

Without loss of generality, we assume below that

|�| = 1 , and that T = 2π , (2)

where |�| denotes the Lebesgue measure of �.
In order to avoid misunderstandings between z and t , we denote by Rt the real

line R when referring to the time variable t .
It is worth noting that if we replace the adherence boundary condition by a

Neumann-type boundary condition ( for instance, a slip type boundary condition;
see, for instance, [4]) then the above problem becomes trivial.

2. The existence theorem in infinite pipes

Let � be as above and consider the Navier-Stokes equations in the cylindrical
domain � under the non-slip boundary condition on the lateral boundary, namely






∂v
∂t

− ν 	v + (v · ∇) v + ∇p = 0,

∇ · v = 0 in �× Rt ,

v = 0 on � × Rt .

(3)

Here the differential operators 	 and ∇ act on all the variables (x1, ..., xn, z).
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Since we are looking for solutions parallel to the axis of the pipe, we merely
consider the longitudinal component χ of the velocity. Moreover, independence of
the velocity on z easily implies that the Navier-Stokes equations reduce to






∂ χ
∂ t

− ν 	χ + ∂ p
∂ z

= 0 ,

∂ p
∂ xk

= 0 for k = 1, ..., n ,

χ = 0 on � × Rt .

(4)

Hence we are looking for solutions χ of the problem (4) satisfying (10) below and
also χ(t + T ) = χ(t).

From the first equation (4) it follows that ∂ p
∂ z

is independent of z since χ and
its derivatives do not depend on z. Hence p(t, z) = a(t)− ψ(t) z . Since the term
a(t) does not affect the velocity field, we may assume that the pressure has the form

p(t, z) = −ψ(t) z . (5)

Note that the significant quantity is here ∇ p = −ψ(t) ez, where ez denotes the
unit vector in the z direction.

The full problem becomes





∂ χ
∂ t

− ν 	χ = ψ(t) in �× Rt ,

χ = 0 on � × Rt ,

χ(t + T ) = χ(t) ∀ t ∈ Rt ,

(6)

together with the constraint (10). The unknowns are χ(t, x) and ψ(t). Note that
problem (6) is independent of z. The function χ(t, x, z) = χ(t, x) for each z and
the function p given by (5) are a solution of problem (4). Actually, until the end of
Section 5, functions and equations will not depend on the variable z.

Integration of equation (6) in � shows that we must have

ψ(t) = g′(t)− ν

∫

�

	χ dx . (7)

See the Remark 2 at the end of this section.
Summarizing: Let g(t), t ∈ Rt , be a given real 2π -periodic function. A 2π -peri-
odic solution v of the Navier-Stokes equations (3) in the infinite cylinder �, with
v of the form

v(t, x, z) = (0, ..., 0, χ(t, x)) (8)

and satisfying the flux condition (1) for each t ∈ Rt , exists if and only if χ is a
solution of the problem






∂ χ
∂ t

− ν 	χ + ν
∫
�
	χ dx = g′(t) in �× Rt ,

χ = 0 on � × Rt ,

χ(t + T ) = χ(t) ∀ t ∈ Rt ,

(9)
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for which
∫

�

χ(x, t) dx = g(t) , (10)

for each t .
The following existence and uniqueness result of the above solution v is a cor-

ollary of Theorem 2 below. For notation, see the next section. The symbol # denotes
2π -periodicity.

Theorem 1. Let � be an open, bounded and connected set in R
n and consider the

infinite cylinder� = �× R. Let g ∈ H 1
# (Rt ) be given. There is a unique solution

v of the Navier-Stokes equations (3) in � which satisfies the adherence boundary
condition v|� = 0 for each t , and such that:

(i) v is (2π)-time periodic,
(ii) v has the form (8),

(iii) The total flux satisfies (10).

Moreover, χ satisfies the estimates

‖	χ‖2
L2

#(Rt ;H)
� c ‖g‖2

L2
#(Rt )

+ c

ν2 ‖g′‖2
L2

#(Rt )
, (11)

‖χ ′‖2
L2

#(Rt ;H)
� c ν2 ‖g‖2

L2
#(Rt )

+ c ‖g′‖2
L2

#(Rt )
, (12)

and

‖χ‖2
C#(Rt ;V ) � c (1 + ν) ‖g‖2

L2
#(Rt )

+ c

(
1

ν
+ 1

ν2

)

‖g′‖2
L2

#(Rt )
. (13)

Remark 1. If � is locally situated on one side of � and if � is a differentiable
manifold of class C1,1, or if � is convex, then, by well-known elliptic regularity
results,

‖	χ‖2
L2

#(Rt ;H)
� ‖χ‖2

L2
#(Rt ;H 1

0 ∩H 2)
.

Moreover, well-known regularity results for the heat equation, yield regularity re-
sults for χ and v, depending on the regularity of � and g(t). In particular, if � and
g(t) are infinitely differentiable, so is v in �× R.

Clearly, partial derivatives of v of any order vanish if they include differentiation
with respect to z. Otherwise, derivatives are not integrable (with any exponent) in
the whole of the cylinder �.

Remark 2. If we assign the pressure gradient −ψ(t) instead of the total flux g(t),
see (6), existence, uniqueness and estimates for the solution are immediate. How-
ever, it is worth noting that an estimate of g(t) simply follows from the knowledge
of the volume of fluid pumped into the pipe. On the contrary, ψ(t) is a typical
“outflow product”, that cannot be measured at the inflow, at least in real problems.
This simple fact is connected to the difficulty of obtaining an explicit functional
relation between ψ and g alone; see (7).
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Remark 3. By applying the change of variables τ = 2π
T
t , it readily follows that

all the results proved below still hold if we replace the period 2π by an arbitrary
period T . It is worth noting that the estimates (17), (18) and (19) (hence (11), (12)
and (13)) hold with the same constants on the right-hand side. In particular these
constants do not depend on the period T . We believe that our results can be extended
to the almost periodic case.

3. Functional framework – an abstract result

The above problem can be easily seen, and solved, as a particular case of a more
general class of problems. In our opinion a more “abstract” presentation, in a wider
framework, helps in the understanding of the problem.

Let H and V be real separable Hilbert spaces, with V densely and compactly
embedded in H , and denote respectively by ( , ) and ‖ ‖ the scalar product and the
norm inH . We identifyH with its dualH ′. We have V ⊂ H � H ′ ⊂ V ′ where V ′
denotes the dual ofV . Define an operatorA by means of (Au, v) = a(u, v), where a
is any symmetric, continuous, bilinear, V -elliptic form over V ×V . We take a(u, v)
as the scalar product in V , and set ((u, v)) = a(u, v). Hence, (Au, v) = ((u, v));
moreover,

(Av, v) = ‖v‖2
V

for each v ∈ V . Note that A is an isomorphism between D(A) and H , where

D(A) = {v ∈ V : Av ∈ H }
and the norm of an element v ∈ D(A) is given by ‖Av‖.

Denote by e a fixed element e ∈ H , such that e /∈ V . Without any loss of
generality, we normalize e by assuming that ‖e‖ = 1. Finally we definew ∈ D(A)
as the unique solution of the equation

Aw = e . (14)

We set

C2
1 = (Aw,w) = ‖w‖2

V ,

and

C2
0 = ‖w‖2 .

Below we shall solve the following problem.

Problem. Let H, V, A and e be as above and let g(t) be a given real, 2π -time
periodic function. We look for solutions χ of the linear problem

{
χ ′ + ν Aχ − ν (Aχ, e) e = g′(t) e ,

χ(t + T ) = χ(t) ,
(15)
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such that

(χ(t), e) = g(t) . (16)

The problem (9)–(10) is a particular case of the problem (15)–(16) as shown
by setting (note that classical and universally accepted notations will be used with-
out definition) H = L2(�), V = H 1

0 (�) , A = −	 with domain D(A) =
{v ∈ V : Av ∈ H } , and by denoting by e the constant function e(x) = 1 for
each x ∈ �. Note that

D(A) = H 2(�) ∩H 1
0 (�) ,

if � is of class C1,1, or convex.
It is worth noting that the case ‖e‖ = 1 is the borderline case. In fact, if we

assume that ‖e‖ > 1 then our problem has, in general, no solution. On the other
hand, if ‖e‖ < 1, the existence and uniqueness of the solution is trivial.

Remark 4. In the two last sections the notation ( , ) and ‖ ‖ will be used to denote
the scalar product and the norm in functional spaces related to n+ 1 dimensional
domains.

We set L2
#(Rt ) = L2

#(Rt ; R) and H 1
# (Rt ) = H 1

# (Rt ; R).
The next two sections are dedicated to proving the following theorem. Recall

that the symbol # means 2π -periodicity.

Theorem 2. Let g ∈ H 1
# (Rt ) and e ∈ H , ‖e‖ = 1 and e /∈ V , be given. Then

there is a unique solution χ of the problem (15) such that (16) holds. Also, χ ∈
L2

#(Rt ;D(A)) ∩ C#(Rt ;V ), χ ′ ∈, L2
#(Rt ;H) and

‖χ‖2
L2

#(Rt ;D(A))
� C̃0 ‖g‖2

L2
#(Rt )

+ C̃

ν2 ‖g′‖2
L2

#(Rt )
. (17)

Moreover,

‖χ ′‖2
L2

#(Rt ;H)
� 8 C̃0 ν

2 ‖g‖2
L2

#(Rt )
+ (

2 + 8 C̃
) ‖g′‖2

L2
#(Rt )

, (18)

where C̃ is the constant that appears in equation (29) and C̃0 = max
{
C̃, C−4

1

}
.

In particular,

‖χ‖2
C#(Rt ;V ) � c (1 + ν) ‖g‖2

L2
#(Rt )

+ c

(
1

ν
+ 1

ν2

)

‖g′‖2
L2

#(Rt )
. (19)

Note that the map χ → ν Aχ − ν (Aχ, e) e is not defined on V , since in this
case Aχ ∈ V ′ and e /∈ V . However, even if e should belong to V , the canonical
variational techniques, in the functional framework of V , are not recommended
here. In fact, the usual scalar multiplication in H of the first equation (15) by χ
does not yield a useful estimate.
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Scalar multiplication by Aχ gives

1

2

d

dt
‖χ‖2

V + ν ‖Aχ‖2 − ν (Aχ, e)2 = g′(t) (e, χ) . (20)

Note that

(Aχ, e)2 � ‖Aχ‖2 .

However coercivity fails, even in this last context, since (Aχ, e)2 = ‖Aχ‖2 for
χ = w. More precisely, ν Aχ − ν (Aχ, e) e = 0 , since Aw = e.

Also note that ‖f ‖2 = (f, e)2 if and only if f = c e for some constant c.
Consequently,

‖Aχ‖2 = (Aχ, e)2 ⇔ χ = c w .

The uniqueness of solutions is obvious. In fact, let χ be a periodic solution of
the homogeneous problem

χ ′(t)+ ν Aχ − ν (Aχ, e) e = 0 . (21)

Scalar multiplication by Aχ followed by integration on (0, 2π) shows that
‖Aχ‖2 = (Aχ, e)2 a.e. in (0, 2π), as follows from

(χ ′, Aχ) = 1

2

d

dt
‖χ‖2

V

and from the periodicity of ‖χ‖V . Hence χ = c(t) w. If, moreover, χ satisfies (16)
with g = 0, then c(t) must vanish identically.

We state the following Lemma in the form needed for later on

Lemma 1. If

v′ ∈ L2((a, b);H) and v ∈ L2((a, b);D(A)) , (22)

then v ∈ C([a, b];V ). Moreover,

‖v‖2
C([a,b];V ) � 8

[
2

b − a
‖v‖L2(a,b;H) + ‖v′‖L2(a,b;H)

]

‖v‖L2(a,b;D(A)) .

(23)

If

∫ b

a

v(t) dt = 0, (24)

then

‖v‖2
C([a,b];V ) � 24 ‖v′‖L2(a,b;H) ‖v‖L2(a,b;D(A)) . (25)
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Proof. The fact that v ∈ C([a, b];V ), together with a suitable estimate, is a very
particular case of some well-known results, see [17], Chapter 1, Section 3.1 and [5],
Chapter XVIII, Section 1.3. Here, we just want to show the estimate (23). It is well
known, (see [17], Chapter 1, section 2.4, Proposition 2.1) that [D(A), H ]1/2 = V .
Moreover,

1

2

d

dt
‖v‖2

V = (v′, A v) . (26)

If v(0) = 0, it readily follows that

‖v‖2
C([a,b];V ) � 2 ‖v′‖L2(a,b;H) ‖Av‖L2(a,b;H) .

In the general case we apply the above estimate to the functionsα v and (1−α) v,
where the real function α belongs to C∞([a, b]), vanishes near a and takes values
in [0, 1]. Since v = α v+ (1− α) v, the estimate (23) follows. Finally (25) follows
from (23) together with

∫ b

a

‖u(t)‖2
H dt � 2

b − a

∥
∥
∥
∥

∫ b

a

u(t) dt

∥
∥
∥
∥

2

H

+ (b − a)

∫ b

a

‖u(t)‖2
H dt . (27)

�


4. An auxiliary problem

This and the next section are dedicated to proving Theorem 2. We look for the
solution χ ∈ L2

#(Rt ;D(A)) of the problem (15)–(16) into the form (41), where
the unknowns ak and bk belong to D(A). This leads to studying the stationary
systems (44) in H , for each positive integer k (for a better understanding of this
point, see the very beginning of the next section) or, equivalently, to studing the
basic system






k v + ν Au − ν (Au, e) e = k q e ,

−k u+ ν A v − ν (A v, e) e = −k p e ,
(28)

where k � 1, p and q are given reals. In this section we prove the following
result:

Theorem 3. Problem (28) has one and only one solution (u, v) ∈ D(A)×D(A).
Moreover,

‖Au‖2 + ‖Av‖2 � C̃

(

1 +
(
k

ν

)2
)

(p2 + q2) , (29)

where C̃ depends only onC0 andC1 (a simple explicit expression is easily obtained).
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Proof. Since A−1 is compact, the eigenvalues of A form an increasing sequence
of strictly positive reals, λj , j = 1, 2, ...,

Awj = λj wj .

The eigenfunctions wj ’s are a Hilbertian basis in H ; moreover, we can assume

(wi, wj ) = δi j .

Note that the wj ’s are an orthogonal basis in V . More precisely, ((wi, wj )) =
δi j λi λj .

We set Vm = span {w1, w2, ..., wm} and look for um, vm ∈ Vm such that





(k vm + ν Aum − ν (Aum, e) e, φ) = k q (e, φ) ,

(−k um + ν A vm − ν (A vm, e) e, φ) = −k p (e, φ)
(30)

for each φ ∈ Vm. Since the λl wl , l = 1, ..., m form a basis of Vm, the problem (30)
is equivalent to the system of 2m equations obtained by replacing the φ’s by the
above λl wl , l = 1, ..., m. Note that, formally, this corresponds to multiplication
of the equations by Awl (and not by wl , as usual). Clearly, we look for um and vm
of the form

um =
m∑

1

αj wj , vm =
m∑

1

βj wj . (31)

Straightforward calculations show that (30) is equivalent to the 2m dimensional
system






k λl βl + ν
∑m
j=1

[
δj l − (wj , e) (e, wl)

]
λj αj = k q (e,wl) ,

−k λl αl + ν
∑m
j=1

[
δj l − (wj , e) (e, wl)

]
λj βj = −k p (e,wl) ,

(32)

where l runs from 1 to m. Recall that (wj , wl) = δj l . It is convenient to interpret
(32) as a system on the unknown 2m-dimensional column vector

X = (λ1 α1, ..., λm αm, λ1 β1, ..., λm βm) = (X1, X2).

Set γij = δij − (wj , e) (e, wl), j, l = 1, ..., m , and denote byM the correspond-
ing m×m matrix. The 2m× 2m matrix of the system (32) has the form

M =
[
M kI

−kI M
]

.

Since XT MX = XT1 MX1 + XT2 MX2 it follows that M is positive definite if
and only if M is positive definite. Let’s prove that this last property holds. Denote
by e the orthogonal projection in H of e onto Vm. Then, with clear notation,

∑
γjl ξj ξl = |ξ |2 − (ξ, e) (e, ξ) � (1 − ‖e‖2) |ξ |2
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for each ξ ∈ R
m. Since e /∈ Vm it follows that ‖e‖ < 1. We have proved that

problem (30) admits one and only one solution in Vm × Vm.
It is worth noting that the strict positivity of M follows here from the fact that

e /∈ Vm. Since ‖e‖ converges to 1 asm goes to infinity, the behaviour of the system
as m goes to infinity is not obvious.

To obtain a suitable estimate, we multiply the first m equations (32) by λl αl ,
the last m equations by λl βl , and sum up for l = 1, ..., m. This is equivalent to
multiplying the system (32), on the left, by the transpose of X. We obtain

ν

m∑

j,l=1

[
δj, l − (wj , e) (e, wl)

] (
(λj αj ) (λl αl)+ (λj βj ) (λl βl)

)

= k

m∑

l=1

λl (e, wl) (q αl − p βl) . (33)

Equation (33) can be written in the equivalent form

ν ‖Aum‖2 + ν ‖Avm‖2 − ν
[
(A um, e)

2 + (A vm, e)
2
]

(34)

= k q (Aum, e)− k p (A vm, e) . (35)

Hence,

‖Aum‖2 + ‖Avm‖2 � k2

4 ν2 (p
2 + q2)+ 2

[
(A um, e)

2 + (A vm, e)
2
]
. (36)

On the other hand, for each φ ∈ Vm,

(Aφ − (Aφ, e) e, w) = (φ, e)− C2
1 (Aφ, e) ,

and also

‖Aφ − (Aφ, e) e‖2 = ‖Aφ‖2 − (Aφ, e)2 .

Consequently,

C4
1 (Aφ, e)

2 � 2(φ, e)2 + 2C2
0

[
‖Aφ‖2 − (Aφ, e)2

]
. (37)

Hence, from (37), and by appealing to (35), one proves that

C4
1

[
(A um, e)

2 + (A vm, e)
2
]

� 2
[
(um, e)

2 + (vm, e)
2
]

+ 2C2
0
k

ν
[q (Aum, e)− p (A vm, e)] . (38)

Now, we turn back to system (30). By setting φ = e in both equations, straightfor-
ward calculations show that






(vm, e) = q ‖e‖2 − ν
1− ‖e‖2

k
(A um, e) ,

(um, e) = p ‖e‖2 + ν
1− ‖e‖2

k
(A vm, e) .

(39)
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By appealing to (39) (note that (q ‖e‖2 + B)2 � 2 q2 + 2B2)) we easily show
from (38) that

[

C4
1 − 4 ν2

(
1 − ‖e‖2

k

)2
]

[
(A um, e)

2 + (A vm, e)
2
]

� 4 (p2 + q2)+ C2
0

{
k2

ε ν2 (p
2 + q2)+ ε

[
(A um, e)

2 + (A vm, e)
2
]}

for each positive real ε. Note that ‖e‖ converges to 1 as m goes to ∞ and that
k � 1. Hence, on the left-hand side of the above inequality, we may replace k by 1
and assume thatm is sufficiently large so that the coefficient under square brackets

is larger than
C4

1
2 . Hence, by setting ε = C4

1
4C2

0
, we show that

C4
1

[
(A um, e)

2 + (A vm, e)
2
]

� 16

[

1 +
(
C0

C1

)4 (
k

ν

)2
]

(p2 + q2) . (40)

From this last estimate, together with (36), we easily obtain (29) with u and v
replaced by um and vm, respectively. From this estimate follows the weak conver-
gence in D(A) × D(A) of the pair (um, vm) to a solution (u, v) of (28). Clearly,
(29) holds. �


5. Proof of Theorem 2: the existence of the periodic solution in an infinite
cylinder

In the following we look for the solution χ ∈ L2
#(Rt ;D(A)) of the problem

(15)–(16) in the form

χ(t) = a0 +
∞∑

k=1

ak cos k t +
∞∑

k=1

bk sin k t , (41)

where the unknowns ak and bk belong to D(A).
The data g ∈ L2

#(Rt ) is written in the form

g(t) = p0 +
∞∑

k=1

pk cos k t +
∞∑

k=1

qk sin k t , (42)

where the p’s and q’s are constants.
Substitution in equation (15) yields

Aa0 − (A a0, e) e = 0 , (43)

together with





k bk + ν A ak − ν (A ak, e) e = k qk e ,

−k ak + ν A bk − ν (A bk, e) e = −k pk e ,
(44)
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where k runs from 1 to ∞. Equation (43) is equivalent to

a0 = c̃ w , (45)

where c̃ is an arbitrary constant. We anticipate that the value of the constant c̃ will
be uniquely determined by the constraint (16).

On the other hand, each of the infinite systems (44), k ∈ N, has the form (28).
Theorem 3 shows that the coefficients ak and bk are uniquely determined. Moreover,
the estimate (29) shows that

‖Aak‖2 + ‖Abk‖2 � C̃

(

1 +
(
k

ν

)2
)

(p2
k + q2

k ) (46)

for each k ∈ N. On the other hand,

Aχ(t) = c̃ e +
∞∑

k=1

(A ak) cos k t +
∞∑

k=1

(A bk) sin k t . (47)

It readily follows from (47) that

‖χ‖2
L2

#(Rt ;D(A))
=

∫ 2π

0
(Aχ(t), Aχ(t))H dt

= 2π c̃2 + π

∞∑

k=1

(
‖Aak‖2 + ‖Abk‖2

)
.

Finally, by appealing to (46),

‖χ‖2
L2

#(Rt ;D(A))
� 2π c̃2 + C̃ π

∞∑

k=1

(p2
k + q2

k )+ C̃ π ν−2
∞∑

k=1

k2 (p2
k + q2

k ) .

(48)

Now we impose (16) by choosing the value of the arbitrary constant c̃. By scalar
multiplication of both sides of equation (15) by e we show that

d

dt
[(χ, e)− g(t)] = 0 . (49)

On the other hand, by (41) and (45) it follows that

(χ(t), e) = c̃ (w, e)+
∞∑

k=1

(ak, e) cos kt +
∞∑

k=1

(bk, e) sin kt . (50)

Differentiation with respect to t of this last equation and of equation (42), and
appealing to equation (49) show that we must have

(ak, e) = pk and (bk, e) = qk .

Hence, from (50) and (42), it follows that

(χ(t), e) = c̃ (w, e)− p0 + g(t) . (51)
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Consequently, to get (16), we have to impose that c̃ = p0

C2
1

. This shows, see (45),

that (16) holds if and only if in (41) we set

a0 = p0

C2
1

w .

Finally, from (48) we get

‖χ‖2
L2

#(Rt ;D(A))
� 2π

p2
0

C4
1

+ C̃ π

∞∑

k=1

(p2
k + q2

k )+ C̃

ν2 ‖g′‖2
L2

#(Rt )
. (52)

This proves (17). The estimate (18) follows from (17) together with the first equa-
tion (15). Finally, the estimate (19) follows from (17), (18), (23) and (25). We
obtain (19) by decomposing χ into the time-independent component a0 and the
time-dependent component. This last one, see (41), has vanishing mean-value in
each period.

6. The Leray’s problem–Stokes case

The aim of this and of the next section is to show that the results proved in
the previous sections can be applied to extend and solve Leray’s problem in the
periodic case. More sophisticated results, as well as extensions to more general
cases, can possibly be done by adapting the known proofs in the stationary case. In
particular, this may include more stringent results on the asymptotic behavior as z
goes to infinity, the extension to more then two exit pipes, and the consideration of
non-Newtonian fluids.

Here � is an unbounded, connected open subset of R
n+1, locally situated on

one side of its boundary, consisting of a “reservoir” �0 with two cylindrical exits
to infinity, namely �1 and �2. We denote by x = (x1, ..., xn, xn+1) the system of
space coordinates in R

n+1. The two semi-infinite pipes can be described, possibly
in two different systems of coordinates, in the form �i = �i × R+, where the
sections �i may have different shape and measure. In this framework, we denote
by z ∈ R+ the axial coordinate in both cylinders and set x = (x′, z). Obviously, in
this last case x′ = (x1, ..., xn) does not denote the same (x1, ..., xn) that appears
in the above definition of x.

We set

�ri = {(x, z) ∈ �i : z < r} ,
and

�r = �0 ∪�r1 ∪�r2 .
We define

V = {
v ∈ C∞

0 (�) : ∇ · v = 0
}
,
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and denote respectively by H and V the closure of V in L2(�) and H 1(�). The
scalar products in the spaces H and V are denoted respectively by

(u, v) =
∫

�

u · v dx and ((u, v)) = (∇ u,∇ v) =
∫

�

∇ u · ∇v dx .
In particular,

V =
{
v ∈ H 1

0 (�) : ∇ · v = 0
}
.

Due to the structure of the unbounded set �, Poincaré’s inequality ‖v‖ � c̃ ‖∇ v‖
holds for each v ∈ H 1

0 (�). In particular,

‖v‖H � c̃ ‖v‖V (53)

for each v ∈ V. Hence, in V, the Dirichlet norm ‖v‖V = √
((v, v)) is equivalent

to the the canonical H 1(�) norm.
Denote by χi(x, t), for i = 1 and i = 2, the basic time-periodic flows described

in Theorem 2 in connection with the sections � = �i and with a given, arbitrary,
periodic flux g(t). Set χi(x, z, t) = (0, ..., 0, χi(x, t)). For convenience we denote
χi(x, z, t) simply by χi(x, t).

We look for solutions to the following problem:
Problem PL. Given a real (2π)-time-periodic function g(t) find a (2π)-time-
periodic function v(t, x, z) of the Stokes evolution problem






∂ v
∂ t

− ν 	v + ∇ p = 0 ,

∇ · v = 0 in �× Rt ;

v = 0 on (∂ �)× Rt ,

v(t + 2π) = v(t) ∀ t ∈ Rt ,

(54)

such that

sup
t∈ Rt

‖v(t)− χi(t)‖H 1(�i)
� constant , i = 1, 2 . (55)

Remark 5. We will show that (69) holds, where u(t) = v(t)− χi(t), i = 1, 2, in
�i .

The constraint (55) implies convergence of v to the χi’s, as the coordinate z go to
infinity, uniformly with respect to t . In fact, a straightforward argument (see, for
instance, [9]) shows that

lim
z→+∞ ‖v(t)− χi(t)‖

H
1
2 (�i)

= 0 (56)

uniformly with respect to t .
The solution v of problem (54)–(55) has the form v = v0 + u, where v0 is an

auxiliary flow which coincides on the exit pipes �i with the basic periodic flows
χi , and u is a perturbation of v0 that goes to zero when the distance z along the exit
pipes goes to infinity. More precisely, we have the following result:
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Theorem 4. Let g ∈ H 1
# (Rt ) be given. There is a unique solution v of problem

(54)–(55). The solution v can be written in the form v = v0 + u, where v0 is a
solution of the problem (58) and u solves (61). The flows v0 and u satisfy, respec-
tively, the estimates (59) and (69). Moreover, u = v − χi in �i , i = 1, 2,
satisfies the asymptotic estimate (56).

Remark 6. Further regularity results are easily proved. In particular, if� is regular
(say, of class C1,1, or convex), then

D(A) = H 2(�) ∩ V(�) , (57)

and if � and g are of class C∞ so is v. For the definition of A see the end of this
section.

It is worth noting that the convergence of the solution v to the limit functions χi ,
as z goes to ∞, is stronger than that implied by (55) alone. If the data are regular,
exponential decay should occur, as for the case of the Poiseuille flow. See [1] and
[9], Sections VI.1 and VI.2.

For convenience, when writing some of the main estimates, we consider the
explicit case in which (57) holds. However, the results below hold in the general
case, by merely replacing H 2(�) by D(A).

The first step of the proof of Theorem 4 consists of constructing a time-periodic
vector field v0 in � such that






v0 ∈ L2
#(Rt ;H 2(�1)) ,

v′
0 ∈ L2

#(Rt ;L2(�1)) ;

∇ · v0 = 0 in �× Rt ,

v0 = 0 on (∂ �)× Rt ,

v0(t + 2π) = v0(t) ∀ t ∈ Rt ,

v0 = χi in �i × Rt , i = 1, 2 .

(58)

The construction of the vector field v0 is done by freezing the variable t . This con-
struction is done by following that of the extended Poiseuille vector field q in [1].
See also [24] and [9], Chapter VI, section 1 for details. Following the notation in
[9], we chose the truncation functions ζi(z) ∈ C∞

0 (R
n+1), i = 1, 2, equal to 1 in

�i − �1
i and vanishing on �− �i . The map (χ1, χ2) → v0 is linear, moreover

‖v0‖H 2(�1)
� c (‖χ1‖H 2(�1

1)
+ ‖χ2‖H 2(�1

2)
) .

Similar estimates hold by replacing H 2 by H 1
0 or by L2. These facts show that

‖v0‖2
L2

#(Rt ;H 2(�1))
� c

2∑

i= 1

‖χi‖2
L2

#(Rt ;H 2(�1
i ))
.
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The linearity of the map (χ1, χ2) → v0 yields

‖v′
0‖2
L2

#(Rt ;L2(�1))
� c

2∑

i= 1

‖χ ′
i‖2
L2

#(Rt ;L2(�1
i ))
.

By appealing to (11), (12) and (13), it follows that





‖v0‖2
L2

#(Rt ;H 2(�1))
� c (1 + ν−2) ‖g‖2

H 1
# (Rt )

,

‖v0‖2
C#(Rt ;H 1(�1))

� c (ν + ν−2) ‖g‖2
H 1

# (Rt )
,

‖v′
0‖2
L2

#(Rt ;L2(�1))
� c (1 + ν2) ‖g‖2

H 1
# (Rt )

.

(59)

Next, we look for solutions of problem (54) in the form

v = v0 + u . (60)

By setting f (t) = −
(
∂ v0
∂ t

− ν 	v0

)
, the problem (54) becomes






∂ u
∂ t

− ν 	u+ ∇ p = f (t) ,

∇ · u = 0 in �× Rt ;

u = 0 on (∂ �)× Rt ,

u(t + 2π) = u(t) ∀ t ∈ Rt .

(61)

Next we exploit the fact that v0 = χi in �i , where the functions χi(x, z, t) =
χi(x, t) satisfy (6) with ψ(t) = ψi(t) and ψi(t) satisfies (7) with χ(t) = χi(t).

By adding ∇ ∑
i (z ζi(z) ψi(t)) to the pressure term that appears in the left-hand

side of the first equation (61) we show that we can replace f (t) by

f (t) = −
(
∂ v0

∂ t
− ν 	v0

)

+
∑

i

∂

∂ z
(z ζi(z) ψi(t)) .

Since v0 = χi in �i , the first equation (6) shows that f (t) vanishes on �1
1 ∪�1

2,
i.e.,

supp f ⊂ �1 . (62)

Furthermore, the estimate (59), together with (7) and (11), shows that

‖f ‖L2
#(Rt ;L2(�1))

� c (1 + ν) ‖g‖H 1
# (Rt )

. (63)

Let us set the problem (61) in a variational form.
We look for u ∈ L2

#(Rt ; V) such that

d

d t
(u, v)+ ν ((u, v)) = (f (t), v) ∀ v ∈ V (64)
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in the distributional sense. We denote by f (t) the orthogonal projection of the above
f (t) over H. Note that the orthogonal projection of f (t) over H

⊥ is a gradient,
which does not affect the solution of equation (64). We have

‖f ‖L2
#(Rt ;H) � c (1 + ν) ‖g‖H 1

# (Rt )
. (65)

Under the estimate (65) it is known that problem (64) admits a unique solution
u ∈ L2

#(Rt ; V). In fact, due to (53), the existence and uniqueness of a solution
u ∈ L2(0, 2π; V) of the Cauchy problem u(0) ∈ H is well known. In particular,
u′ ∈ L2(0, 2π; H). Straightforward calculations show that the map S : u(0) →
u(2π) is a strict contraction in H. Moreover S(B) ⊂ B for a sufficiently large
ball B ⊂ H. This proves the existence of a unique fixed point u(0) = u(2π). The
proof of the above result is a simplification of the one given in the next section for
solutions of the system (73). It is worth noting that the assumption (84) is due to
the presence of the nonlinear terms in the left hand side of (73). The simplified
system (61) does not require this assumption.

Canonical devices (formally, scalar multiplication in H of both sides of the first
equation (61) by u, followed by integration in (0, 2π)) show that

ν ‖u‖L2
#(Rt ; V) � c ‖f ‖L2

#(Rt ; H) ,

where we have used Poincaré’s inequality (53). Finally, by (65),

ν ‖u‖L2
#(Rt ; V) � c (1 + ν) ‖g‖H 1

# (Rt )
. (66)

This same bound holds as well for ‖u′‖L2
#(Rt ; V′) , as easily seen from (64) and (66).

Further regularity: Following a classical technique, we define an unbounded oper-
ator A in H by setting

(A u, v)H = ((u, v))V .

The domain D(A) of A consists of the set of elements u ∈ V for which the map
v → ((u, v))V is an element of H

′ . Hence A u ∈ H
′ ∼= H. The equation (64)

gives rise to the equation

u′ + νA u = f (t) . (67)

Scalar multiplication by A u and integration over (0, 2π) show that

ν ‖A u‖L2
#(Rt ; H) � c (1 + ν) ‖g‖H 1

# (Rt )
. (68)

We have used here the periodicity of the solution and (63). The periodicity of the
solution shows that the integral on (0, 2π) of the scalar product (u′, A u)H =
1
2
d
dt

‖u‖2
V

vanishes. A similar estimate for u′ follows directly from the equation
(67), by appealing to the above estimate for A u. Finally, from these two estimates
it follows that

‖u′‖L2
#(Rt ; H) + (ν−1 + ν1/2) ‖u‖C#(Rt ; V) + ν ‖A u‖L2

#(Rt ; H)

� c (1 + ν) ‖g‖H 1
# (Rt )

.

(69)
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Note that the estimate for the second term on the left hand side of (69) follows by
appealing to (23), with H replaced by H and so on. Note that V = [D(A), H]1/2,
independently of (57). See [17], Chap.I, Eq. (2.42).

The uniqueness of the solution in the classL2
#(Rt ; V) follows by setting f = 0

in equation (64), and by following standard techniques.
Finally, if � is regular, (57) holds. This can be seen by arguing as in [1]. See

also [9], VI.1, Lemma 1.2. A main point here is that the sections �i do not depend
on z.

Remark 7. We may also start by considering problem (64) in the truncated domains
�r by replacing everywhere� by�r ). This problem admits one and only one solu-
tion ur . For a very elementary proof see, for instance, [23], Chap. 7, problem 7.1–2.
We can easily verify that the main estimates do not depend on the parameter r . We
denote by ur the extension by zero of ur to the whole of�. Since the estimates do
not depend on r , we may extract an increasing sequence rn, converging to ∞, and
such that the sequence un = urn converges weakly in L2(Rt ; V) to some element
u. Moreover, u′

n converges weakly to u′ in L2(Rt ; H). By choosing test functions
v ∈ V , passing to the limit in the variational equation as n goes to ∞ and, finally,
appealing to a density argument, we prove that the limit function u satisfies the
variational equation for any test function v ∈ V.

7. The Leray’s problem in the Navier-Stokes case (N � 4)

In the following we assume that the dimension N = n + 1 satisfies N � 4.
Note that the physical meaningful situation corresponds to n = 2. For brevity, we
assume here that the �i’s are regular.

In the case of the Navier-Stokes equations, we look for solutions v of the fol-
lowing problem:
Problem PLNS. Given a real (2π)-time-periodic function g(t) find a (2π)-time-
periodic function v(t, x, z) of the Navier-Stokes evolution problem






∂ v
∂ t

− ν 	v + (v · ∇) v + ∇ p = 0 ,

∇ · v = 0 in �× Rt ,

v = 0 on (∂ �)× Rt ,

v(t + 2π) = v(t) ∀ t ∈ Rt ,

(70)

such that, for i = 1, 2,

‖v − χi‖L∞
# (Rt ;L2(�i))

+ ‖v − χi‖L2
#(Rt ;H 1(�i))

� constant . (71)

The constraint (71) implies convergence of v, in a weak sense, to the χi’s, as the
coordinate z go to infinity. See the end of this section.
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Theorem 5. Let g ∈ H 1
# (Rt ) be given. There is a positive constant c0, that depends

only on�, such that, if (84) holds, the problem (70)–(71) has at least one solution v.
The solution v can be written in the form v = v0 + u, where v0 satisfies (58) and
(59) and u satisfies (87) and (73). In particular, u = v− χi in �i , i = 1, 2,
satisfies the asymptotic estimates (89) and (90).

As in the previous section, we look for solutions v in the form

v = v0 + u . (72)

Now the problem (61) is replaced here by





∂ u
∂ t

− ν 	u+ (u · ∇) u+ (v0 · ∇) u+
(u · ∇) v0 + ∇ p = f (t) ,

∇ · u = 0 in �× Rt ;

u = 0 on (∂ �)× Rt ,

u(t + 2π) = u(t) ∀ t ∈ Rt ,

(73)

where

f (t) = −
(
∂ v0

∂ t
− ν 	v0 + (v0 · ∇) v0

)

+
∑

i

∂

∂ z
(z ζi(z) ψi(t))

satisfies (62). This last property follows from (6), since (χi · ∇) χi = 0 .
By appealing to the Sobolev embedding theoremH 1(�1) ⊂ L4(�1) it readily

follows that

‖(v0 · ∇) v0‖2
L2

#(Rt ;L2(�1))
� ‖v0‖2

L∞
# (Rt ;H 1(�1))

‖v0‖2
L2

#(Rt ;H 2(�1))
.

Hence, by (59), we have

‖(v0 · ∇) v0‖L2
#(Rt ;L2(�1))

� c
√
ν + ν−4 ‖g‖2

H 1
# (Rt )

. (74)

Consequently, (65) is replaced here by

‖f ‖L2
#(Rt ;H) � c (1 + ν) ‖g‖H 1

# (Rt )
+ c

√
ν + ν−4 ‖g‖H 1

# (Rt )
. (75)

We look for u ∈ L2
#(Rt ; V) such that

d

d t
(u, v)+ ν ((u, v)) + ((u · ∇) u, v)+ ((v0 · ∇) u, v)+ ((u · ∇) v0, v)

= (f (t), v) ∀ v ∈ V , (76)

in the distributional sense.
For N � 4, the proof of the existence of, at least, one periodic solution of the

problem (76) follows well-known techniques. The problem can be treated by adapt-
ing the classical variational approach, followed in the case of bounded domains, to
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the domain� . The situation is very similar, since Poincaré’s inequality holds in� .
We construct Faedo-Galerkin approximate solutions and show the existence of the
limit solution (possibly not unique). Due to the “extra terms” containing the vector
field v0, we have to assume that the viscosity ν is sufficiently large with respect to
the H 1

# (Rt ) norm of the periodic flux g(t).
Since the technical aspects are well known, we merely present the main formal

calculations.
By setting v = u in equation (76) we have

1

2

d

d t
‖u‖2 + ν ‖∇ u‖2 − ((u · ∇) u, v0) = (f (t), u) . (77)

By appealing to Hölder’s inequality, the Sobolev embedding theorem H 1(�1) ⊂
L4(�1) and Poincare’s inequality we show that

∣
∣
∣
∣

∫

�1

(u · ∇) u · v0 dx

∣
∣
∣
∣ � c ‖v0‖H 1(�1)

‖∇ u‖2
L2(�1)

. (78)

Hence, by (59),
∣
∣
∣
∣

∫

�1

(u · ∇) u · v0 dx

∣
∣
∣
∣ � c

√
ν + ν−2 ‖g‖H 1

# (Rt )
‖∇ u‖2

L2(�1)
. (79)

On the other hand,
∣
∣
∣
∣

∫

�1
(u · ∇) u · v0 dx

∣
∣
∣
∣ �

∫ +∞

z=1
dz

∫

�

|(u · ∇) u · v0| dx , (80)

where�1 represents�1
1 or�1

2, and� represents�1 or�2. Recall that the sections
�i do not depend on z.

Furthermore,
∫

�

|(u · ∇) u · v0| dx � c ‖v0‖L4(�) ‖∇ u‖2
L2(�)

.

By taking into account that H 1(�i) ⊂ L4(�i) and v0 = χi in �i , and also by
appealing to (13), it follows that

∫

�

|(u · ∇) u · v0| dx � c
√
ν + ν−2 ‖g‖H 1

# (Rt )
‖∇ u‖2

L2(�)

for each t .
Finally, by integration with respect to t , we show that

∣
∣
∣
∣

∫

�1
(u · ∇) u · v0 dx

∣
∣
∣
∣ � c

√
ν + ν−2 ‖g‖H 1

# (Rt )
‖∇ u‖2

L2(�1)
. (81)

From (79) and (81) we obtain

|((u · ∇) u, v0)| � c0

√
ν + ν−2 ‖g‖H 1

# (Rt )
‖∇ u‖2

L2(�)
. (82)
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From (77), (75) and (82) it follows that

1

2

d

d t
‖u‖2 + ν ‖∇ u‖2 � c0

√
ν + ν−2 ‖g‖H 1

# (Rt )
‖∇ u‖2 + ‖f ‖ ‖u‖ . (83)

Hence, if

c0

√
ν + ν−2 ‖g‖H 1

# (Rt )
� ν

2
, (84)

then

d

d t
‖u‖2 + ν ‖∇ u‖2 � 2 ‖f ‖ ‖u‖ . (85)

In particular,

d

d t
‖u‖2 + c ν ‖u‖2 � c1

ν
‖f ‖2 . (86)

Consequently,

‖u(t)‖2 � e−cνt ‖u(0)‖2 + c1

ν

∫ t

0
e−cν(t− s) ‖f (s)‖2 ds .

It readily follows that the the map u(0) → u(2π) has a fixed point in the ball
B ⊂ H centered at the origin with radius

ρ = c1

ν

‖f ‖2

1 − exp {−2πc ν} .

For details see, for instance, [25] page 60 and [23] page 180. If, as in these ref-
erences, we use the classical Faedo-Galerkin method, the approximate (periodic)
solutions remain inside the ballB. This fact leads to a convergence of a subsequence
to a weak solution u of problem (73),

u ∈ L∞
# (Rt ;L2(�)) ∩ L2

#(Rt ;H 1(�)) . (87)

Since

v = χi + u in �i ,

the solution v of problem (70) satisfies (71).
The convergence of v to χi , in �i, i = 1, 2, as z goes to ∞, is equiva-

lent to the convergence of u to zero. As shown below, this last property follows
from

u ∈ L∞
# (Rt ;L2(�)) ∩ L2

#(Rt ;H 1(�)) . (88)

Asymptotic behavior. For convenience, we drop in the sequel the index i, i = 1, 2 ,
from notations.

We set

�(z) = {(x, z) : x ∈ �} ,
and

�r = {(x, z) ∈ � : z > r } .
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We have the following result:

Proposition 1. Set p = 2/s and let u satisfy (88). Then,

lim
z→∞ ‖u‖

L
p
# (Rt ;Hs− 1

2 (�(z)))
= 0 (89)

for each s ∈ [1/2, 1]. In particular

lim
z→∞ ‖u‖Lp# (Rt ;Lq(�(z))) = 0 , (90)

where q = 2 n/(n+ 1 − 2s).

Proof. From (88) it easily follows, by interpolation, that u ∈ L
p
# (Rt ;Hs(�)) for

each s ∈ [0, 1]. If s > 0 then

lim
z→∞ ‖u‖Lp# (Rt ;Hs(�z))

= 0 . (91)

Since

‖u‖
H
s− 1

2 (�(z))
� c ‖u‖Hs(�z) ,

the conclusion follows. �


We assume now that s = 0 and prove that (88) yields

lim
z→∞ ‖u‖L4

#(Rt ;L2(�z))
= 0 .

This estimate can be proved for regular functions and then extended to u by a
density argument. Starting from

|u(z, x)|2 �
∫ +∞

z

|u(s, x)| |∂u
∂z
(s, x)| ds ,

we easily show that

‖u‖2
L2(�(z))

� ‖u‖2
L2(�z)

‖∇ u‖2
L2(�z)

,

a.e. in Rt . The conclusion follows by a straightforward argument.

Acknowledgements. We are particularly grateful to Alain Haraux for his crucial help. We
are also grateful to Robert Turner for English advice and remarks concerning possible
developments, and to Luc Tartar for proposing a different approach to problem (9)–(10).



24 H. Beirão da Veiga

References

1. Amick, C.J.: Steady solutions of the Navier-Stokes equations in unbounded channels
and pipes. Ann. Sc. Norm. Sup. Pisa 4, 473–513 (1977)

2. Amick,C.J.: Properties of steady solutions of the Navier-Stokes equations for certain
unbounded channels and pipes. Nonlin. Anal., Theory Meth. Appl., 2, 689–720 (1978)

3. Amick, C.J., Fraenkel, L.E.: Steady solutions of the Navier-Stokes equations repre-
senting plane flows in channels of various types. Acta Math. 144, 81–152 (1980)

4. Beirão da Veiga, H.: Regularity of solutions to a nonhomogeneous boundary value
problem for general Stokes systems in R

n+. Math. Annalen 328, 173–192 (2004)
5. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science

and Technology. Vol. 6, Evolution problems II. Springer-Verlag, Berlin-Heidelberg,
1993

6. Farwig, R.: WeightedLp Helmholtz decompositions in infinite cylinders and in infinite
layers. Adv. Diff. Equations 8, 357–384 (2003)

7. Finn, R.: Stationary solutions of the Navier-Stokes equations. Amer. Math. Soc. Proc.
Symposia Appl. Math. 17, 121–153 (1965)

8. Fontelos, M.A., Friedman, A.: Stationary non-Newtonian fluid flows in channel-like
and pipe-like domains. Arch. Ration. Mech. Anal. 151, 1–43 (2000)

9. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equa-
tions. Vol. I: Linearized Steady Problems, Springer Tracts in Natural Philosophy, 38,
Second corrected printing, Springer-Verlag, 1998; Vol. II: Nonlinear Steady Problems,
Springer Tracts in Natural Philosophy, 39, 1994

10. Haraux, A.: Nonlinear Evolution Equations-Global Behavior of Solutions. Lecture
Notes in Mathematics 841, Springer-Verlag, Heidelberg, 1981
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